《创新设计》2014届高考数学人教A版(理)一轮复习【配套word版文档】:第二篇 第7讲 函数图象

合集下载

《创新设计》2014届高考数学人教A版(理)一轮复习配套word版文档:第六篇 第2讲 等差数列及其前n项和.doc

《创新设计》2014届高考数学人教A版(理)一轮复习配套word版文档:第六篇 第2讲 等差数列及其前n项和.doc

第2讲 等差数列及其前n 项和A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2012·福建)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ).A .1B .2C .3D .4解析 在等差数列{a n }中,∵a 1+a 5=10.∴2a 3=10,∴a 3=5,又a 4=7,∴所求公差为2. 答案 B2.(2013·山东实验中学诊断)设S n 为等差数列{a n }的前n 项和,已知a 1+a 3+a 11=6,那么S 9=( ).A .2B .8C .18D .36解析 设等差数列的公差为d ,则由a 1+a 3+a 11=6,可得3a 1+12d =6,∴a 1+4d =2=a 5.∴S 9=(a 1+a 9)×92=9a 5=9×2=18.答案 C3.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( ). A .-1B .1C .3D .7解析 两式相减,可得3d =-6,d =-2.由已知可得3a 3=105,a 3=35,所以a 20=a 3+17d =35+17×(-2)=1. 答案 B4.(2012·东北三校一模)在等差数列{a n }中,S 15>0,S 16<0,则使a n >0成立的n的最大值为( ).A .6B .7C .8D .9解析 依题意得S 15=15(a 1+a 15)2=15a 8>0,即a 8>0;S 16=16(a 1+a 16)2=8(a 1+a 16)=8(a 8+a 9)<0,即a 8+a 9<0,a 9<-a 8<0.因此使a n >0成立的n 的最大值是8,选C. 答案 C二、填空题(每小题5分,共10分)5.(2012·江西)设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.解析 设数列{a n },{b n }的公差分别为d 1,d 2,因为a 3+b 3=(a 1+2d 1)+(b 1+2d 2)=(a 1+b 1)+2(d 1+d 2)=7+2(d 1+d 2)=21,所以d 1+d 2=7,所以a 5+b 5=(a 3+b 3)+2(d 1+d 2)=21+2×7=35. 答案 356.(2013·沈阳四校联考)设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析 依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d 12-3a 1+3d9=1,由此解得d =6,即公差为6. 答案 6三、解答题(共25分)7.(12分)在等差数列{a n }中,已知a 2+a 7+a 12=12,a 2·a 7·a 12=28,求数列{a n }的通项公式.解 由a 2+a 7+a 12=12,得a 7=4.又∵a 2·a 7·a 12=28,∴(a 7-5d )(a 7+5d )·a 7=28,∴16-25d 2=7,∴d 2=925,∴d =35或d =-35. 当d =35时,a n =a 7+(n -7)d =4+(n -7)×35=35n -15; 当d =-35时,a n =a 7+(n -7)d =4-(n -7)×35=-35n +415. ∴数列{a n }的通项公式为a n =35n -15或a n =-35n +415.8.(13分)在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18.(1)求数列{a n }的通项公式;(2)令b n =S nn +c (n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由. 解 (1)由题设,知{a n }是等差数列,且公差d >0, 则由⎩⎨⎧ a 2a 3=45,a 1+a 5=18,得⎩⎨⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18.解得⎩⎨⎧a 1=1,d =4.∴a n =4n -3(n ∈N *).(2)由b n =S nn +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c ,∵c ≠0,∴可令c =-12,得到b n =2n . ∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·咸阳模拟)已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ).A .12B .14C .16D .18解析 S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n (a 1+a n )2=210,得n =14.答案 B2.(2012·广州一模)已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n 为整数的正整数的个数是( ).A .2B .3C .4D .5解析 由A n B n =7n +45n +3得:a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1,要使a n b n 为整数,则需7n +19n +1=7+12n +1为整数,所以n =1,2,3,5,11,共有5个. 答案 D二、填空题(每小题5分,共10分)3.(2013·徐州调研)等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.解析 ∵a n =2n +1,∴a 1=3,∴S n =n (3+2n +1)2=n 2+2n ,∴S n n =n +2,∴⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列, ∴前10项和为3×10+10×92×1=75.答案 754.(2012·诸城一中月考)设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析 设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1,∴S 奇S 偶=n +1n =4433,解得n =3,∴项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. 答案 11 7三、解答题(共25分)5.(12分)在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解 (1)由2a n +1=a n +2+a n 可得{a n }是等差数列, 且公差d =a 4-a 14-1=2-83=-2.∴a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. ∴当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×(-52+45) =n 2-9n +40,∴S n =⎩⎨⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.6.(13分)(2012·四川)已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值;(2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n .当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2,③(i)若a 2=0,由①知a 1=0, (ii)若a 2≠0,由③知a 2-a 1=1.④由①、④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2. 综上可得a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2-2.(2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), 所以a n =a 1(2)n -1=(2+1)·(2)n -1. 令b n =lg 10a 1a n,则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1,所以数列{b n }是单调递减的等差数列(公差为-12lg 2), 从而b 1>b 2>…>b 7=lg 108>lg 1=0, 当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0, 故n =7时,T n 取得最大值,且T n 的最大值为T 7=7(b 1+b 7)2=7(1+1-3lg 2)2=7-212lg 2.。

《创新设计》2014届高考数学人教A版(理)一轮复习配套word版文档:第二篇 第2讲 函数的单调性与最值.pptx

《创新设计》2014届高考数学人教A版(理)一轮复习配套word版文档:第二篇 第2讲 函数的单调性与最值.pptx

+4,得 x>-1,选 B.
法二 设 g(x)=f(x)-2x-4,则 g(-1)=f(-1)-2×(-1)-4=0,g′(x)=f′(x)
-2>0,g(x)在 R 上为增函数.由 g(x)>0,即 g(x)>g(-1).∴x>-1,选 B.
答案 B 3.(2012·浙江)设 a>0,b>0.
A. 若 2a+2a=2b+3b,则 a>b B. 若 2a+2a=2b+3b,则 a<b C. 若 2a-2a=2b-3b,则 a>b
(i)当 a<0,b>0 时,23x>-2ab, 解得 x>log23-2ab; (ii)当 a>0,b<0 时,23x<-2ab, 解得 x<log23-2ab. 6.(13 分)(2012·潍坊一模)已知函数 f(x)在(-1,1)上有定义,f12=-1,当且仅当 0<x<1 时,f(x)<0,且对任意 x、y∈(-1,1)都有 f(x)+f(y)=f1x++xyy,试证明: (1)f(x)为奇函数;
学海无 涯
第 2 讲 函数的单调性与最值
A 级 基础演练(时间:30 分钟 满分:55 分)
一、选择题(每小题 5 分,共 20 分)
1.(2013·长沙一模)下列函数中,既是偶函数又在(0,+∞)内单调递减的函数是
( ).
A.y=x2
B.y=|x|+1
C.y=-lg|x|
D.y=2|x|
解析 对于 C 中函数,当 x>0 时,y=-lg x,故为(0,+∞)上的减函数,且
学海无 涯
(2)f(x)在(-1,1)上单调递减. 证明 (1)函数 f(x)的定义域为(-1,1), 再由 f(x)+f(y)=f1x++xyy, 令 x=y=0,得 f(0)=0, 令 y=-x,得 f(x)+f(-x)=f1x--xx2=f(0)=0, ∴f(x)=-f(-x),即 f(x)为奇函数. (2)先证 f(x)在(0,1)上单调递减.令 0<x1<x2<1,则 f(x2)-f(x1)=f(x2)+f(-x1)= x2-x1 f1-x 1x2. ∵0<x1<x2<1,∴x2-x1>0,1-x1x2>0, 即1x-2-x2xx11>0. 又∵(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0, ∴x2-x1<1-x 2x1,∴0< 1x-2-x2xx11<1. 由题意,知 f1x-2-x1xx21<0,即 f(x2)<f(x1), ∴f(x)在(0,1)上单调递减,又 f(x)为奇函数且 f(0)=0, ∴f(x)在(-1,1)上单调递减. 特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见

[创新设计]2014届高考数学人教a版(理)一轮复习[配套word版文档]:第六篇 第1讲 数列的概念与简单表示法

[创新设计]2014届高考数学人教a版(理)一轮复习[配套word版文档]:第六篇 第1讲 数列的概念与简单表示法

第六篇数列第1讲数列的概念与简单表示法A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.在数列{a n}中,a1=1,a2=5,a n+2=a n+1-a n(n∈N*),则a100等于().A.1 B.-1 C.2 D.0解析法一由a1=1,a2=5,a n+2=a n+1-a n(n∈N*),可得该数列为1,5,4,-1,-5,-4,1,5,4,….由此可得此数列周期为6,故a100=-1.法二a n+2=a n+1-a n,a n+3=a n+2-a n+1,两式相加可得a n+3=-a n,a n+6=a n,∴a100=a16×6+4=a4=-1.答案 B2.已知S n是数列{a n}的前n项和,S n+S n+1=a n+1(n∈N*),则此数列是().A.递增数列B.递减数列C.常数列D.摆动数列解析∵S n+S n+1=a n+1,∴当n≥2时,S n-1+S n=a n.两式相减得a n+a n+1=a n+1-a n,∴a n=0(n≥2).当n=1时,a1+(a1+a2)=a2,∴a1=0,∴a n=0(n∈N*),故选C.答案 C3.(2013·北京朝阳区一模)已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N *),则a 5=( ). A .-16 B .16 C .31 D .32解析 当n =1时,S 1=a 1=2a 1-1,∴a 1=1,又S n -1=2a n -1-1(n ≥2),∴S n -S n -1=a n =2(a n -a n -1).∴a n a n -1=2.∴a n =1×2n -1,∴a 5=24=16. 答案 B4.(2013·山东省实验中学测试)将石子摆成如图的梯形形状,称数列5,9,14,20,…为梯形数,根据图形的构成,此数列的第2 014项与5的差即a 2 014-5=( ).A .2 020×2 012B .2 020×2 013C .1 010×2 012D .1 010×2 013解析 结合图形可知,该数列的第n 项a n =2+3+4+…+(n +2).所以a 2 014-5=4+5+…+2 016=2 013×1 010.故选D.答案 D二、填空题(每小题5分,共10分)5.数列{a n }的通项公式a n =-n 2+10n +11,则该数列前________项的和最大. 解析 易知a 1=20>0,显然要想使和最大,则应把所有的非负项求和即可,这样只需求数列{a n }的最末一个非负项.令a n ≥0,则-n 2+10n +11≥0,∴-1≤n ≤11,可见,当n =11时,a 11=0,故a 10是最后一个正项,a 11=0,故前10或11项和最大.答案 10或116.(2013·杭州调研)已知数列{a n }满足a 1=1,且a n =n (a n +1-a n )(n ∈N *),则a 2=________;a n =________.解析 由a n =n (a n +1-a n ),可得a n +1a n=n +1n , 则a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 2a 1·a 1=n n -1×n -1n -2×n -2n -3×…×21×1=n ,∴a 2=2,a n =n .答案 2 n三、解答题(共25分)7.(12分)在数列{a n }中,a 1=1,112a n =14a n -1+13(n ≥2),求{a n }的通项公式.解 ∵112a n =14a n -1+13(n ≥2),∴a n =3a n -1+4,∴a n +2=3(a n -1+2).又a 1+2=3,故数列{a n +2}是首项为3,公比为3的等比数列.∴a n +2=3n , 即a n =3n -2.8.(13分)(2013·西安质检)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.在数列{x n }中,若x 1=1,x n +1=1x n +1-1,则x 2 013= ( ).A .-1B .-12 C.12 D .1 解析 将x 1=1代入x n +1=1x n +1-1,得x 2=-12,再将x 2代入x n +1=1x n +1-1, 得x 3=1,所以数列{x n }的周期为2,故x 2 013=x 1=1.答案 D2.定义运算“*”,对任意a ,b ∈R ,满足①a *b =b *a ;②a *0=a ;(3)(a *b )*c =c *(ab )+(a *c )+(c *b ).设数列{a n }的通项为a n =n *1n *0,则数列{a n }为( ).A .等差数列B .等比数列C .递增数列D .递减数列解析 由题意知a n =⎝ ⎛⎭⎪⎫n *1n *0=0]n ·1n +(n *0)+⎝ ⎛⎭⎪⎫0]1n )=1+n +1n ,显然数列{a n } 既不是等差数列也不是等比数列;又函数y =x +1x 在[1,+∞)上为增函数,所以数列{a n }为递增数列.答案 C二、填空题(每小题5分,共10分)3.(2013·合肥模拟)已知f (x )为偶函数,f (2+x )=f (2-x ),当-2≤x ≤0时,f (x )=2x ,若n ∈N *,a n =f (n ),则a 2 013=________.解析 ∵f (x )为偶函数,∴f (x )=f (-x ),∴f (x +2)=f (2-x )=f (x -2).故f (x )周期为4,∴a 2 013=f (2 013)=f (1)=f (-1)=2-1=12.答案 124.(2012·太原调研)设函数f (x )=⎩⎨⎧(3-a )x -3,x ≤7,a x -6,x >7,数列{a n }满足a n =f (n ),n∈N *,且数列{a n }是递增数列,则实数a 的取值范围是________.解析 ∵数列{a n }是递增数列,又a n =f (n )(n ∈N *),∴⎩⎨⎧ 3-a >0,a >1,f (8)>f (7)⇒2<a <3.答案 (2,3) 三、解答题(共25分)5.(12分)(2013·杭州模拟)设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *.(1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围.解 (1)依题意,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ),又S 1-31=a -3(a ≠3),故数列{S n -3n }是首项为a -3,公比为2的等比数列, 因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *.(2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2,当n =1时,a 1=a 不适合上式,故a n =⎩⎨⎧a ,n =1,2×3n -1+(a -3)2n -2,n ≥2. a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎢⎡⎦⎥⎤12·⎝ ⎛⎭⎪⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇔12·⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇔a ≥-9. 又a 2=a 1+3>a 1.综上,所求的a 的取值范围是[-9,+∞).6.(13分)(2012·山东)在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73.(1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中落入区间(9m,92m )内的项的个数记为b m ,求数列{b m}的前m项和S m.解(1)因为{a n}是一个等差数列,所以a3+a4+a5=3a4=84,即a4=28.设数列{a n}的公差为d,则5d=a9-a4=73-28=45,故d=9. 由a4=a1+3d得28=a1+3×9,即a1=1.所以a n=a1+(n-1)d=1+9(n-1)=9n-8(n∈N*).(2)对m∈N*,若9m<a n<92m,则9m+8<9n<92m+8,因此9m-1+1≤n≤92m-1,故得b m=92m-1-9m-1.于是S m=b1+b2+b3+…+b m=(9+93+…+92m-1)-(1+9+…+9m-1)=9×(1-81m)1-81-1-9m1-9=92m+1-10×9m+180.。

《创新设计》2014届高考数学人教A版(理)一轮复习配套word版文档:第十二篇 第1讲 合情推理与演绎推理.doc

《创新设计》2014届高考数学人教A版(理)一轮复习配套word版文档:第十二篇  第1讲 合情推理与演绎推理.doc

第十二篇推理证明、算法、复数第1讲 合情推理与演绎推理A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.下面几种推理过程是演绎推理的是 ( ).A .某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推各班人数都超过50人B .由三角形的性质,推测空间四面体的性质C .平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D .在数列{a n }中,a 1=1,a n =12⎝⎛⎭⎪⎫a n -1+1a n -1,由此归纳出{a n }的通项公式 解析 A 、D 是归纳推理,B 是类比推理;C 运用了“三段论”是演绎推理. 答案 C2.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )= ( ).A .f (x )B .-f (x )C .g (x )D .-g (x )解析 由所给函数及其导数知,偶函数的导函数为奇函数,因此当f (x )是偶函数时,其导函数应为奇函数,故g (-x )=-g (x ).答案 D3.给出下面类比推理命题(其中Q为有理数,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出“a,c∈C,则a-c=0⇒a=c”;②“若a,b,c,d∈R,则复数a+b i=c+d i⇒a=c,b=d”类比推出“a,b,c,d∈Q,则a+b2=c+d2⇒a=c,b=d”;③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”;④“若x∈R,则|x|<1⇒-1<x<1”类比推出“若z∈C,则|z|<1⇒-1<z<1”.其中类比结论正确的个数有().A.1 B.2 C.3 D.4解析类比结论正确的只有①②.答案 B4.(2011·江西)观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的末四位数字为().A.3 125 B.5 625 C.0 625 D.8 125解析∵55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,510=9 765 625,…∴5n(n∈Z,且n≥5)的末四位数字呈周期性变化,且最小正周期为4,记5n(n ∈Z,且n≥5)的末四位数字为f(n),则f(2 011)=f(501×4+7)=f(7)∴52 011与57的末四位数字相同,均为8 125.故选D.答案 D二、填空题(每小题5分,共10分)5.(2013·山东省实验中学一模)以下是对命题“若两个正实数a1,a2满足a21+a22=1,则a1+a2≤2”的证明过程:证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2≤ 2.根据上述证明方法,若n个正实数满足a21+a22+…+a2n=1时,你能得到的结论为________________________________(不必证明).解析依题意,构造函数f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2,则有f(x)=nx2-2(a1+a2+…+a n)x+1,Δ=[-2(a1+a2+…+a n)]2-4n=4(a1+a2+…+a n)2-4n≤0,即有a1+a2+…+a n≤n.答案a1+a2+…+a n≤n6.用黑白两种颜色的正方形地砖依照下图所示的规律拼成若干个图形,则按此规律,第100个图形中有白色地砖________块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是________.解析按拼图的规律,第1个图有白色地砖3×3-1(块),第2个图有白色地砖3×5-2(块),第3个图有白色地砖3×7-3(块),…,则第100个图中有白色地砖3×201-100=503(块).第100个图中黑白地砖共有603块,则将一粒豆子随机撒在第100个图中,豆子落在白色地砖上的概率是503603.答案503503 603三、解答题(共25分)7.(12分)给出下面的数表序列:表1表2表31131354 4812…其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).解表4为13574812122032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.8.(13分)(2012·福建)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°cos 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解(1)选择②式,计算如下:sin215°+cos215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=3 4.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34.B级能力突破(时间:30分钟满分:45分)一、选择题(每小题5分,共10分)1.(2013·九江质检)观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为().A.76 B.80 C.86 D.92解析由|x|+|y|=1的不同整数解的个数为4,|x|+|y|=2的不同整数解的个数为8,|x|+|y|=3的不同整数解的个数为12,归纳推理得|x|+|y|=n的不同整数解的个数为4n,故|x|+|y|=20的不同整数解的个数为80.故选B.答案 B2.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是().A.289 B.1 024C .1 225D .1 378解析 观察三角形数:1,3,6,10,…,记该数列为{a n },则a 1=1,a 2=a 1+2,a 3=a 2+3,…,a n =a n -1+n .∴a 1+a 2+…+a n =(a 1+a 2+…+a n -1)+(1+2+3+…+n )⇒a n =1+2+3+…+n =n (n +1)2,观察正方形数:1,4,9,16,…,记该数列为{b n },则b n =n 2.把四个选项的数字,分别代入上述两个通项公式,可知使得n 都为正整数的只有1 225.答案 C二、填空题(每小题5分,共10分)3.(2013·福州模拟)对一个边长为1的正方形进行如下操作;第一步,将它分割成3×3方格,接着用中心和四个角的5个小正方形,构成如图1所示的几何图形,其面积S 1=59;第二步,将图1的5个小正方形中的每个小正方形都进行与第一步相同的操作,得到图2;依此类推,到第n 步,所得图形的面积S n =⎝ ⎛⎭⎪⎫59n .若将以上操作类比推广到棱长为1的正方体中,则到第n 步,所得几何体的体积V n =________.解析 对一个棱长为1的正方体进行如下操作:第一步,将它分割成3×3×3个小正方体,接着用中心和8个角的9个小正方体,构成新1几何体,其体积V 1=927=13;第二步,将新1几何体的9个小正方体中的每个小正方体都进行与第一步相同的操作,得到新2几何体,其体积V 2=⎝ ⎛⎭⎪⎫132;…,依此类推,到第n 步,所得新n 几何体的体积V n =⎝ ⎛⎭⎪⎫13n . 答案 ⎝ ⎛⎭⎪⎫13n 4.(2012·湖南)设N =2n (n ∈N *,n ≥2),将N 个数x 1,x 2,…,x N 依次放入编号为1,2,…,N 的N 个位置,得到排列P 0=x 1x 2…x N .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前N 2和后N 2个位置,得到排列P 1=x 1x 3…x N -1x 2x 4…x N ,将此操作称为C 变换.将P 1分成两段,每段N 2个数,并对每段作C 变换,得到P 2;当2≤i ≤n -2时,将P i 分成2i 段,每段N 2i个数,并对每段作C 变换,得到P i +1.例如,当N =8时,P 2=x 1x 5x 3x 7x 2x 6x 4x 8,此时x 7位于P 2中的第4个位置.(1)当N =16时,x 7位于P 2中的第________个位置;(2)当N =2n (n ≥8)时,x 173位于P 4中的第________个位置.解析 (1)当N =16时,P 1=x 1x 3x 5x 7x 9…x 16,此时x 7在第一段内,再把这段变换x 7位于偶数位的第2个位置,故在P 2中,x 7位于后半段的第2个位置,即在P 2中x 7位于第6个位置.(2)在P 1中,x 173位于两段中第一段的第87个位置,位于奇数位置上,此时在P 2中x 173位于四段中第一段的第44个位置上,再作变换得P 3时,x 173位于八段中第二段的第22个位置上,再作变换时,x 173位于十六段中的第四段的第11个位置上,也就是位于P 4中的第(3×2n -4+11)个位置上.答案 6 3×2n -4+11三、解答题(共25分)5.(12分)观察下表:1,2,34,5,6,7,8,9,10,11,12,13,14,15,…问:(1)此表第n 行的最后一个数是多少?(2)此表第n 行的各个数之和是多少?(3)2 013是第几行的第几个数?解 (1)∵第n +1行的第1个数是2n ,∴第n 行的最后一个数是2n -1.(2)2n -1+(2n -1+1)+(2n -1+2)+…+(2n -1)=(2n -1+2n -1)·2n -12=3·22n -3-2n -2. (3)∵210=1 024,211=2 048,1 024<2 013<2 048,∴2 013在第11行,该行第1个数是210=1 024,由2 013-1 024+1=990,知2 013是第11行的第990个数.6.(13分)(2013·南昌二模)将各项均为正数的数列{a n }中的所有项按每一行比上一行多一项的规则排成数表,如图所示.记表中各行的第一个数a 1,a 2,a 4,a 7,…,构成数列{b n },各行的最后一个数a 1,a 3,a 6,a 10,…,构成数列{c n },第n 行所有数的和为S n (n =1,2,3,4,…).已知数列{b n }是公差为d 的等差数列,从第二行起,每一行中的数按照从左到右的顺序每一个数与它前面一个数的比是常数q ,且a 1=a 13=1,a 31=53.(1)求数列{c n },{S n }的通项公式;(2)求数列{c n }的前n 项和T n 的表达式. 解 (1)b n =dn -d +1,前n 行共有1+2+3+…+n =n (n +1)2个数,因为13=4×52+3,所以a 13=b 5×q 2,即(4d +1)q 2=1,又因为31=7×82+3,所以a 31=b 8×q 2,即(7d +1)q 2=53,解得d =2,q =13,所以b n =2n -1,c n =b n ⎝ ⎛⎭⎪⎫13n -1=2n -13n -1, S n =(2n -1)⎝ ⎛⎭⎪⎫1-13n 1-13=32(2n -1)·3n -13n . (2)T n =11+33+532+…+2n -13n -1, ① 13T n =13+332+533+…+2n -13n . ② ①②两式相减,得23T n =1+2⎝ ⎛⎭⎪⎫13+132+…+13n -1-2n -13n学 海 无 涯=1+2×13-13n 1-13-2n -13n =2-2n +23n ,所以T n =3-n +13n -1.。

《创新设计》2014届高考数学人教A版(理)一轮复习配套word版文档:第七篇 第1讲 不等关系与不等式.pptx

《创新设计》2014届高考数学人教A版(理)一轮复习配套word版文档:第七篇 第1讲 不等关系与不等式.pptx

解析
①作差可得1a-1b=ba-ba,而
b-a a>b>0,则 ab <0,此式错误.②a>b>0,

a1 <
1 b
,进


得-
1 a
>-
1b,




a
-a1
>b

1 b



③2a+b - a+2b
ab=
b2a+b-aa+2b= b2-a2 =b-ab+a<0,错误.④当 a-b<0 时此式
a+2bb
乙的 A.充分不必要条件 C.充要条件
B.必要不充分条件 D. 既不充分也不必要条件
( ).
学 海 无涯
解析 当 x∈[-1,0]时,恒有 ax+b>0 成立,
∴当 a>0 时,ax+b≥b-a>0,
当 a<0 时,ax+b≥b>0,∴b-a>0,b>0,∴2b-a>0, ∴甲⇒乙,乙推不出甲,例如:a=32b,b>0 时, 则 2b-a=12b>0, 但是,当 x=-1 时,a·( -1)+b=-32b+b=-12b<0,
能推出1a<1b成立的有
( ).
A.1 个
B.2 个
C.3 个
D.4 个
解析 运用倒数性质,由 a>b,ab>0 可得1a<1b,②、④正确.又正数大于负数,
①正确,③错误,故选 C.
答案 C
4.如果 a,b,c 满足 c<b<a,且 ac<0,那么下列选项中不一定成立的是 ( ).
A.ab>ac

《创新设计》2014届高考数学人教A版(理)一轮复习配套word版文档:第四篇 第6讲 正弦定理和余弦定理.pdf

《创新设计》2014届高考数学人教A版(理)一轮复习配套word版文档:第四篇 第6讲 正弦定理和余弦定理.pdf

=3+ 3,故选 A.
答案 A
二、填空题(每小题 5 分,共 10 分)
3.在 Rt△ABC 中,C=90°,且 A,B,C 所对的边 a,b,c 满足 a+b=cx,则 实数 x 的取值范围是________.
解析
a+b sin A+sin B x= c = sin C =sin A+cos A=
A=23,sin B= 5cos C. (1)求 tan C 的值;
(2)若 a= 2,求△ABC 的面积. 解 (1)因为 0<A<π,cos A=23,
得 sin A=
1-cos2A=
5 3.
又 5cos C=sin B=sin(A+C)=sin Acos C+cos Asin C

5 3 cos
至 E,使 AE=1,连结 EC、ED,则 sin∠CED=( ).
3 10 A. 10
10 B. 10
5 C. 10
5 D. 15
解析 依题意得知,CD=1,CE= CB2+EB2= 5,DE= EA2+AD2= 2,
cos∠CED=CE2+2CEED·E2-DCD2=3 1010,所以 sin∠CED= 1-cos2∠CED= 1100,
∴sin A=asibn B= 23× 13=12,
∴A=30°,∴C=90°.∴S△ABC=12×1×
3=
3 2.
答案 C
4.(2012·湖南)在△ABC 中,AC= 7,BC=2,B=60°,则 BC 边上的高等于 ( ).
3 A. 2
33 B. 2
3+ 6 C. 2
3+ 39 D. 4
解析 设 AB=c,BC 边上的高为 h.
学海无涯
第 6 讲 正弦定理和余弦定理

《创新设计》2014届高考数学人教A版(理)一轮复习【配套word版文档】:第四篇第6讲正弦定理和余

604分钟满分分)55 2b ac aooD 150c22223bc + b2 b33 =2bc故选A BA )D C10 52CE3.由余弦 选B 3 10 A . 303bc , sin C2CE • ED3 •在△ ABC 解析由aB. 105答案 A()答案 B)如图,正方形 ABCD 的边长为1,延长3sin B ,得 b 2 = 一、选择题 •在△ 12.(2012 四•川中,角A , B (每小题5分,共20分) 中 ABC 21- cos Z CED = 1010=cA 级基础演练(时间:30A ・105内角 A , B , C 的对边分别是2bc — 2b 2若c ,若角A , B , C 依次成C 所对应的边分别为a , b 正弦定理和余弦定理a = 3_定理,得cos A =bC・1O解析依题意得知 /cos CED =2 彎,(+c — a = 10,所以 sin / CED =10 ________D. 152 2,CD = 1 , CE = CB + EB = 龟■+ ED -2CD 所以A =30°=2 3sin B 则A =至 E , 使 AE = 1,连结 EC 、ED ,贝U sin Z CED =( E A B2 2DE = EA + AD =2B .60 °C . 120°3,贝U S △ ABC3A. 2B. 3C. 2解析v A,B,C 成等差数列,••• A+ C = 2B,二 B = 60°第1页共7页又 a =1, b = 3,二 sin Aasi n B 3xb23 2••• C =90° .「S ABC = 2x 1 x 3= 2答案—4•••A=30°, 答案 C4. (2012 •湖南)在^ ABC 中,AC = 7, BC = 2, B = \ I vf WJ- J-3 「,则、BC 边上的高等于().60 ° 事 % 3 + 39 A?A. 2解析B. 设 AB = c , 2C. BC 边上的高为 2 2 2 由余弦定理,得AC = c + BC2h.D. 42BC • ccos 60即,7 =c 2 + 4 —4ccos 60 °,即2c — 2c — 3 = 0,二 c = 3(负值舍3 3 3又 h = c • sin 60 =° 3 x 2 = 2,故选 B.AMT /?答案 B1、填空题(每小题5分,共10分)5 •在△ ABC 中,角A , B , C 的对边分别为a , b , 则角B 的值为 ___________ .2+ c 2 —b 2 c.若(a• 1 1— ?)tan B 3ac2a解析由余弦定理,得+ c 2— b 2=cos B ,结合已知等式得 2ac3,二 sin B =23n 2 n----- B =或2 3 cos B tan B n 2 n 或 33•福建)已知△ ABC 的三边长成公比为答案6.2的等比数列,则其最大角的余弦值为△ ABC 的三边长分别为 a , 2a,2a (a>0),则最大边 2a 所对(1)因为 0 V AVABC 的面积.2 cos A = 3,、解答题(共25分)7. (12分)(2012辽•宁)在厶ABC 中,角A , B , C 的对边分别为 a , b , c.角 A , B ,C 成等差数列. (1)求cos B 的值;⑵边a , b , c 成等比数列,求 sin Asin C 的值.解 (1)由已知2B = A + C ,三角形的内角和定理 A + B + C = 180 ° ,解得 B =60 ° ,1所以 cos B = cos 60 ° = 2.2厶=ac ,据正弦定理,得sin 2 = ,(2)由已知 b 3 B sin Asi n C即 sin Asi n C = si n 2= — 2 =B 1 cos B 4& (13分)(2012浙•江)在厶ABC 中,内角A , B , C 的对边分别为2A = 3, sinB = 5cos C.(1)求tan C 的值; a , b , c.已知 cos⑵若a = 2,求△2sin A = 1 — cos A5又 5665 62及正弦定 ⑵由n C3 cos C + 3s in C5,cos C = i 于是 sin B = 5cos C5cos C = sin B = sin(A + C) = sin Acos C + cos Asi n C所以tan C = 5 =,得5sin C得B 级 能力突破(时间:30分钟 满分:45分)一、选择题侮小题5分,共10分)2中, =。

《创新设计》2014届高考数学人教A版(理)一轮复习【配套word版文档】:第二篇第8讲函数与方程

第 8 讲 函数与方程A 级 基础演练 (时间: 30 分钟 满分: 55 分)一、选择题 (每小题 5 分,共 20 分 ) 1.函数 f(x)=sin x -x 零点的个数是 ().A .0B . 1C . 2D . 3解析 f ′ (x)=cos x -1≤0,∴f(x)单调递减,又 f(0)=0,∴则f(x)= sin x -x 的零点是唯一的. 答案 B2.(2013 ·泰州模拟 )设 f(x)=e x +x -4,则函数 f(x)的零点位于区间 (). A .(-1,0)B .(0,1)C .(1,2)D .(2,3)解析 ∵f(x)=e x +x -4,∴f ′ (x)=e x + 1>0,∴函数 f(x)在 R 上单调递增. 对于 A 项, f(-1)=e -1+ (-1)- 4=- 5+e -1<0,f(0)=- 3<0,f(-1)f(0)>0,A 不 正确,同理可验证 B 、 D 不正确.对于 C 项,∵f(1)= e + 1- 4=e -3<0, f(2) =e 2+ 2- 4= e 2-2>0,f(1)f(2)<0,故选 C.答案 C. ·石家庄期末 ) 函数 f(x)=2 x- 2-a 的一个零点在区间 (1,2)内,则实数 a 3 (2013 x的取值范围是().A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析 由条件可知 f(1)f(2)<0,即 (2-2- a)(4- 1- a)<0,即 a(a -3)<0,解之得 0<a<3.第 1 页共 8 页答案 C4.(2011 ·东山 )已知 f(x)是 R 上最小正周期为 2 的周期函数,且当 0≤x<2 时,f(x) = x3-x,则函数 y=f(x)的图象在区间 [0,6]上与 x 轴的交点的个数为( ).A .6 B. 7 C. 8 D. 9解析当 0≤ x<2 时,令 f(x)=x3-=,得x =或=x 0 x 1.根据周期函数的性质,由f(x)的最小正周期为 2,可知 y= f(x)在[0,6)上有 6 个零点,又f(6)=f(3× 2)=f(0)= 0,∴f(x)在[0,6] 上与 x 轴的交点个数为7.答案 B二、填空题 (每小题 5 分,共 10 分 )x2,x≤0,g(x)=f(x)-x-a,若函数 g(x)有两个零点,5.已知函数 f(x)=f x-1 , x>0,则实数 a 的取值范围为 ________.解析设 n 为自然数,则当n<x≤ n+ 1 时, f(x)=(x- n- 1)2,则当 x>0 时,函数 f(x)的图象是以 1 为周期重复出现.而函数y=x+a 是一族平行直线,当它过点 (0,1)(此时 a= 1)时与函数 f(x)的图象交于一点,向左移总是一个交点,向右移总是两个交点,故实数 a 的取值范围为a<1.答案(-∞, 1)x+1,x≤0,6.函数 f(x)=则函数 y=f[f(x)]+ 1 的所有零点所构成的集合为log2x,x>0,________.解析本题即求方程f[f(x)] =- 1 的所有根的集合,先解方程f(t)=- 1,即t≤0,t>0, 1 1或log2t=- 1,得 t=- 2 或 t=2.再解方程 f(x)=- 2 和 f(x)=2.t+1=- 1第 2 页共 8 页x ≤0, x>0,x ≤0, x>0,即或和1 或 1 x +1=- 2log2x =- 2 x +1=2log2x = 2.1 1 得 x =- 3 或 x = 4和 x =- 2或 x = 2.1 1答案 - 3,- 2,4, 2三、解答题 (共 25 分 )17.(12 分 )设函数 f(x)= 1- x (x>0). (1)作出函数 f(x)的图象;1 1(2)当 0<a<b ,且 f(a)= f(b)时,求 a + b 的值; (3)若方程 f(x)= m 有两个不相等的正根,求 m 的取值范围.解 (1)如图所示.1(2)∵f(x)= 1- x1 x-1,x ∈ 0,1] , =11- x ,x ∈ 1,+∞ ,故 f(x)在 (0,1]上是减函数,而在 (1,+∞ )上是增函数, 由 0<a<b 且 f(a)=f(b),111 1得 0<a<1<b ,且 a -1=1-b ,∴ a +b =2. (3)由函数 f(x)的图象可知,当0<m<1 时,方程 f(x)=m 有两个不相等的正根.8.(13 分 )已知函数 f(x)= x 3 +2x 2 -ax + 1.(1)若函数 f(x)在点 (1, f(1))处的切线斜率为 4,求实数 a 的值; (2)若函数 g(x)= f ′(x)在区间 (-1,1)上存在零点,求实数 a 的取值范围.解 由题意得 g(x)= f ′ (x)=3x 2 +4x - a.(1)f′(1)=3+4-a=4,∴ a=3.第 3 页共 8 页1 (2)法一①当 g(- 1)=- a-1=0,a=- 1 时,g(x)=f′(x)的零点 x=-3∈(-1,1);7②当 g(1)=7-a= 0,a=7 时, f′ (x)的零点 x=-3?(- 1,1),不合题意;③当 g(1)g(- 1)<0 时,- 1<a<7;=4× 4+ 3a ≥0,-1<-2,43<1④当时,-3≤ a<-1.g 1 >0,g -1 >04综上所述, a∈ -3,7 .法二 g(x)=f′(x)在区间 (-1,1)上存在零点,等价于 3x2+4x=a 在区间 (-1,1)上有解,也等价于直线 y=a 与曲线 y=3x2+4x 在(-1,1)有公共点.作图可得4a∈ -3, 7 .或者又等价于当x∈(-1,1)时,求值域.2+4x= 3 x+2 2 4 4.a=3x3 -∈ -,7 3 3B 级能力突破 (时间: 30 分钟满分: 45 分)一、选择题 (每小题 5 分,共 10 分 )1.(2011 ·陕西 )函数 f(x)=x- cos x 在[0,+∞ )内( ).A .没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点解析令 f(x)=0,得x=cos x,在同一坐标系内画出两个函数 y=x与 y=cos x 的图象如图所示,由图象知,两个函数只有一个交点,从而方程x=cos x 只有一个解.∴函数 f(x)只有一个零点.第 4 页共 8 页答案 B2.(2012 ·辽宁 )设函数 f(x)(x∈ R)满足 f(-x)= f(x), f(x)=f(2- x),且当 x∈[0,1]时, f(x)=x3又函数g(x)=π ,则函数h(x)=g(x)-f(x)在-1,3上的. |xcos( x)|2 2零点个数为( ).A .5 B. 6 C. 7D. 8解析由题意知函数 y=f(x)是周期为 2 的偶函数且 0≤x≤1 时, f(x)=x3,则当- 1≤ x≤0 时,f(x)=- x3,且 g(x)=|xcos(x)|π,所以当 x=0 时,f(x)= g(x).当1 3 2x≠0 时,若 0<x≤2,则 x =xcos( x)π,即 x=|cos πx|.同理可以得到在区间-1, 0 ,1, 1 ,1,3上的关系式都是上式,在同一个坐标系中作出所得2 2 2关系式等号两边函数的图象,如图所示,有 5 个根.所以总共有 6 个.答案 B二、填空题 (每小题 5 分,共 10 分 )3.已知函数 f(x)满足 f(x+1)=- f(x),且 f(x)是偶函数,当 x∈[0,1] 时, f(x)=x2.若在区间[-1,3]内,函数g(x)=f(x)-kx-k 有4 个零点,则实数k 的取值范围为________.解析依题意得f(x+ 2)=- f(x+1)=f(x),即函数f(x)是以 2 为周期的函数. g(x)=f(x)-kx- k在区间 [- 1,3]内有 4 个零点,即函数 y=f(x)与 y=k(x+1)的图象在区间 [ -1,3]内有 4 个不同的交点.在坐标平面内画出函数 y =f(x)的图象 (如图所示 ),注意到直线 y=k(x+1)恒过点 (- 1,0),由题及图象可1知,当 k∈ 0,4时,相应的直线与函数y=f(x)在区间 [-1,3] 内有 4 个不同的第 5 页共 8 页1交点,故实数 k 的取值范围是0,4 .1答案0,44.若直角坐标平面内两点 P, Q 满足条件:① P、Q 都在函数 f(x) 的图象上;② P、Q 关于原点对称,则称点对 (P、Q)是函数 f(x)的一个“友好点对” (点对 (P、Q)与点对 (Q , P) 看作同一个“友好点对” ) .已知函数 f(x) =2x2+4x+1,x<0,2 则 f(x)的“友好点对”的个数是 ________.x,x≥0,e解析设 P(x, y)、Q(- x,- y)(x>0)为函数 f(x)的“ 友好点对”,则2 2 2 y=e,- y=2(- x) +4(- x)+1=2x -x4x+1,∴2 2-+=,在同一坐标系中作函数+2x4xx 1 0e2 2y1=e x、y2=- 2x+4x- 1 的图象, y1、y2 的图象有两个交点,所以f(x)有 2 个“友好点对”,故填 2.答案 2三、解答题 (共 25 分 )5.(12 分 )设函数 f(x)=3ax2-2(a+c)x+c (a>0, a, c∈ R).(1)设 a>c>0.若 f(x)>c2-2c+a 对 x∈[1 ,+∞ )恒成立,求 c 的取值范围;(2)函数 f(x)在区间 (0,1)内是否有零点,有几个零点?为什么?a+ c 解(1)因为二次函数 f(x)= 3ax2-2(a+c)x+c 的图象的对称轴为 x=3a,由a+c 2a 2条件 a>c>0,得 2a>a+ c,故3a <3a=3<1,即二次函数 f(x)的对称轴在区间[1,+∞ )的左边,且抛物线开口向上,故f(x)在[1,+∞ )内是增函数.若f(x)>c2- 2c+a 对 x∈ [1,+∞ )恒成立,则 f(x)min= f(1)>c2- 2c+a,即 a-c>c2- 2c+a,得 c2-c<0,第 6 页共 8 页所以 0<c<1.(2)①若 f(0) f(1)·=c·(a-c)<0,则c<0,或 a<c,二次函数 f(x)在 (0,1)内只有一个零点.②若 f(0)=c>0,f(1)= a- c>0,则 a>c>0.因为二次函数 f(x)=3ax2-2(a+c)x+ c 的图象的对称轴是 x=a+c而a+c =3a .f 3a -a2+ c2-ac<0,3aa+ c a+ c所以函数 f(x)在区间 0,3a和3a ,1 内各有一个零点,故函数 f(x)在区间(0,1)内有两个零点.6.(13 分 )已知二次函数 f(x)=x2- 16x+q+3.(1)若函数在区间 [ -1,1]上存在零点,求实数q 的取值范围;(2)是否存在常数 t(t≥0),当 x∈[t,10]时,f(x)的值域为区间 D,且区间 D 的长度为12- t(视区间 [a, b] 的长度为 b-a).解(1)∵函数 f(x)= x2-16x+q+3 的对称轴是 x= 8,∴f(x)在区间 [ -1,1]上是减函数.f 1 ≤ 0,∵函数在区间 [ - 1,1] 上存在零点,则必有即f -1 ≥0,1- 16+q+3≤0,∴- 20≤q≤12.1+ 16+q+3≥0,(2)∵0≤ t<10, f(x)在区间 [0,8] 上是减函数,在区间 [8,10] 上是增函数,且对称轴是 x=8.①当 0≤t≤ 6 时,在区间 [t,10]上, f(t)最大, f(8)最小,∴f(t)-f(8)=12-t,即 t2- 15t+52=0,解得 t=15±17,∴ t=15- 17 2 2;②当 6<t≤8 时,在区间 [t,10]上, f(10)最大, f(8)最小,∴f(10)-f(8)=12-t,解得 t=8;③当 8<t<10 时,在区间 [t,10]上, f(10)最大, f(t)最小,第7 页共 8 页∴f(10)-f(t)=12- t,即 t2-17t+72= 0,解得 t=8,9,∴t=9.15-17综上可知,存在常数t=,8,9 满足条件 .特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容 .第8 页共 8 页。

《创新设计》2014届高考数学人教A版(理)一轮复习【配套word版文档】:第二篇第3讲函数的奇偶性

A 级 基础演练(时间:30分钟 满分:55分)一、选择题侮小题5分,共20分) 1. f (x )是定义在 R 上的奇函数,且满足1Xf(x + 2) = f(x),又当 x € (0,1)时,f(x) = 2-1,则 f(log 26)等于().51A .— 5B .— 6C .— 6D .—亠 21解析 f(log 26) = — f(log 26) =— f(log 26 — 2).33 1T Iog 26 — 2 = log 22 €(0,1),11二 f(log 26) =— 2 答案 D2. (2011 •安徽)设f (x )是定义在R 上的奇函数,当x < 0时,( ).A .— 3B .— 1C . 1D . 32解析 T f(x)是定义在R 上的奇函数,且x < 0时,f(x) = 2x — x ,A f(1) = — f(—04第3讲 函数的奇偶性与周期性二 f log 22 = 2,f(x) = 2x 2— x ,则 f(1)等于1) = —2X (—1) + (—1) =—3.3 .定义在R 上的函数f(x)满足f(x) = f(x + 2),当x € [3,5]时,f(x) = 2 —|x —4|,则下列不等式一定成立的是().2 n 2 nA . f cos 3 >f sin 3 B. f(sin 1)<f(cos 1)n nC. f sin 6 <f cos 6D. f(cos 2)>f(sin 2)解析当x € [ —1,1]时,x+ 4 € [3,5],由f(x) = f(x + 2) = f(x + 4) = 2 —|x + 4 —4|=2 —|x|,第1页共6页时2x— 1<0,故f(x)为R 上的增函数•答案C 二、填空题侮小题5分,共10分)25. (2011 •浙江)若函数f(x) = x — |x + a|为偶函数,2a| = 1 — | — 1 + a|,…a = 0. 答案 026. (2012 •上海)已知 y = f(x) + x 是奇函数,且 f(1) = 1.若 g(x) = f(x) + 2,贝V g( — 1)2解析因为y = f(x) + x 是奇函数,且x = 1时,y = 2,所以当x =— 1时,y =2—2,即f( — 1) + (— 1)=— 2,得 f( — 1) = — 3,所以 g( — 1) = f( — 1) + 2 =— 1.答案 —1三、解答题(共25分)7. (12分)已知f(x)是定义在R 上的不恒为零的函数,且对任意 x , y , f(x)都满足f(xy) = yf(x) + xf(y).显然当x € [ — 1,0]时,f(x)为增函数;当 2,sin答案x 2 n 3 132 >2 , 又 f —2x € [0,1]时,f(x)为减函数,ncos 2 n4 (2013连云港一模)已知函数f(x)>f,所以 f cos 3 >f sinA .偶函数,且单调递增 —x1—2, x >0 ,x2 —1, x<0 ,B •偶函数,且单调递减 则该函数是C •奇函数,且单调递增D •奇函数,且单调递减解析 当x>0时,f( — x) = 21 = — f(x);当 x<0 时,f( — x) = 1 — 2(-x)xL2 =— f(x) •当 xx上为增函数,f(x) = 2 — 1在(—x ■A — X=0 时,f(0) = 0,故 f(x)为奇函数,且 f(x) = 1 — 2—在[0 ,+x )■I—x 1 — 2,0)上为增函数,又x > 0时>0, x<0解析 由题意知,函数 f(x) = x — |x + a|为偶函数,贝I 」f(1) = f( — 1) ,••• 1 —11 +(1) 求f(1), f(—1)的值;(2) 判断函数f(x)的奇偶性.解(1)因为对定义域内任意x, y, f(x)满足f(xy) = yf(x) + xf(y),所以令x= y第2页共6页=1,得f⑴=0,令x = y =—1,得f( - 1) = 0.⑵令y = —1,有f( —x)=—f(x) + xf( —1),代入f( —1) = 0 得f( —x) = —f(x),所以f(x)是(— *,+* )上的奇函数.8 (13分)设定义在[—2,2]上的偶函数f(x)在区间[—2,0]上单调递减,若f(1 —m)vf(m),求实数m的取值范围.解由偶函数性质知f(x)在[0,2]上单调递增,且f(1 —m) = f(|1 —m|), f(m)= f(|m|),—2 < 1 —m < 2,因此f(1 —m)vf(m)等价于—2< m<2,|1 —m|<|m|.1解得:2<m < 2.1因此实数m的取值范围是 2 , 2 .JuB级能力突破(时间:30分钟满分:45分)■ ■一、选择题侮小题5分,共10分)1.函数f(x)的定义域为R,若f(x + 1)与f(x —1)都是奇函数,则()・A . f(x)是偶函数B. f(x)是奇函数C. f(x) = f(x + 2)D. f(x + 3)是奇函数解析由已知条件,得f( —x + 1) = —f(x + 1), f( —x —1) = —f(x —1).由f( —x + 1) =—f(x + 1),得f( —x + 2) = —f(x); 由f( —x —1) = —f(x —1),得f( —x —2)=—f(x) •则f( —x+ 2) = f( —x —2),即f(x + 2) = f(x —2),由此可得f(x + 4) = f(x), 即函数f(x)是以4为周期的周期函数,所以f(x + 3) = f(x —1),即函数f(x + 3)也是奇函数.答案D•福建殳函数1, x为有理数,) D(x)=0, x为无理数,第3页共6页则下列结论错误的是().2 (2012A . D(x)的值域为{0,1} B. D(x)是偶函数C. D(x)不是周期函数D. D(x)不是单调函数解析显然D(x)不单调,且D(x)的值域为{0,1},因此选项A、D正确.若x是无理数,—x , X + 1是无理数;若X是有理数,—x , X + 1也是有理数・•••D( —x) = D(x), D(x + 1) = D(x) •贝U D(x)是偶函数,D(x)为周期函数,B正确,C错误.答案C 二、填空题侮小题5分,共10分)3・f(x) = 2x + sin x为定义在(一1,1)上的函数,则不等式f(1 —a) + f(1 —2a)<0的解集是___________ .解析f(x)在(—1,1)上是增函数,且f(x)为奇函数•于是原不等式为f(1 —a)<f(2a —1<1—a<1 ,—1)等价于—1<2a —1<1 ,1 —a<2a —1.2解得3<a<1.2答案3,14•若定义域为R的奇函数f(x)满足f(1 + x) = —f(x),则下列结论:①f(x)的图象1 1关于点,0对称;②f(x)的图象关于直线x= 对称;③f(x)是周期函数,且22 2是它的一个周期;④f(x)在区间(一1,1)上是单调函数•其中所有正确的序号是1 解析由函数为奇函数且满足f(1 + x)=—f(x),得f(x + 2) = f(x),又f 1 + x—2「111 ・=—f x —, f + x = f —x,所以②③正确.2 2 2答案②③三、解答题(共25分)2 a5. (12分)已知函数f(x) = x + x(x半0,常数a€ R)・(1) 讨论函数f(x)的奇偶性,并说明理由;(2) 若函数f(x)在x€ [2 ,+比)上为增函数.求实数a的取值范围.解(1)函数f(x)的定义域为{x|x工0},2当a= 0 时,f(x) = x , (x工0)第4页共6页显然为偶函数;当a半0时,f(1) = 1 + a, f(- 1)= 1 - a,因此f(1)半 f(-1),且f( - 1)半一f(1),2 a所以函数f(x) = X2+ X既不是奇函数,也不是偶函数.3a 2x —a(2)f f (x)=2x —x2= X2,当a< 0时,f' (x)>0 ,贝U f(x)在[2 ,+* )上是增函数,32x - a当a>0 时,由f‘ (x) =x2 >0 ,3坊解得X>叫,由f(x)在[2 , +TO)上是增函数,23 a可知< 2.解得0<a < 16.A 综上可知实数a的取值范围是(— J 16].6. (13分)已知函数f(x)的定义域为R,且满足f(x + 2) = - f(x).(1)求证:f(x)是周期函数;1 12在⑵若f(x)为奇函数,且当0W x < 1时,f(x) = 2x,求使f(x) = - [0,2014]上的所有x的个数.(1) 证明••• f(x + 2) = - f(x),f(x + 4) = - f(x + 2) =- [ -f(x)] = f(x),••• f(x)是以4为周期的周期函数.1(2) 解当0< x< 1 时,f(x) = 2x,设一K x < 0,贝U 0 <- x < 1,1 1二f( —x)= 2(-x) = - 2x.T f(x)是奇函数,••• f(-x) =- f(x),• ••—f(x) = - 1,即=x2 f(x) 2x.1故f(x) = 2x( —1 < x < 1).又设1<x<3,则—1<x —2<1,第5页共6页f(x —2) = 2(x —2).又V f(x)是以4为周期的周期函数1二f(x—2) = f(x + 2)=—f(x) ,•••—f(x) = 2(x —2),1•f(x) = —2(x —2)(1<x<3).12X , — 1 < x < 1 , …f(x)=1—2 x —2 , 1<x<3.1由f(x) = —2,解得x =—1.V f(x)是以4为周期的周期函数,1•f(x) = —2 的所有x = 4n —1(n € Z).1 2 015令0 w 4n —1< 2 014,则4= n W 4 '又V n€ Z ,• 1 w n w 503(n € Z ),1•••在[0,2 014]上共有503 个x 使f(x) = —2・特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计•高考总复习》光盘中内容.第6页共6页。

[创新设计]2014届高考数学人教a版(理)一轮复习[配套word版文档]:第五篇 第1讲 平面向量的概念及其线性运算

第1讲 平面向量的概念及其线性运算A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2013·合肥检测)已知O 是△ABC 所在平面内一点,D 为BC 边的中点,且2OA →+OB →+OC →=0,那么( ).A.AO→=OD → B.AO →=2OD →C.AO→=3OD →D .2AO→=OD → 解析 由2OA →+OB →+OC →=0可知,O 是底边BC 上的中线AD 的中点,故AO →=OD →. 答案 A2.已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,且四边形ABCD 为平行四边形,则 ( ). A .a -b +c -d =0 B .a -b -c +d =0 C .a +b -c -d =0D .a +b +c +d =0解析 依题意,得AB→=DC →,故AB →+CD →=0,即OB →-OA →+OD →-OC →=0,即有OA →-OB →+OC →-OD →=0,则a -b +c -d =0.选A. 答案 A3.已知平面上不共线的四点O ,A ,B ,C .若OA →+2OC →=3OB →,则|BC →||AB →|的值为 ( ).A.12B.13C.14D.16解析 由OA →+2OC →=3OB →,得OA →-OB →=2OB →-2OC →,即BA →=2CB →,所以|BC →||AB →|=12.故选A.4.(2011·山东)设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下列说法正确的是 ( ). A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点 C .C 、D 可能同时在线段AB 上D .C 、D 不可能同时在线段AB 的延长线上解析 若A 成立,则λ=12,而1μ=0,不可能;同理B 也不可能;若C 成立,则0<λ<1,且0<μ<1,1λ+1μ>2,与已知矛盾;若C ,D 同时在线段AB 的延长线上时,λ>1,且μ>1,1λ+1μ<2,与已知矛盾,故C ,D 不可能同时在线段AB 的延长线上,故D 正确. 答案 D二、填空题(每小题5分,共10分)5.(2013·泰安模拟)设a ,b 是两个不共线向量,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值为________. 解析 ∵BD→=BC →+CD →=2a -b ,又A ,B ,D 三点共线, ∴存在实数λ,使AB →=λBD →.即⎩⎨⎧2=2λ,p =-λ,∴p =-1. 答案 -16.如图,在矩形ABCD 中,|AB→|=1,|AD →|=2,设AB →=a ,BC→=b ,BD →=c ,则|a +b +c |=________. 解析 根据向量的三角形法则有|a +b +c |=|AB →+BC →+BD→|=|AB →+BD →+AD →|=|AD →+AD →|=2|AD →|=4.三、解答题(共25分)7.(12分)如图,在平行四边形OADB 中,设OA→=a ,OB →=b ,BM→=13BC →,CN →=13CD →.试用a ,b 表示OM →,ON →及MN →. 解 由题意知,在平行四边形OADB 中,BM→=13BC →=16BA →=16(OA →-OB →)=16(a -b )=16a -16b , 则OM→=OB →+BM →=b +16a -16b =16a +56b . ON→=23OD →=23(OA →+OB →)=23(a +b )=23a +23b ,MN→=ON →-OM →=23(a +b )-16a -56b =12a -16b . 8.(13分)(1)设两个非零向量e 1,e 2不共线,如果AB →=2e 1+3e 2,BC →=6e 1+23e 2,CD →=4e 1-8e 2,求证:A ,B ,D 三点共线. (2)设e 1,e 2是两个不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,求k 的值. (1)证明 因为BC →=6e 1+23e 2,CD →=4e 1-8e 2, 所以BD →=BC →+CD →=10e 1+15e 2. 又因为AB →=2e 1+3e 2,得BD →=5AB →,即BD →∥AB →, 又因为AB→,BD →有公共点B ,所以A ,B ,D 三点共线. (2)解 D B →=CB →-CD →=e 1+3e 2-2e 1+e 2=4e 2-e 1,AB →=2e 1+k e 2, 若A ,B ,D 共线,则AB →∥D B →,设D B →=λAB →,所以⎩⎨⎧-1=2λ,4=λk⇒k =-8.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·济南一模)已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝ ⎛⎭⎪⎫12OA →+12OB →+2OC →,则点P 一定为三角形ABC 的 ( ).A .AB 边中线的中点B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点解析 设AB 的中点为M ,则12OA →+12OB →=OM →,∴OP →=13(OM →+2OC →)=13OM →+23OC →,即3OP →=OM →+2OC →,也就是MP →=2PC →,∴P ,M ,C 三点共线,且P 是CM 上靠近C 点的一个三等分点. 答案 B2.若点M 是△ABC 所在平面内的一点,且满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比为( ).A.15B.25C.35D.45解析 设AB 的中点为D ,由5AM →=AB →+3AC →,得3AM →-3AC →=2AD →-2AM →,即3CM →=2MD →.如图所示,故C ,M ,D 三点共线,且MD→=35CD →,也就是△ABM 与△ABC 对于边AB 的两高之比为3∶5,则△ABM 与△ABC 的面积比为35,选C. 答案 C二、填空题(每小题5分,共10分)3.若点O 是△ABC 所在平面内的一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状为________.解析 OB→+OC →-2OA →=OB →-OA →+OC →-OA →=AB →+AC →,OB→-OC →=CB →=AB →-AC →,∴|AB →+AC →|=|AB →-AC →|.故A ,B ,C 为矩形的三个顶点,△ABC 为直角三角形. 答案 直角三角形4.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC→=nAN →,则m +n 的值为________. 解析 ∵O 是BC 的中点, ∴AO →=12(AB →+AC →).又∵AB→=mAM →,AC →=nAN →,∴AO →=m 2AM →+n 2AN →. ∵M ,O ,N 三点共线,∴m 2+n2=1,则m +n =2. 答案 2三、解答题(共25分)5.(12分)如图所示,在△ABC 中,在AC 上取一点N ,使得AN =13AC ,在AB 上取一点M ,使得AM =13AB ,在BN 的延长线上取点P ,使得NP =12BN ,在CM 的延长线上取点Q ,使得MQ→=λCM →时,AP →=QA →,试确定λ的值.解 ∵AP→=NP →-NA →=12(BN →-CN →)=12(BN →+NC →)=12BC →,QA →=MA →-MQ →=12BM →+λMC→,又∵AP→=QA →,∴12BM →+λMC →=12BC →, 即λMC →=12MC →,∴λ=12.6.(13分)已知点G 是△ABO 的重心,M 是AB 边的中点. (1)求GA→+GB →+GO →; (2)若PQ 过△ABO 的重心G ,且OA →=a ,OB →=b ,OP →=m a ,OQ →=n b ,求证:1m +1n =3.(1)解 ∵GA →+GB →=2GM →,又2GM →=-GO →, ∴GA→+GB →+GO →=-GO →+GO →=0. (2)证明 显然OM →=12(a +b ).因为G 是△ABO 的重心,所以OG →=23OM →=13(a +b ).由P ,G ,Q 三点共线,得PG →∥GQ →,所以,有且只有一个实数λ,使PG →=λGQ→. 而PG→=OG →-OP →=13(a +b )-m a =⎝ ⎛⎭⎪⎫13-m a +13b , GQ→=OQ →-OG →=n b -13(a +b )=-13a +⎝ ⎛⎭⎪⎫n -13b , 所以⎝ ⎛⎭⎪⎫13-m a +13b =λ⎣⎢⎡⎦⎥⎤-13a +⎝ ⎛⎭⎪⎫n -13b . 又因为a ,b 不共线,所以⎩⎪⎨⎪⎧13-m =-13λ,13=λ⎝ ⎛⎭⎪⎫n -13,消去λ,整理得3mn =m +n ,故1m +1n =3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7讲 函数图象A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.函数y =e sin x (-π≤x ≤π)的大致图象为 ( ).解析 因-π≤x ≤π,由y ′=e sin x cos x >0,得-π2<x <π2.则函数y =e sin x 在区间⎝ ⎛⎭⎪⎫-π2,π2上为增函数,排除A 、B 、C ,故选D. 答案 D2.已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z ),值域是[0,1],则满足条件的整数对(a ,b )共有( ). A .2对 B .5对 C .6对 D .无数对解析 显然f (x )=4|x |+2-1为偶函数.其图象如图所示. f (x )=⎩⎪⎨⎪⎧ 4x +2-1,x ≥0,-4x -2-1,x <0, 要使值域y ∈[0,1],且a ,b ∈Z ,则a =-2,b =0,1,2;a =-1,b =2;a =0,b =2,∴共有5对. 答案 B3.已知函数f (x )=⎝ ⎛⎭⎪⎫1e x -tan x ⎝ ⎛⎭⎪⎫-π2<x <π2,若实数x 0是函数y =f (x )的零点,且0<t <x 0,则f (t )的值( ). A .大于1 B .大于0 C .小于0 D .不大于0解析 分别作出函数y =⎝ ⎛⎭⎪⎫1e x 与y =tan x 在区间⎝ ⎛⎭⎪⎫-π2,π2上的图象,得到0<x 0<π2,且在区间(0,x 0)内,函数y =⎝ ⎛⎭⎪⎫1e x 的图象位于函数y =tan x 的图象上方,即0<x <x 0时,f (x )>0,则f (t )>0,故选B.答案 B4.如图,正方形ABCD 的顶点A ⎝ ⎛⎭⎪⎫0,22,B ⎝ ⎛⎭⎪⎫22,0,顶点C 、D 位于第一象限,直线l :x =t (0≤t ≤2)将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为f (t ),则函数S =f (t )的图象大致是 ( ).解析 当直线l 从原点平移到点B 时,面积增加得越来越快;当直线l 从点B 平移到点C 时,面积增加得越来越慢.故选C.答案 C二、填空题(每小题5分,共10分)5.设函数f (x )=|x +2|+|x -a |的图象关于直线x =2对称,则a 的值为________. 解析 因为函数f (x )的图象关于直线x =2对称,则有f (2+x )=f (2-x )对于任意实数x 恒成立,即|x +4|+|x +2-a |=|x -4|+|x -2+a |对于任意实数x 恒成立,从而有⎩⎨⎧2-a =-4,a -2=4,解得a =6.答案 66.(2011·新课标全国)函数y =11-x的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于________.解析 函数y =11-x =-1x -1和y =2sin πx 的图象有公共的对称中心(1,0),画出二者图象如图所示,易知y =11-x与y =2sin πx (-2≤x ≤4)的图象共有8个交点,不妨设其横坐标为x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8,且x 1<x 2<x 3<x 4<x 5<x 6<x 7<x 8,由对称性得x 1+x 8=x 2+x 7=x 3+x 6=x 4+x 5=2,∴x 1+x 2+x 3+x 4+x 5+x 6+x 7+x 8=8.答案 8三、解答题(共25分)7.(12分)讨论方程|1-x |=kx 的实数根的个数.解 设y =|1-x |,y =kx ,则方程的实根的个数就是函数y =|1-x |的图象与y =kx 的图象交点的个数.由右边图象可知:当-1≤k <0时,方程没有实数根;当k =0或k <-1或k ≥1时,方程只有一个实数根;当0<k <1时,方程有两个不相等的实数根.8.(13分)已知函数f (x )=x 1+x. (1)画出f (x )的草图;(2)指出f (x )的单调区间.解 (1)f (x )=x 1+x =1-1x +1,函数f (x )的图象是由反比例函数y =-1x 的图象向左平移1个单位后,再向上平移1个单位得到,图象如图所示.(2)由图象可以看出,函数f (x )有两个单调递增区间:(-∞,-1),(-1,+∞).B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.函数=ln 1|2x -3|的大致图象为(如图所示) ( ).解析 y =-ln|2x -3|=⎩⎪⎨⎪⎧ -ln (2x -3),x >32,-ln (3-2x ),x <32,故当x >32时,函数为减函数,当x <32时,函数为增函数.答案 A2.(2012·江西)如右图,已知正四棱锥S -ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分.记SE =x (0<x <1),截面下面部分的体积为V (x ),则函数y =V (x )的图象大致为 ( ).解析 (1)当0<x <12时,过E 点的截面为五边形EFGHI (如图1所示),连接FI ,由SC 与该截面垂直知,SC ⊥EF ,SC ⊥EI ,∴EF =EI =SE tan 60°=3x ,SI =2SE =2x ,IH =FG =BI =1-2x ,FI =GH =2AH =2 2x ,∴五边形EFGHI的面积S =FG ×GH +12FI × EF 2-⎝ ⎛⎭⎪⎫12FI 2=22x -32x 2, ∴V (x )=V C -EFGHI +2V I -BHC =13(22x -32x 2)×CE +2×13×12×1×(1-2x )×22(1-2x )=2x 3-2x 2+26,其图象不可能是一条线段,故排除C ,D.(2)当12≤x <1时, 过E 点的截面为三角形,如图2,设此三角形为△EFG ,则EG =EF =EC tan 60°=3(1-x ),CG =CF =2CE =2(1-x ),三棱锥E -FGC底面FGC 上的高h =EC sin 45°=22(1-x ),∴V (x )=13×12CG ·CF ·h =23(1-x )3,∴V ′(x )=-2(1-x )2,又显然V ′(x )=-2(1-x )2在区间⎝ ⎛⎭⎪⎫12,1上单调递增,V ′(x )<0⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎭⎪⎫12,1, ∴函数V (x )=23(1-x )3在区间⎝ ⎛⎭⎪⎫12,1上单调递减,且递减的速率越来越慢,故排除B ,应选A.答案 A二、填空题(每小题5分,共10分)3.使log 2(-x )<x +1成立的x 的取值范围是________.解析 作出函数y =log 2(-x )及y =x +1的图象.其中y =log 2(-x )与y =log 2 x 的图象关于y 轴对称,观察图象(如图所示)知-1<x <0,即x ∈(-1,0).也可把原不等式化为⎩⎨⎧-x >0,-x <2x +1后作图.答案 (-1,0)4.(2011·北京)已知函数f (x )=⎩⎪⎨⎪⎧ 2x,x ≥2,(x -1)3,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.解析 作出函数f (x )=⎩⎪⎨⎪⎧ 2x,x ≥2,(x -1)3,x <2的简图,方程f (x )=k 有两个不同的实根,也就是函数f (x )的图象与直线y =k 有两个不同的交点,所以0<k <1.答案 (0,1)三、解答题(共25分)5.(12分)已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0.(1)求实数m 的值;(2)作出函数f (x )的图象并判断其零点个数;(3)根据图象指出f (x )的单调递减区间;(4)根据图象写出不等式f (x )>0的解集;(5)求集合M ={m |使方程f (x )=m 有三个不相等的实根}.解 (1)∵f (4)=0,∴4|m -4|=0,即m =4.(2)∵f (x )=x |m -x |=x |4-x |=⎩⎨⎧x (x -4),x ≥4,-x (x -4),x <4.∴函数f (x )的图象如图:由图象知f (x )有两个零点.(3)从图象上观察可知:f (x )的单调递减区间为[2,4].(4)从图象上观察可知:不等式f (x )>0的解集为:{x |0<x <4或x >4}.(5)由图象可知若y =f (x )与y =m 的图象有三个不同的交点,则0<m <4,∴集合M ={m |0<m <4}.6.(13分)设函数f (x )=x +1x (x ∈(-∞,0)∪(0,+∞))的图象为C 1,C 1关于点A (2,1)的对称的图象为C 2,C 2对应的函数为g (x ).(1)求函数y =g (x )的解析式,并确定其定义域;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点的坐标.解 (1)设P (u ,v )是y =x +1x 上任意一点,∴v =u +1u ①.设P 关于A (2,1)对称的点为Q (x ,y ),∴⎩⎨⎧ u +x =4,v +y =2⇒⎩⎨⎧ u =4-x ,v =2-y , 代入①得2-y =4-x +14-x ⇒y =x -2+1x -4, ∴g (x )=x -2+1x -4(x ∈(-∞,4)∪(4,+∞)). (2)联立⎩⎪⎨⎪⎧ y =b ,y =x -2+1x -4⇒x 2-(b +6)x +4b +9=0,∴Δ=(b +6)2-4×(4b +9)=b 2-4b =0⇒b =0或b =4.∴当b =0时得交点(3,0);当b =4时得交点(5,4).。

相关文档
最新文档