2020届全国100所名校高考模拟金典卷理科数学(四)试题(word无答案)

合集下载

2020全国100所名校高考模拟金典卷理科数学试卷及答案解析(13页)

2020全国100所名校高考模拟金典卷理科数学试卷及答案解析(13页)

2020全国100所名校高考模拟金典卷理科数学试卷理科数学试卷(120分钟 150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合2|01x A x x +⎧⎫=≤⎨⎬-⎩⎭,[]{}2|log (2)(1)B x y x x ==-+,则A B =I ( ) A.[-2,2) B.(-1,1) C.(-1,1] D.(-1,2) 2.复数21iz i=-,则z 在复平面内的对应点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.设等差数列{}n a 的前n 项和为n S ,若242, 16a S ==,则5a =( ) A.10 B .12 C .13 D .144.给出下列说法: ①“tan 1x =”是“4x π=”的充分不必要条件;②定义在[a, b]上的偶函数2()(5)f x x a x b =+++的最大值为30; ③命题“0001,2x x x ∃∈+R …”的否定形式是“1,2x x x∀∈+>R ”. 其中错误说法的个数为( ) A.0 B.1 C.2 D.35.已知点()2,3A ,且点B 为不等式组00260y x y x y ⎧⎪-⎨⎪+-⎩…„„,所表示平面区域内的任意一点,则||AB 的最小值为( )A.12D.1 6.函数2()sin f x x x x =-的图象大致为( )A. B. C. D.7.3ax ⎛ ⎝⎭的展开式中,第三项的系数为1,则11a dx x =⎰( )A.2ln2B.ln2C.2D.18.执行如图所示的程序框图,若输出的120S =,则判断框内可以填入的条件是( ) A.4?k > B .5?k > C.6?k > D.7?k >9.河图是上古时代神话传说中伏羲通过黄河中浮出龙马身上的图案,与自己的观察而画出的“八卦”,而龙马身上的图案就叫做“河图”,把一到十分为五组,如图所示,其口诀:一六共宗,为水居北;二七同道,为火居南;三八为朋,为木居东;四九为友,为金居西;五十同途,为土居中.现从这十个数中随机抽取4个数,则能成为两组的概率是( )A.13 B .110C.121D.125210.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( ) A.2对B.3对C.4对D.5对11.已知直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,直线l 经过C 的焦点,M 为C 上的一个动点,设点N 的坐标为()4,0,则MN 的最小值为( ) A.C.12.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和. 设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( )A.2B.3C.4D.5二、填空题:本题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.已知A B C ,,为圆O 上三点,且2CO BA BC =-u u u r u u u r u u u r ,则BA BC ⋅=u u u r u u u r_____________.14.已知函数()2sin()0,,2f x x πωϕωϕπ⎛⎫⎡⎤=+>∈ ⎪⎢⎥⎣⎦⎝⎭的部分图象如图所示,其中()01f =,5||2MN =,则点M 的坐标为_____________.15.如图,点A 为双曲线2222:1(0,0)x y C a b a b-=>>的右顶点,右焦点为()2,0F ,点P 为双曲线上一点,作PB x ⊥轴,垂足为B ,若A 为线段OB 的中点,且以A 为圆心,AP 为半径的圆与双曲线C 恰有三个公共点,则双曲线C 的方程为____________.16.已知在三棱锥A BCD -中,平面ABD ⊥平面BCD ,4BC CD BC CD AB AD ⊥====,,,则三棱锥A BCD -的外接球的体积为____________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤第17~21题为必考题,每个试题考生都必须作答.第2、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.在ABC △中,角A B C ,,所对的边分别为a b c ,,,sin ()sin sin a A a b B c C ++=,ABC △的面积S abc =. (1)求角C 的大小;(2)求ABC △周长的取值范围.18.如图,在多面体ABCGDEF 中,AB AC AD ,,两两垂直,四边形ABED 是边长为2的正方形,AC DG EF ∥∥,且12AC EF DG ===,.(1)证明:CF ⊥平面BDG . (2)求二面角F BC A --的余弦值.19.某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推岀两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次,每次收取维修费2000元; 方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次,每次收取维修费1000元.某医院准备一次性购买2台这种机器,现需决策在购买机器时应购买哪种延保方案,为此搜集并整理50台这种机器超过质保期后延保两年内维修的次数,如下表:以这50台机器维修次数的频率代替1台机器维修次数发生的概率.记X 表示准备购买的2台机器超过质保期后延保两年内共需维修的次数. (1)求X 的分布列;(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更划算?20.已知O 为坐标原点,椭圆22221(0)x y a b a b +=>>的右焦点为()1,0F ,,过点F 的直线l 与C 相交于A B 、两点,点M 为线段AB 的中点.(1)当l 的倾斜角为45︒时,求直线OM 的方程;(2)试探究在x 轴上是否存在定点Q ,使得QA QB ⋅u u u r u u u r为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.21.已知函数2()2(1)ln(1)2f x x x x x =++--. (1)判断函数()f x 的单调性; (2)已知数列{}n a ,()*123ln(1),1n n n n a T a a a a n n +==∈+N L L ,求证:[]ln (2)12n nn T +<-. (二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,曲线1C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩(θ为参数).在以原点O 为极点,x 轴正半轴为极轴建立的极坐标系中,曲线2C 的极坐标方程为24sin 5ρρθ=+. (1)写出曲线1C 的普通方程和2C 的直角坐标方程; (2)若P Q ,分别为曲线12C C ,上的动点,求PQ 的最大值. 23.[选修4-5:不等式选讲] 已知函数()|2||36|f x x x =-++. (1)解不等式()34f x x ≥-+;(2)若函数()f x 的最小值为a ,且2(0,0)m n a m n +=>>,求11m n+的最小值.1.答案 B命题意图 本题考查解不等式与集合的运算. 解题分析 不等式201x x +≤-,等价于()()210x x +-≤且10x -≠,解得21x -≤<,即集合{}|21A x x =-<„ ,函数2log [(2)(1)]y x x =-+的定义域为(2)(1)0x x -+>,解得12x -<<,即集合{|12}B x x =-<<,所以()1,1A B =-I .2答案B命题意图 本题考查复数的运算及几何意义. 解题分析 由222(1)111i i i z i i i +===-+--,知对应点的坐标为()1,1-,所以对应点在第二象限. 3.答案D命题意图 本题考查等差数列的通项公式与前n 项和公式.解题分 由题意得211412246164a a d a S a d d =+=⎧=-⎧⎪⇒⎨⎨=+==⎪⎩⎩,则524414a =-+⨯=.4.答案 C命题意图 本题考查命题及充分、必要条件. 解题分析 对于①,当4x π=时,一定有tan 1x =但是当tan 1x =时,,4x k k ππ=+∈Z ,所以“tan 1x =”是“4x π=”的必要不充分条件,所以①不正确;对于②,因为()f x 为偶函数,所以5a =-.因为定义域为[],a b ,所以5b =, 所以函数2()5,[5,5]f x x x =+∈-的最大值为(5)(5)30f f -==,所以②正确; 对于③,命题“0001,2x x x ∃∈+R …”的否定形式是“1,2x x x∀∈+<R ”,所以③是错误的; 故错误说法的个数为2. 5.答案 C命题意图 本题考查线性规划及点到直线的距离公式.解题分析 结合不等式,绘制可行域,如图.由0260x y x y -=⎧⎨+-=⎩,得22x y =⎧⎨=⎩,即()2,2C ,点A 的位置如图所示,计算A 点到该区域的最小值,即计算点A 到直线260x y +-=的距离,所以min ||AB ==6.答案 A命题意图 本题考查函数的奇偶性与单调性,函数导数的应用.解题分析()f x 为偶函数,排除选项B ;2()sin (sin )f x x x x x x x =-=-,设()sin g x x x =-, 则()1cos 0g x x '=-≥恒成立,所以()g x 单调递增,所以当0x >时,()()00g x g >=, 所以当0x >时,()()0f x xg x =>,且()f x 单调递增,故选A 项. 7.答案 A命题意图 本题考查二项式定理及定积分.解题分析根据二项式3ax ⎛ ⎝⎭的展开式的通项公式得221213()4a T C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44aa ∴=∴=,则4111111d d ln 2ln 2ax x x xx ===⎰⎰.8.答案 B命题意图 本题考查程序框图.解题分析 模拟执行如图所示的程序框图如下:1,1k S ==; 2,4k S ==; 3,11k S ==; 4,26k S ==; 5,57k S ==;6,120k S ==,此时满足条件5k >,输出120S =. 所以判断框内可以填入的条件是5?k >. 9.答案 C命题意图 本题考查古典概型.解题分析 现从这十个数中随机抽取4个数,基本事件总数140n C =,能成为两组包含的基本事件个数52m C =,则能成为两组的概率25410121C m P n C ===.10.答案 C命题意图 本题考查三视图,线面垂直和面面垂直的判定.解题分析 该几何体是一个四棱锥,其直观图如图所示,易知平面PAD ⊥平面ABCD ,作PO AD ⊥于O ,则PO ⊥平面ABCD ,PO CD ⊥,又AD CD ⊥,所以CD ⊥平面PAD ,所以平面PCD ⊥平面PAD ,同理可证平面PAB ⊥平面PAD ,由三视图可知PO AO OD ==,所以AP PD ⊥,又AP CD ⊥,所以AP ⊥平面PCD ,所以平面PAB ⊥平面PCD ,所以该多面体各表面所在平面互相垂直的有4对.11.答案 C命题意图 本题考查抛物线方程及过焦点的弦.解题分析 由题意得22224(42)02y x bx b p x b y px=+⎧⇒+-+=⎨=⎩, 则()22222512424b p b ⎡⎤-⎛⎫=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,又直线l 经过C 的焦点,则22b p-=,b p ∴=-. 由此解得2p =,所以抛物线方程为24y x =.设()00,M x y ,则204y x =, ()()()2222200000||444212MN x y x x x ∴=-+=-+=-+,故当02x =时,||MN取得最小值.12.答案 A命题意图 本题考查数列的综合应用. 解题分析 当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列, 11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.13.答案0命题意图 本题考查平面向量的数量积.解题分析 11()22CO BA BC CA =-=u u u r u u u r u u u r u u u r Q ,∴圆心O 为线段AC 的中点,因而90ABC ∠=︒,故0BA BC ⋅=u u u r u u u r .14.答案 ()1,2-命题意图 本题考查三角函数的图象及解析式.解题分析 函数()2sin()0,,2f x x πωϕωϕπ⎛⎫⎡⎤=+>∈ ⎪⎢⎥⎣⎦⎝⎭的部分图象如图所示.(0)2sin 1f ϕ==Q ,56πϕ=Q .又5||2MN ==3πω∴=,即函数5()2sin 36f x x ππ⎛⎫=+ ⎪⎝⎭. 令52sin 236x ππ⎛⎫+= ⎪⎝⎭,结合图象得5362x πππ+=,解得1x =-,故点M 的坐标为()1,2-. 五步导解 解↔答15.答案 221x y -=命题意图 本题考查双曲线的标准方程、离心率和渐近线方程.解题分析 由题意可得(),0A a ,又A 为线段OB 的中点,所以(2,0)B a ,令2x a =,代入双曲线的方程可得y =,可设()2,3P a b -,由题意和结合图形可得圆A 经过双曲线的左顶点(),0a -,即||2AP a =,即2a =a b =,又c =222a b c +=,得1a b ==,故双曲线C 的方程为221x y -=.16.答案 36π命题意图 本题考查多面体与球.解题分析 如图取BD 的中点E ,连接AE CE ,,则AE BD CE BD ⊥⊥,. Q 平面ABD ⊥平面BCD ,平面ABD I 平面BCD BD =,AE ∴⊥平面BCD .又CEC Q 平面BCD ,AE CE ∴⊥.设ABD △的外接圆的圆心为O ,半径为r .AB AD ∴=, ∴圆心O 在AE 所在的直线上,22222()r BE OE BE r AE ∴=+=+-. Q在Rt BCD △中,BD =BE EC ∴==在Rt ABE △中,2AE ,()2282r r ∴=+-,解得,3,1r OE =∴=. Q在Rt OEC △中,3OC ==,3OA OB OC OD ∴====,∴点O 是三棱锥A BCD -的外接球的球心,且球的半径3R =,∴球的体积34363V R ππ==.17.命题意图 本题考查正、余弦定理及三角恒等变换.解题分析(1)由sin ()sin sin a A a b B c C ++=及正弦定理得222a b ab c ++=,又由余弦定理得1cos 2C =-,23C π∴=. (2)由1sin 2S abc ab C ==,可知2sin c C =,2sin ,2sin a A b B ∴==,ABC △的周长为1(sin sin sin )2a b c A B C ++=++1sin sin 23A A π⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦11sin sin 22A A A ⎛⎫=+- ⎪ ⎪⎝⎭11sin 22A A ⎛⎫= ⎪ ⎪⎝⎭1sin 23A π⎛⎫=+ ⎪⎝⎭.0,3A π⎛⎫∈ ⎪⎝⎭Q ,2,333A πππ⎛⎫∴+∈ ⎪⎝⎭,sin 3A π⎤⎛⎫∴+∈⎥ ⎪⎝⎭⎝⎦,ABC ∴△周长的取值范围为⎝⎦.18.命题意图 本题考查空间点线、面关系及线面垂直、二面角.解题分析(1)证明:因为AB AC AD ,,两两垂直,AC DG AB DE ∥,∥, 所以DG AD DG DE ⊥⊥,,所以DG ⊥平面ABED ,因为AE ⊂平面ABED ,所以DG AE ⊥,因为四边形ABED 为正方形,所以AE BD ⊥,因为BD DG D =I ,所以AE ⊥平面BDG ,因为AC EF ∥所以四边形AEFC 为平行四边形,所以AE CF ∥,所以CF ⊥平面BDG .(2)由(1)知DE DG DA ,,互相垂直,故以D 为坐标原点,以DE DG DA ,,所在直线分别为x y z ,,轴建立如图所示的空间直角坐标系D xyz -, 则(0,0,0),(0,0,2),(2,0,2),(0,1,2),(2,1,0)D A B C F , 所以(0,1,2),(2,1,0)FB CB =-=-u u u r u u u r.设(),,m a b c =u r 为平面BCF 的法向量,则2020m FB b c m CB a b ⎧⋅=-+=⎪⎨⋅=-=⎪⎩u r u u u r u r u u u r , 令1a =,则21b c ==,,所以()1,2,1m =u r.又因为AD ⊥平面ABC ,所以()0,0,2DA =u u u r为平面ABC 的一个法向量,所以()cos ,m DA ==u r u u u r 由图可知二面角F BC A --是钝角,所以二面角F BC A --的余弦值为. 19.命题意图 本题考查离散型随机变量的期望和方差以及方案的确定. 解题分析 (1)X 的所有可能取值为0,1,2,3,4,5,6111(0)1010100P X ==⨯=,111(1)210525P X ==⨯⨯=,11213(2)25551025P X ==⨯+⨯⨯=, 131211(3)2210105550P X ==⨯⨯+⨯⨯=,22317(4)25510525P X ==⨯+⨯⨯=, 236(5)251025P X ==⨯⨯=,339(6)1010100P X ==⨯=,X ∴的分布列为(2)所选延保方案一,所需费用1Y 元的分布列为()117117697000900011000130001500010720100502525100E Y =⨯+⨯+⨯+⨯+⨯=(元) 选择延保方案二,所需费用2Y 元的分布列为()267691000011000120001042010025100E Y =⨯+⨯+⨯=(元)()()12E Y E Y >Q ,∴该医院选择延保方案二较划算.20.命题意图 本题考查椭圆有关的定值、定点问题.解题分析由题得1c e c a ===,解得a =222a b c =+,得1b =,故椭圆方程为2212x y +=. 设()()1122,,,A x y B x y ,易知直线l 的方程为1x y =+,由22112x y x y =+⎧⎪⎨+=⎪⎩,得23210y y +-=, 于是12122313y y y y ⎧+=-⎪⎪⎨⎪⋅=-⎪⎩, 从而1212423x x y y +=++=,故211,,332CM M k ⎛⎫-=- ⎪⎝⎭, 所以直线OM 的方程为12y x =-. (2)①当直线l 的斜率不为0时,设()0,0Q x ,直线l 的方程为1x my =+,由22112x my x y =+⎧⎪⎨+=⎪⎩, 得()222210m y my ++-=,所以1221222212m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩, 所以()()()()()210201************OA QB x x x x y y my my x my my x y y =⋅=--+=++-++++u u u r u u u r ()()()()()2222121200000022121121112122m m y y m y y x x x m m x x x m m --=+⋅++-+-+=+⋅+⋅-+-+=++ ()202002231212x m x x m --+-++, 由023112x --=,得054x =, 故此时点57,0,416Q QA QB ⎛⎫⋅=- ⎪⎝⎭u u u r u u u r ; ②当直线l 的斜率为0时,2257416QA QB ⎛⎫⋅=-=- ⎪⎝⎭u u u r u u u r . 综上,在x 轴上存在定点5,04Q ⎛⎫ ⎪⎝⎭,使得QA QB ⋅u u u r u u u r 为定值. 21.命题意图 本题考查导数综合.解题分析 (1)()f x 的定义域为()1,-+∞,()2ln(1)2f x x x '=+-.设()()212g x ln x x =+-. ∵2()1x g x x -'=+,∴当()1,0x ∈-时,()0g x '>;当,()0x ∈+∞时,()0g x '<, ∴()g x 在()1,0-上单调递增,在(0,)+∞上单调递减,∴()g x 在0x =处取得最大值.又∵()00g =,∴对任意的1,()x ∈-+∞,()()00g x g ≤=恒成立,即对任意的1,()x ∈-+∞,都有()f x ' ()2120ln x x =+-≤恒成立,故()f x 在定义域()1,-+∞上是减函数.(2)由()f x 是减函数,且()00f =可得,当0x >时,()0f x <,∴()0f n <,即22(1)ln(1)2n n n n ++<+,两边同除以22(1)n +得ln(1)121211n n n n n n ++<⋅⋅+++,即12211n n n a n n +<⋅⋅++, 从而1231112334521222341234121n n n n n n n T a a a a n n n +++⎛⎫⎛⎫=⋅<⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅ ⎪⎪+++⎝⎭⎝⎭⋅L L L , 所以[]21(2)ln (2)ln 2ln(2)ln(1)(1)ln 22(1)n n n n T n n n n +⎡⎤++<=+-+-+⎢⎥+⎣⎦. ① 下面证2ln(2)ln(1)(1)ln 2102n n n n +-+-++-<. 记()2ln(2)ln(1)(1)ln 212x h x x x x =+-+-++-,[1,)x ∈+∞, ∴2211111()ln 2ln 2ln 2221232223x h x x x x x x x'=--+=-+=-+++++++. ∵2y x x=+在[2,)+∞上单调递减,而1111(2)ln 2(23ln 2)(2ln8)06233h '=-+=-=-<, ∴当[2,)x ∈+∞时,()0h x '<恒成立,∴()h x 在[2,)+∞上单调递减,即[2,)x ∈+∞,()(2)2ln 4ln33ln 2ln 2ln30h x h =--=-<„,∴当2n …时,()0h n <.∵19(1)2ln3ln 22ln 2ln 028h =---=-, ∴当*n ∈N 时,()0h n <,即2ln(2)ln(1)(1)ln 212n n n n +-+-+<-. ② 综合①②可得,[]ln (2)12n n n T +<-. 22.命题意图 本题考查参数方程、极坐标方程的应用及两点间距离的求法.解题分析 (1)曲线1C 的普通方程为22149x y +=, 曲线2C 的直角坐标方程为2245x y y +=+,即22(2)9x y +-=.(2)设P 点的坐标为(2cos ,3sin )θθ.2||333PQ PC +„,当sin 1θ=-时,max ||538PQ =+=.23.命题意图 本题考查绝对值不等式的解法及基本不等式.解题分析 (1)44,2()|2||36|28,22,44,2x x f x x x x x x x --<-⎧⎪=-++=+-⎨⎪+>⎩剟当2x <-时,4434x x -≥-+,即8x ≤-;当22x -≤≤时,2834x x +≥-+,即45x ≥-,可得425x -≤≤; 当2x >时,4434x x +≥-+,即0x ≥,可得2x >, ∴不等式的解集为4|8 5x x x ⎧⎫≤-≥-⎨⎬⎩⎭或 . (2)根据函数44,2()28,22,44,2x x f x x x x x --<-⎧⎪=+-≤≤⎨⎪+>⎩可知当2x =-时,函数取得最小值(2)4f -=,可知4a =, 8,0,0m n m n ∴+=>>,11111111()11(22)8882n m m n m n m n m n ⎛⎫⎛⎫∴+=⋅++=⋅++++= ⎪ ⎪⎝⎭⎝⎭…> 当且仅当n m m n =,即4m n ==时,取“=”,∴11m n +的最小值为12.。

全国所名校最新高考模拟示范卷卷(四)

全国所名校最新高考模拟示范卷卷(四)

全国100所名校最新高考模拟示范卷卷(四)数学(理科)数 学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再将答案填写在对应题号的横线上。

漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+. 如果事件A 、B 相互独立,那么()()()P A B P A P B ⋅=⋅.如果事件A 在一次试验中发生的概率是p ,那么在n 次独立重复试验中恰好发生k 次的概率()()C 1n kk kn n P k p p -=-.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{}22A x x =-<<,{}220B x x x =-≤,则AB =A .()0,2B .(]0,2C .[)0,2D .[]0,22.某赛季,甲、乙两名篮球运动员都参加了11赛得分的情况用如图1所示的茎叶图表示,则甲、乙两名运动员的中位数分别为A .19、13B .13、19C .20、18D .18、203.已知函数2log ,0,()2,0.x x x f x x >⎧=⎨≤⎩若1()2f a =,则a =A .1- BC .1-D .1或4.直线20ax y a -+=与圆229x y +=的位置关系是A .相离B .相交C .相切D .不确定 5.在区间[]0,1上任取两个数,a b ,方程220x ax b ++=的两根均为实数的概率为 A .18 B .14 C .12 D .346.已知a ∈R ,则“2a >”是“22a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.抽气机每次抽出容器内空气的60%,要使容器内剩下的空气少于原来的0.1%,则至少要抽(参考数据:lg 20.3010=,lg30.4771=)A .15次B .14次C .9次D .8次8.在ABC ∆所在的平面上有一点P ,满足PA PB PC AB ++=,则PBC ∆与ABC ∆的面积之比是 A .13 B .12 C .23 D .34二、填空题:本大题共7小题,每小题5分,满分30分.本大题分为必做题和选做题两部分.(一)必做题:第9、10、11、12题是必做题,每道试题考生都必须做答.9.若复数()()2563i z m m m =-++-是实数,则实数m = . 10.已知3cos 5α=,则cos 2α= . 11.根据定积分的几何意义,计算x =⎰.12.按如图2所示的程序框图运算. 若输入8x =,则输出k = ;若输出2k =,则输入x 的取值范围是 . (注:“1=A ”也可写成“1:=A ”或“1←A ”,均表示赋值语句)(二)选做题:第13、14、15题是选做题,考生只能选做二题,三题全答的,只计算前两题的得分.13.(坐标系与参数方程选做题)在极坐标系中,过点4π⎛⎫⎪⎝⎭作圆4sinρθ=的切线,则切线的极坐标方程是.14.(不等式选讲选做题)若a、b、c∈R,且222236a b c++=,则a b c++的最小值是.15.(几何证明选讲选做题)在平行四边形ABCD中,点E在边AB上,且:1:2AE EB=,DE与AC交于点F,若AEF∆的面积为62cm,则ABC∆的面积为2cm.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数()sin cosf x a x b x=+的图象经过点,03π⎛⎫⎪⎝⎭和,12π⎛⎫⎪⎝⎭.(1)求实数a和b的值;(2)当x为何值时,()f x取得最大值.17.(本小题满分12分)某计算机程序每运行一次都随机出现一个二进制的六位数123456N n n n n n n=,其中N的各位数中,161n n==,kn(k=2,3,4,5)出现0的概率为23,出现1的概率为13,记123456n n n n n nξ=+++++,当该计算机程序运行一次时,求随机变量ξ的分布列和数学期望(即均值).18.(本小题满分14分)如图3所示,在边长为12的正方形11AA A A''中,点,B C在线段AA'上,且3AB=,4BC=,作1BB1AA分别交11A A'、1AA'于点1B、P,作1CC 1AA ,分别交11A A '、1AA '于点1C 、Q ,将该正方形沿1BB 、1CC 折叠,使得1A A ''与1AA 重合,构成如图4所示的三棱柱111ABC A B C -.(1)在三棱柱111ABC A B C -中,求证:AB ⊥平面11BCC B ;(2)求平面APQ 将三棱柱111ABC A B C -分成上、下两部分几何体的体积之比; (3)在三棱柱111ABC A B C -中,求直线AP 与直线1AQ 所成角的余弦值.19.(本小题满分14分)已知数列}{n a 中,51=a 且1221n n n a a -=+-(2n ≥且*n ∈N ).(1)若数列2n na λ+⎧⎫⎨⎬⎩⎭为等差数列,求实数λ的值; (2)求数列}{n a 的前n 项和n S .20.(本小题满分14分)已知函数()xf x e x =-(e 为自然对数的底数). (1)求函数()f x 的最小值;(2)若*n ∈N ,证明:1211n nn nn n e n n n n e -⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭. 21.(本小题满分14分)已知抛物线L :22x py =和点()2,2M ,若抛物线L 上存在不同两点A 、B 满足AM BM +=0.(1)求实数p 的取值范围;(2)当2p =时,抛物线L 上是否存在异于A 、B 的点C ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线,若存在,求出点C 的坐标,若不存在,请说明理由.全国100所名校最新高考模拟示范卷卷(四)数学(理科)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.8.由PA PB PC AB ++=,得PA PB BA PC+++=0,即2PC AP =,所以点P 是CA 边上的第二个三等分 点,如图所示.故23PBC ABC S BC PC S BC AC ∆∆⋅==⋅.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,每小题5分,满分30分.其中第12题第一个空2分,第二个空3分.9.3 10.725-11.3π 12.4;(]28,57 13.cos 2ρθ= 14. 15.72三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查特殊角的三角函数、三角函数的性质等基础知识,考查运算求解能力) 解:(1)∵函数()sin cos f x a x b x =+的图象经过点,03π⎛⎫⎪⎝⎭和,12π⎛⎫⎪⎝⎭,∴sin cos 0,33sin cos 1.22a b a b ππππ⎧+=⎪⎪⎨⎪+=⎪⎩即10,221.b a +=⎪⎨⎪=⎩解得1,a b =⎧⎪⎨=⎪⎩.(2)由(1)得()sin f x x x =12sin 2x x ⎛⎫= ⎪ ⎪⎝⎭2sin 3x π⎛⎫=- ⎪⎝⎭.∴当sin 13x π⎛⎫-= ⎪⎝⎭,即232x k πππ-=+, 即526x k ππ=+()k ∈Z 时,()f x 取得最大值2. 17.(本小题满分12分)(本小题主要考查随机变量的分布列及其数学期望等基础知识,考查运算求解能力等) 解:ξ的可能取值是2,3,4,5,6.∵161n n ==,∴()4042162C 381P ξ⎛⎫=== ⎪⎝⎭, ()31412323C 3381P ξ⎛⎫==⋅= ⎪⎝⎭,()22241284C 3327P ξ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭, ()3341285C 3381P ξ⎛⎫==⋅= ⎪⎝⎭, ()444116C 381P ξ⎛⎫=== ⎪⎝⎭. ∴ξ的分布列为∴ξ的数学期望为16322481102345681818181813E ξ=⨯+⨯+⨯+⨯+⨯=.18.(本小题满分14分)(本小题主要考查空间几何体中线面的位置关系,面积与体积,空间向量等基础知识,考查空间想象能力和运算求解能力)(1)证明:在正方形11AA A A''中,∵5A C AA AB BC ''=--=, ∴三棱柱111ABC A B C -的底面三角形ABC 的边5AC =. ∵3AB =,4BC =,∴222AB BC AC +=,则AB BC ⊥.∵四边形11AA A A''为正方形,11AA BB ,∴1AB BB ⊥,而1BCBB B =,∴AB ⊥平面11BCC B . (2)解:∵AB ⊥平面11BCC B ,∴AB 为四棱锥A BCQP -的高.∵四边形BCQP 为直角梯形,且3BP AB ==,7CQ AB BC =+=,∴梯形BCQP 的面积为()1202BCQP S BP CQ BC =+⨯=, ∴四棱锥A BCQP -的体积1203A BCQP BCPQ V S AB -=⨯=,由(1)知1B B AB ⊥,1B B BC ⊥,且AB BC B =,∴1B B ⊥平面ABC .∴三棱柱111ABC A B C -为直棱柱, ∴三棱柱111ABC A B C -的体积为111172ABC A B C ABC V S BB -∆=⋅=.故平面APQ 将三棱柱111ABC A B C -分成上、下两部分的体积之比为722013205-=.(3)解:由(1)、(2)可知,AB ,BC ,1BB 两两互相垂直.以B 为原点,建立如图所示的空间直角坐标系B xyz -, 则()3,0,0A ,()13,0,12A ,()0,0,3P ,()0,4,7Q , ∴(3,0,3)AP =-,1(3,4,5)AQ =--, ∴1111cos ,5AP AQ AP AQ AP AQ ⋅<>==-,∵异面直线所成角的范围为0,2π⎛⎤⎥⎝⎦,∴直线AP 与1AQ 所成角的余弦值为15. 19.(本小题满分14分) (本小题主要考查等比数列、递推数列等基础知识,考查综合运用知识分析问题和解决问题的能力) 解:(1)方法1:∵51=a ,∴22122113a a =+-=,33222133a a =+-=. 设2n n na b λ+=,由}{n b 为等差数列,则有3122b b b +=. ∴321232222a a a λλλ+++⨯=+.∴13533228λλλ+++=+. 解得 1λ=-.事实上,1111122n n n n n n a a b b +++---=-()111212n n n a a ++=-+⎡⎤⎣⎦()1112112n n ++⎡⎤=-+⎣⎦1=,综上可知,当1λ=-时,数列2n na λ+⎧⎫⎨⎬⎩⎭为首项是2、公差是1的等差数列. 方法2:∵数列2n na λ+⎧⎫⎨⎬⎩⎭为等差数列, 设2n n na b λ+=,由}{n b 为等差数列,则有122n n n b b b ++=+(*n ∈N ). ∴12122222n n n n n n a a a λλλ+++++++⨯=+.∴1244n n n a a a λ++=--()()121222n n n n a a a a +++=---()()12221211n n ++=---=-.综上可知,当1λ=-时,数列2n na λ+⎧⎫⎨⎬⎩⎭为首项是2、公差是1的等差数列. (2)由(1)知,()1111122n n a a n --=+-⨯, ∴()121nn a n =+⋅+.∴()()()()12122132121121n nn S n n -⎡⎤=⋅++⋅+++⋅+++⋅+⎣⎦.即()1212232212n n n S n n n -=⋅+⋅++⋅++⋅+.令()1212232212n n n T n n -=⋅+⋅++⋅++⋅, ① 则()23122232212n n n T n n +=⋅+⋅++⋅++⋅. ②②-①,得()()12312222212n n n T n +=-⋅-+++++⋅12n n +=⋅.∴()11221n n n S n n n ++=⋅+=⋅+.20.(本小题满分14分)(本小题主要考查函数的导数、最值、等比数列等基础知识,考查分析问题和解决问题的能力、以及创新意识)(1)解:∵()x f x e x =-,∴()1xf x e '=-.令()0f x '=,得0x =.∴当0x >时,()0f x '>,当0x <时,()0f x '<.∴函数()xf x e x =-在区间(),0-∞上单调递减,在区间()0,+∞上单调递增.∴当0x =时,()f x 有最小值1.(2)证明:由(1)知,对任意实数x 均有1x e x -≥,即1xx e +≤.令k x n=-(*,1,2,,1n k n ∈=-N ),则01k n ke n-<-≤,∴1(1,2,,1)nnkkn k e e k n n --⎛⎫⎛⎫-≤==- ⎪ ⎪⎝⎭⎝⎭.即(1,2,,1)nk n k e k n n --⎛⎫≤=- ⎪⎝⎭.∵1,nn n ⎛⎫= ⎪⎝⎭∴(1)(2)211211n nn nn n n n e e e e n n n n -------⎛⎫⎛⎫⎛⎫⎛⎫++++≤+++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.∵(1)(2)2111111111n n n e eeee e e e e ----------+++++=<=---, ∴ 1211n nn nn n e n n n n e -⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.21.(本小题满分14分)(本小题主要考查直线与圆锥曲线等基础知识,考查数形结合的数学思想方法,以及推理论证能力、运算求解能力)解法1:(1)不妨设A 211,2x x p ⎛⎫ ⎪⎝⎭,B 222,2x x p ⎛⎫ ⎪⎝⎭,且12x x <, ∵AM BM +=0,∴2212122,22,222x x x x p p ⎛⎫⎛⎫--+--= ⎪ ⎪⎝⎭⎝⎭0.∴124x x +=,22128x x p +=.∵()21222122x x x x ++>(12x x ≠),即88p >,∴1p >,即p 的取值范围为()1,+∞.(2)当2p =时,由(1)求得A 、B 的坐标分别为()0,0、()4,4.假设抛物线L 上存在点2,4t C t ⎛⎫⎪⎝⎭(0t ≠且4t ≠),使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线.设经过A 、B 、C 三点的圆的方程为220x y Dx Ey F ++++=,则2420,4432,1641616.F D E F tD t E F t t ⎧=⎪++=-⎨⎪++=--⎩整理得 ()()3441680t E t E ++-+=. ① ∵函数24x y =的导数为2x y '=, ∴抛物线L 在点2,4t C t ⎛⎫ ⎪⎝⎭处的切线的斜率为2t , ∴经过A 、B 、C 三点的圆N 在点2,4t C t ⎛⎫ ⎪⎝⎭处的切线斜率为2t . ∵0t ≠,∴直线NC 的斜率存在.∵圆心N 的坐标为,22D E ⎛⎫-- ⎪⎝⎭, ∴242122t E t D t +⨯=-+,即()()324480t E t E ++-+=. ② ∵0t ≠,由①、②消去E ,得326320t t -+=.即()()2420t t -+=.∵4t ≠,∴2t =-.故满足题设的点C 存在,其坐标为()2,1-.解法2:(1)设A ,B 两点的坐标为1122()()A x y B x y ,,,,且12x x <。

(全国100所名校最新高考模拟示范卷)2020年普通高等学校招生全国统一考试理科数学模拟测试试题(含答案)

(全国100所名校最新高考模拟示范卷)2020年普通高等学校招生全国统一考试理科数学模拟测试试题(含答案)

2020年普通高等学校招生考试数学模拟测试一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={0,1,2,3},B={2,3,4,5},则A ∪B= A.{1,2,3,4,5}B.{0,1,4,5}C.{2,3}D.{0,1,2,3,4,5}2.i 是虚数单位,z=2—i,则|z|=B.23.已知向量a =(1,2),b =(-1,λ),若a ∥b ,则实数λ等于 A.-1B.1C.-2D.24.设命题p:∀x ∈R ,x 2>0,则p ⌝为A.∀x ∈R ,x 2≤0B.∀x ∈R ,x 2>0C.∃x ∈R ,x 2>0D.∃x ∈R ,x 2≤05.51(1)x-展开式中含x -2的系数是 A.15B.-15C.10D.-106.若双曲线22221(0,x y a b a b -=>>)的左、右焦点分别为F 1、F 2,离心率为53,点P(b,0),为则12||||PF PF =A.6B.8C.9D.107.图为祖冲之之子祖暅“开立圆术”中设计的立体模型.祖暅提出“祖氏原理”,他将牟合方盖的体积化成立方体与一个相当于四棱锥的体积之差,从而求出牟合方盖的体积等于32(3d d 为球的直径),并得到球的体积为16V d π=,这种算法比外国人早了一千多年,人们还用过一些类似的公式,根据π=3.1415926…,判断下列公式中最精确的一个是A.d ≈3B .d ≈√2V 3C.d≈√300157V3D .d≈√158V 38.已知23cos cos ,2sin sin 2αβαβ-=+=则cos(a+β)等于 A.12B.12-C.14D.14-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.第18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019年8月31日至9月15日在中国的北京广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法正确的是A.第一场得分的中位数为52 B.第二场得分的平均数为193C.第一场得分的极差大于第二场得分的极差D.第一场与第二场得分的众数相等10.已知正方体的外接球与内切球上各有一个动点M 、N,若线段MN 1,则 A.正方体的外接球的表面积为12π B.正方体的内切球的体积为43πC.正方体的边长为2D.线段MN 的最大值为11.已知圆M 与直线x 十y +2=0相切于点A(0,-2),圆M 被x 轴所截得的弦长为2,则下列 结论正确的是A.圆M 的圆心在定直线x-y-2=0上B.圆M 的面积的最大值为50πC.圆M 的半径的最小值为1D.满足条件的所有圆M 的半径之积为1012.若存在m,使得f(x)≥m 对任意x ∈D 恒成立,则函数f(x)在D 上有下界,其中m 为函数f(x)的一个下界;若存在M,使得f(x)≤M 对任意x ∈D 恒成立,则函数f(x)在D 上有上界,其中M 为函数f(x)的一个上界.如果一个函数既有上界又有下界,那么称该函数有界.下列说法正确的是A.1不是函数1()(0)f x x x x=+>的一个下界 B.函数f(x)=x l nx 有下界,无上界C.函数2()xe f x x=有上界有,上无界下,界无下界D.函数2sin ()1xf x x =+有界 三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.设f(x)是定义在R 上的函数,若g(x)=f(x)+x 是偶函数,且g(-2)=-4,则f(2)=___. 14.已知函数f(x)=sin(ωx+φ)(ω>0),点2(,0)3π和7(,0)6π是函数f(x)图象上相邻的两个对称中心,则ω=___.15.已知F 1,F 2分别为椭圆的221168x y +=左、右焦点,M 是椭圆上的一点,且在y 轴的左侧,过点F 2作∠F 1MF2的角平分线的垂线,垂足为N,若|ON|=2(О为坐标原点),则|MF 2|-|MF 1|=___,|OM|=__.(本题第一空2分,第二空3分)16.在正三棱柱ABC-A 1B 1C 1中,AB =1=2,E,F 分别为AB 1,A 1C 1的中点,平面α过点C 1,且平面α∥平面A 1B 1C ,平面α∩平面A 1B 1C 1=l ,则异面直线EF 与l 所成角的余弦值为__·四、解答题:本题共6小题,共70分。

2020届江西省百所名校高三下学期第四次联考数学(理)试卷及解析

2020届江西省百所名校高三下学期第四次联考数学(理)试卷及解析

2020届江西省百所名校高三下学期第四次联考数学(理)试卷★祝考试顺利★(解析版)一、选择题1.全集U =R ,(){}ln 1A x y x ==+,{}220B x x x =--<,则() U B A =( )A. ()2,+∞B. (),2-∞C. ∅D. ()1,2- 【答案】B【解析】 根据已知条件先求出集合A 和集合B ,再求出集合A 的补集,再运用集合的并集运算即可. 【详解】因为{}1A x x =>-,{}12B x x =-<<, 所以{} 1U A x x =≤-,故(){} 2U B A x x ⋃=<.故选:B2.欧拉是科学史上一位最多产的杰出数学家,为数学界作出了巨大贡献,其中就有欧拉公式:cos sin ix e x i x =+(i 为虚数单位).它建立了三角函数和指数函数间接关系,被誉为“数学中的天桥”.结合欧拉公式,则复数43i z iπ=的模为( )C. D. 2 【答案】B【解析】由题意可得4i e π=,代入43i z i π=+并对其化简,再代入模长计算公式即可.【详解】因为422i e π=+, 所以433112i z e i i i iπ==-++=-,从而5z =.故选:B3.空气质量AQI 指数是反映空气质量状况指数,AQI 指数值越小,表明空气质量越好,其对应关系如表:AQI 指数值 [)0,50[)50,100 [)100,150 [)150,200 [)200,300 [)300,+∞ 空气质量优 良 轻度污染 中度污染 重度污染 严重污染如图所示的是某市11月1日至20日AQI 指数变化的折线图:下列说法不正确的是( )A. 这20天中空气质量为轻度污染的天数占14B. 这20天中空气质量为优和良的天数为10天C. 这20天中AQI 指数值的中位数略低于100D. 总体来说,该市11月上旬的空气质量比中旬的空气质量好【答案】C【解析】根据已知条件对每个选项进行判断即可.【详解】对于A ,20天中AQI 指数值高于100,低于150的天数为5,即占总天数的14,故A 正确; 对于B ,20天中AQI 指数值有10天低于100,故B 正确;对于C ,20天中AQI 指数值有10天低于100,10天高于100,根据图可知中位数略高于100,故C 错误;对于D ,由图可知该市11月上旬的空气质量的确比中旬的空气质量要好些,故D 正确.故选:C。

名师精编2020年全国高考理科数学模拟试卷4+答题卡+解析

名师精编2020年全国高考理科数学模拟试卷4+答题卡+解析

2020年全国高考模拟理科数学卷(4)考试时间120分钟 总分150分第Ⅰ卷一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设U =R ,A ={x |x 2-3x -4>0},B ={x |x 2-4<0},则=B A C U I )(A .{x |x ≤-1,或x ≥2}B .{x |-1≤x <2}C .{x |-1≤x ≤4}D .{x |x ≤4}2.若复数2()(1)m i mi ++是实数,则实数m 的值为( ) A. -1 B.-2 C.1 D.23.A .4163π-B .403C .8163π-D .3234. 已知某程序框图如图所示,则执行该程序后输出的结果是A .1-B .21C .1D .25. 在数列{}n a 中,12341,23,456,78910,a a a a ==+=++=+++则10a = ( ) A. 495 B.500 C.505 D.5106. ABC ∆中,“角,,A B C 成等差数列”是“)sin sin cos C A A B =+”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7.已知实数,x y 满足21010x y x y -+≥⎧⎨--≤⎩,则22x y z x ++=的取值范围为( )4A .100,3⎡⎤⎢⎥⎣⎦B .(]10,2,3⎡⎫-∞+∞⎪⎢⎣⎭UC .102,3⎡⎤⎢⎥⎣⎦D .(]10,0,3⎡⎫-∞+∞⎪⎢⎣⎭U8. 设()()2,cos sin cos cos 2a R f x x a x x x π⎛⎫∈=-+-⎪⎝⎭满足()(0)3f f π-=,求函数()f x 在11,424ππ⎡⎤⎢⎥⎣⎦上的最大值 ( ) A.1 B.2 C.3 D.9. 在R 上定义的函数)(x f 是偶函数,且)2()(x f x f -=,若)(x f 在区间[]2,1是减函数,则函数)(x f ( )A.在区间[]1,2--上是增函数,区间[]4,3上是增函数B.在区间[]1,2--上是增函数,区间[]4,3上是减函数C.在区间[]1,2--上是减函数,区间[]4,3上是增函数D.在区间[]1,2--上是减函数,区间[]4,3上是减函数10. 四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有( )A. 150种B. 147种C. 144种D. 141种11. 已知椭圆()2222:10x y C a b a b+=>>,12,F F 为其左、右焦点,P 为椭圆C 上除长轴端点外的任一点,G 为12F PF ∆内一点,满足123PG PF PF =+u u u v u u u v u u u u v,12F PF ∆的内心为I ,且有12IG F F λ=u u v u u u u v(其中λ为实数),则椭圆C 的离心率e =( ) A .13 B .12 C .23D12. 在三棱锥A —BCD 中,AB =AC ,DB =DC ,4AB DB +=,AB ⊥BD ,则三棱锥 A —BCD 的外接球的体积的最小值为( )A. 3B. 43πC. 3D. 323π第Ⅱ卷本卷包括必考题和选考题两部分. 第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答. 二、填空题:本大题共4 小题,每小题5 分.13. 若向量12,2a =,b a b ==且-,则a b =+ 。

(全国100所名校最新高考模拟示范卷)2020年普通高等学校招生全国统一考试数学模拟测试(四)ZX-MNJ.SD

(全国100所名校最新高考模拟示范卷)2020年普通高等学校招生全国统一考试数学模拟测试(四)ZX-MNJ.SD

按秘密级事项管理★启用前2020年普通高等学校招生全国统一考试数学模拟测试本试卷共22题,共150分,考试时间120分钟,考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生先将自己的姓名、考生号、考场号和座位号填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱.不准使用涂改液、修正带、刮纸刀.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|26M x x =-<<,{}2|3log 35N x x =-<<,则M N =I ( ) A .{}2|2log 35x x -<< B .{}2|3log 35x x -<< C .{}|36x x -<<D .{}2|log 356x x <<2.设复数z 满足12z zz +=+,z 在复平面内对应的点的坐标为(),x y ,则( ) A .221x y =+B .221y x =+C .221x y =-D .221y x =-3.已知()2,1AB =-u u u r ,()1,AC λ=u u u r ,若cos BAC ∠=,则实数λ的值是( )A .-1B .7C .1D .1或74.“2b =”是“函数()()2231f x b b x α=--(α为常数)为幂函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件5.若()()613x a x -+的展开式中3x 的系数为-45,则实数a 的值为( ) A .23B .2C .14D .136.函数()2cos 2cos 221xxf x x =+-的图象大致是( )A .B .C .D .7.如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD P ,若正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,则下列结论正确的是( )A .m n =B .2m n =+C .m n <D .8m n +<8.已知函数()2xf x x a =+,()ln 42xg x x a -=-,若存在实数0x ,使()()005f x g x -=成立,则正数a 的取值范围为( ) A .(]0,1B .(]0,4C .[)1,+∞D .(]0,ln 2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.刘女士的网店经营坚果类食品,2019年各月份的收入、支出(单位:百元)情况的统计如图所示,下列说法中正确的是( )A .4至5月份的收入的变化率与11至12月份的收入的变化率相同B .支出最高值与支出最低值的比是5:1C .第三季度平均收入为5000元D .利润最高的月份是3月份和10月份10.嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆下述四个结论正确的是( )A .焦距长约为300公里B .长轴长约为3988公里C .两焦点坐标约为()150,0±D .离心率约为7599411.如图,已知正方体1111ABCD A B C D -的棱长为2,E 为棱1CC 的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F 、B 、E 、G 、H 为过三点B 、E 、F 的平面BMN 与正方体1111ABCD A B C D -的棱的交点,则下列说法正确的是( )A .HF BE PB .三棱锥1B BMN -的体积为6C .直线MN 与平面11A B BA 的夹角是45°D .11:1:3D G GC =12.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论正确的是( ) A .实数a 的值为1B .()()11,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称 C .21x x -的最大值为π D .12x x +的最小值为23π 三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.若函数()()()()()2log 2242x x f x f x x ->⎧⎪=⎨+≤⎪⎩,则()5f -=__________;()()5f f -=__________.(本题第一空2分,第二空3分)14.某部门全部员工参加一项社会公益活动,按年龄分为A ,B ,C 三组,其人数之比为5:3:2,现用分层抽样的方法从总体中抽取一个容量为20的样本,若C 组中甲、乙二人均被抽到的概率是111,则该部门员工总人数为__________.15.已知双曲线22219x y b -=的左、右焦点分别为1F 、2F ,P 为双曲线上任一点,且12PF PF ⋅u u u r u u u u r 的最小值为-7,则该双曲线的离心率是__________.16.如图,在矩形ABCD 中,24AD AB ==,E 是AD 的中点,将ABE △,CDE △分别沿BE ,CE 折起,使得平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE ,则所得几何体ABCDE 的外接球的体积为__________.四、解答题:本题共6小题,共70分.解答应写出文字说眀、证明过程或演算步骤.17.在①2316b b a =,②412b a =,③5348S S -=这三个条件中任选一个,补充在下面问题中.若问题中的正整数k 存在,求k 的值;若不存在,请说明理由.设正数等比数列{}n b 的前n 项和为n S ,{}n a 是等差数列,__________,34b a =,12a =,35730a a a ++=,是否存在正整数k ,使得132k k k S S b +=++成立? 注:如果选择多个条件分别解答,按第一个解答计分.18.已知在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1a =,6A π=21b -=.(1)求cos C 的值; (2)求ABC △的面积.19.在如图所示的多面体中,四边形ABEG 是矩形,梯形DGEF 为直角梯形,平面DGEF ⊥平面ABEG ,且DG GE ⊥,DF GE P ,2222AB AG DG DF ====. (1)求证:FG ⊥平面BEF . (2)求二面角A BF E --的大小.20.在直角坐标系xOy 中,曲线1C 上的任意一点M 到直线1y =-的距离比M 点到点()0,2F 的距离小1. (1)求动点M 的轨迹1C 的方程;(2)若点P 是圆()()222:221C x y -++=上一动点,过点P 作曲线1C 的两条切线,切点分别为A 、B ,求直线AB 斜率的取值范围.21.某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案(a )规定每日底薪100元,外卖业务每完成一单提成2元;方案(b )规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为[)25,35,[)35,45,[)45,55,[)55,65,[)65,75,[)75,85,[]85,95七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率; (2)从以往统计数据看,新聘骑手选择日工资方案(a )概率为13,选择方案()b 的概率为23.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案()a 的概率;(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由. (同组中的每个数据用该组区间的中点值代替)22.已知函数()()ln 1f x m x x =+-,()sin g x mx x =-. (1)若函数()f x 在()0,+∞上单调递减,且函数()g x 在0,2π⎛⎫⎪⎝⎭上单调递增,求实数m 的值; (2)求证:()()21111sin11sin1sin 1sin 12231e n n ⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭L (*n ∈N 且2n ≥). 2020年普通高等学校招生全国统一考试数学模拟测试参考答案1.A 本题考查交集.25log 356<<Q ,{}2|2log 35M N x x ∴=-<<I .2.B 本题考查复数的几何意义.12z zz +=+Q ,1x =+,解得221y x =+.3.C 本题考查向量的数量积.cos 10AB AC BAC AB AC ⋅∠===u u u r u u u r Q u u u r u u u r ,∴解得1λ=. 4.A 本题考查充分必要条件.Q 当函数()()2231f x b b x α=--为幂函数时,22311b b --=,解得2b =或12-,∴“2b =”是“函数()()2231f x b b x α=--为幂函数”的充分不必要条件. 5.D 本题考查二项式定理.()()()()666131313x a x x x a x -+=+-+Q 的展开式中3x 的系数为2233663313554045C aC a -=-=-,∴解得13a =. 6.C 本题考查函数的图象.()2cos 221cos 2cos 22121x xx x f x x x +=+=--Q , ()()()2121cos 2cos 22121x x x x f x x x f x --++∴-=-=-=---,∴函数()f x 为奇函数,∴排除选项A ,B ;又Q 当0,4x π⎛⎫∈ ⎪⎝⎭时,()0f x >,∴选C 项. 7.A 本题考查线面关系.如图,CE ⊂平面ABPQ ,从而CE P 平面1111A B PQ ,易知CE 与正方体的其余四个面所在平面均相交,4m ∴=,EF Q P 平面11BPPB ,EF P 平面11AQQ A ,且EF 与正方体的其余四个面所在平面均相交,4n ∴=,m n ∴=.8.A 本题考查函数与导数.由题意得()()0000002ln 425xx f x g x x a x a --=+-+=,即0000242ln 5xx a a x x -+=+-,令()ln 5h x x x =+-,()111xh x x x-'∴=-=,()h x ∴在()0,1上单调递增,则()1,+∞上单调递减, ()()max 14h x h ∴==,而024224x x a a a -+≥=,当且仅当00242x x -=⋅,即当01x =时,等号成立,44a ∴≤,01a ∴<≤.9.ACD 本题考查图表问题.对于A 选项,4至5月份的收入的变化率为30502054-=--,11至12月份的变化率为5070201211-=--,故相同,A 项正确.对于B 选项,支出最高值是2月份60百元,支出最低值是5月份的10百元,故支出最高值与支出最低值的比是6:1,故B 项错误.对于C 选项,第三季度的7,8,9月每个月的收入分别为40百元,50百元,60百元,故第三季度的平均收入为405060503++=百元,故C 项正确.对于D 选项,利润最高的月份是3月份和10月份都是30百元,故D 项正确.10.AD 本题考查椭圆的实际应用.设该椭圆的半长轴长为a ,半焦距长为c .依题意可得月球半径约为1347617382⨯=,10017381838a c -=+=,40017382138a c +=+=,2183821383976a =+=,1988a =,21381988150c =-=,椭圆的离心率约为150751988994c e a ===,可得结论A 、D 项正确,B 项错误;11.AD 本题考查立体几何问题.对于A 选项,由于平面11ADD A P 平面11BCC B ,而平面BMN 与这两个平面分别交于HF 和BE ,根据面面平行的性质定理可知HF BE P ,故A 选项判断正确;由于1:1:2A F FA =,而E 是1CC 的中点,故11MA =,123HD =,112D G =,132GC =,12C N =. 对于B 选项,111111111342=43232B BMN B MNB V V MB NB BB --==⨯⨯⨯⨯=⨯⨯⨯⨯,故B 选项判断错误; 对于C 选项,由于1B N ⊥平面11A B BA ,所以直线MN 与平面11A B BA 所成的角为1NMB ∠,且1114tan 13B N NMB B M ∠==≠,故C 选项判断错误; 对于D 选项,根据前面计算的结果可知112D G =,132GC =,故D 选项判断正确. 12.ACD 本题考查三角函数性质.56x π=Q 是函数()f x 的一条对称轴, ()53f x f x π⎛⎫∴=- ⎪⎝⎭,∴令0x =,得()503f f π⎛⎫=⎪⎝⎭,解得1a =, ()sin 2sin 3f x x x x π⎛⎫∴==- ⎪⎝⎭,又Q 函数()f x 在区间()12,x x 上具有单调性,21x x ∴-的最大值为2Tπ=,且()()12f x f x =-,()()11,x f x ∴和()()22,x f x 两点关于函数()f x 图象的一个对称中心对称, ()1212233322x x x x k k ππππ-+-+-∴==∈Z ,()12223x x k k ππ∴+=+∈Z ,当0k =时,12x x +取最小值为23π, ∴A ,C ,D 项正确,B 项错误.13.0 1 本题考查求函数值.()()()5130f f f -=-==,()()()()5041ff f f -===.14.60 本题考查分层抽样和概率.设C 组有n 人,()22224121111n n C C C n n -==-Q ,∴解得12n =,∴该部门员工总共有()12532602⨯++=人. 15.43本题考查双曲线的离心率.设点()1,0F c -()0c >,()2,0F c ()0c >,(),P m n , 则22219m n b -=,即22291n m b ⎛⎫=+ ⎪⎝⎭, ()1=,PF c m n ---u u u r Q ,()2,PF c m n =--u u u u r,2222222221222991199n PF PF m c n n c n c c b b ⎛⎫⎛⎫∴⋅=-+=++-=++-≥- ⎪ ⎪⎝⎭⎝⎭u u u r u u u u r ,当0n =时,等号成立,297c ∴-=-,4c ∴=,43e ∴=. 16.323π 本题考查折叠问题.由题可得ABE △,CDE △,BEC △均为等腰直角三角形,如图, 设BE ,EC ,BC 的中点分别为M ,N ,O ,连接AM ,OM ,AO ,DN ,NO ,DO ,OE ,则OM BE ⊥,ON CE ⊥. 因为平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE .所以OM ⊥平面ABE ,ON ⊥平面DEC ,易得2OA OB OC OD OE =====, 则几何体ABCDE 的外接球的球心为O ,半径2R =, 所以几何体ABCDE 的外接球的体积为343233V R ππ==.17.解:本题考查数列的应用.Q 在等差数列{}n a 中,3575330a a a a ++==,510a ∴=, ∴公差51251a a d -==-,()112n a a n d n ∴=+-=,348b a ∴==, 若存在正整数k ,使得132k k k S S b +=++成立,即132k k b b +=+成立,设正数等比数列{}n b 的公比为()0q q >,若选①,2316b b a =Q ,24b ∴=,322b q b ∴==,2n n b ∴=, ∴当5k =时,满足6532b b =+成立.若选②,41224b a ==Q ,433b q b ∴==,383n n b -∴=⋅, 23838332n n --∴⋅=⋅+,332n -∴=方程无正整数解, ∴不存在正整数k ,使得132k k b b +=+成立.若选③,5348S S -=Q ,4548b b ∴+=,28848q q ∴+=,260q q ∴+-=, ∴解得2q =或3q =-(舍去),2nn b ∴=,∴当5k =时,满足6532b b =+成立.18.解:本题考查解三角形.(121b -=2b a -=2sin sin C B A -=,6A π=Q ,56B C π∴=-,512sin 62C C π⎛⎫--= ⎪⎝⎭, ∴解得1cos 2C =-. (2)Q 在ABC △中,1cos 2C =-,23C π∴=,6B AC ππ∴=--=,1b a ∴==,11sin 112224ABC S ab C ∴==⨯⨯⨯=△. 19.解:本题考查线面垂直和二面角.(1)Q 平面DGEF ⊥平面ABEG ,且BE GE ⊥,BE ∴⊥平面DGEF ,BE FG ∴⊥,由题意可得FG FE ==222FG FE GE ∴+=,FE FG ∴⊥,FG ∴⊥平面BEF .(2)如图所示,建立空间直角坐标系,则()1,0,0A ,()1,2,0B ,()0,2,0E ,()0,1,1F ,()1,1,1FA =--u u u r,()1,1,1FB =-u u u r ,()0,1,1FE =-u u u r.设平面AFB 的法向量是()111,,n x y z =r ,则11111111100000x y z x z FA n x y z y FB n ⎧--==⋅=⎧⎧⎪⇒⇒⎨⎨⎨+-==⋅=⎩⎩⎪⎩u u u r ru u u r r,令11x =,()1,0,1n =r ,由(1)可知平面EFB 的法向量是()0,1,1m GF ==u r u u u r,1cos ,2n m n m n m⋅∴===r u r r u r r u r ,∴两法向量所成的角为3π, 由图可知,二面角A BF E --的大小为23π.20.解:本题考查轨迹问题.(1)设点(),M x y ,Q 点M 到直线1y =-的距离等于1y +,11y ∴+=,化简得28x y =,∴动点M 的轨迹1C 的方程为28x y =.(2)由题意可知,PA 、PB 的斜率都存在,分别设为1k 、2k ,切点()11,A x y ,()22,B x y , 设点(),P m n ,过点P 的抛物线的切线方程为()y k x m n =-+, 联立()28y k x m nx y⎧=-+⎪⎨=⎪⎩,得28880x kx km n -+-=,26432320k km n ∆=-+=Q ,即220k km n -+=,122m k k ∴+=,122nk k =, 由28x y =,得4x y '=,114x k ∴=,2211128x y k ==,2222222428x x k yk =⋅==,222121212121224424ABy y k k k k m k x x k k --+∴====--, Q 点(),P m n 满足()()22221x y -++=,13m ∴≤≤,13444m ∴≤≤,即直线AB 斜率的取值范围为13,44⎡⎤⎢⎥⎣⎦. 21.解:本题考查概率问题.(1)设事件A 为“随机选取一天,这一天该快餐店的骑手的人均日外卖业务量不少于65单”. 依题意,快餐店的人均日外卖业务量不少于65单的频率分别为0.2、0.15、0.05,0.20.150.050.4++=Q ,()P A Q 估计为0.4.(2)设事件B 为“甲、乙、丙、丁四名骑手中至少有两名骑手选择方案()a ”, 设事件i C 为“甲、乙、丙、丁四名骑手中恰有()0,1,2,3,4i i =人选择方案()a ”,则()()()41310144212163211111333818127P B P C P C C C ⎛⎫⎛⎫⎛⎫=--=--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以四名骑手中至少有两名骑手选择方案()a 的概率为1127. (3)设骑手每日完成外卖业务量为X 件, 方案()a 的日工资()*11002Y X X =+∈N ,方案()b 的日工资()*2*150,54,150554,54,X X Y X X X ⎧≤∈⎪=⎨+->∈⎪⎩NN, 所以随机变量1Y 的分布列为()11600.051800.052000.22200.32400.22600.152800.05224E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯=;同理,随机变量2Y 的分布列为()21500.31800.32300.22800.153300.05203.5E Y =⨯+⨯+⨯+⨯+⨯=.()()12E Y E Y >Q ,∴建议骑手应选择方案()a .22.解:本题考查函数与导数.(1)Q 函数()f x 在()0,+∞上单调递减,()101mf x x'∴=-<+,即1m x <+在()0,+∞上恒成立,1m ∴≤, 又Q 函数()g x 在0,2π⎛⎫⎪⎝⎭上单调递增, ()cos 0g x m x '∴=->,即cos m x >在0,2π⎛⎫⎪⎝⎭上恒成立,1m ≥,∴综上可知,1m =.(2)由(1)知,当1m =时,函数()()ln 1f x x x =+-在()0,+∞上为减函数,()sin g x x x =-在0,2π⎛⎫⎪⎝⎭上为增函数,∴当0x >时,()ln 1x x +<,当02x π<<时,sin x x <.sin1Q ,1sin12⨯,1sin 23⨯,L ,()1sin 01n n>-⨯(*n ∈N 且2n ≥),()()()111ln 1sin11sin 1sin 1sin ln 1sin112231n n ⎡⎤⎛⎫⎛⎫⎛⎫∴++++=+⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦L()11111ln 1sin ln 1sin ln 1sin sin1sin sin 122311223n n ⎛⎫⎛⎫⎛⎫+++++++<+++ ⎪ ⎪ ⎪ ⎪⨯⨯-⨯⨯⨯⎝⎭⎝⎭⎝⎭L L ()()1111111111sin111221122312231n n n n n n n ⎛⎫⎛⎫⎛⎫+<++++=+-+-++-=-< ⎪ ⎪ ⎪-⨯⨯⨯-⨯-⎝⎭⎝⎭⎝⎭L L ,即()()111ln 1sin11sin 1sin 1sin 212231n n ⎡⎤⎛⎫⎛⎫⎛⎫++++<⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦L , ()()21111sin11sin 1sin 1sin 12231e n n ⎛⎫⎛⎫⎛⎫∴++++< ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭L(*n ∈N 且2n ≥).。

【备考2020】全国高考模拟考试数学试卷 (理科)4(含答案解析)

【备考2020】全国高考模拟考试数学试卷 (理科)4(含答案解析)

二〇二〇届全国高考模拟考试试卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的,共12题,满分60分。

1.已知点11,2P ⎛⎫- ⎪⎝⎭和抛物线2:2C x y =,过抛物线C 的焦点且斜率为k 的直线与C 交于,A B 两点,若PA PB ⊥u u u r u u u r,则直线斜率k 为( )A .4B .3C .2D .12.执行如图所示的程序框图,则输出的n 值是( )A .5B .7C .9D .113.1231261823n nn n n n C C C C -+++⋯+⨯=( )A .2123n + B .()2413n- C .123n -⨯ D .()2313n- 4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O,若向量OA uuu r ,OB uuu r对应的复数分别是3+i,-1+3i,则CD uuu r对应的复数是( ) A .2+4iB .-2+4iC .-4+2iD .4-2i5.正方体1111ABCD A B C D -的棱长为4,点M 为1CC 的中点,点N 为线段1DD 上靠近1D 的三等分点,平面BMN 交1AA 于点Q ,则AQ 的长为( )A .13B .12 C .16D .236.已知关于x y 、的二元一次线性方程组的增广矩阵为111222a b c a b c ⎛⎫⎪⎝⎭,记121212(,),(,),(,)a a a b b b c c c ===r r r,则此线性方程组有无穷多组解的充要条件是( )A .0a b c ++=r rr r B .a b c r r r 、、两两平行 C .//a b rr D .a b c r r r 、、方向都相同7.已知2:11xp x <+,:()(3)0q x a x -->,p 为q 的充分不必要条件,则a 的范围是( ) A .[)1,+∞B .()1,+∞C .[)0,+∞D .()1,-+∞8.下列命题正确的是( )A .若lim()0n n n a b a →∞=⋅≠,则lim 0n n a →∞≠且lim 0n n b →∞≠B .若lim(,)0n n n a b →∞=,则lim 0n n a →∞=且lim 0n n b →∞= C .若无穷数列{}n a 有极限,且它的前n 项和为n S ,则12lim 0=lim lim lim n n n n n n S a a a →∞→∞→∞→∞=+++L D .若无穷数列{}n a 有极限,则1lim lim n n n n a a +→∞→∞= 9.设为负实数且,则下列说法正确的是( )A .B .C .D .以上都不对10.在四边形ABCD 中,已知M 是AB 边上的点,且1MA MB MC MD ====,120CMD ∠=o ,若点N 在线段CD (端点,C D 除外)上运动,则NA NB ⋅u u u r u u u r的取值范围是( ) A .[)1,0-B .[)1,1-C .3,04⎡⎫-⎪⎢⎣⎭D .1,12⎡⎫-⎪⎢⎣⎭11.若集合012|),{(},2,1,0{≥+-==y x y x N M 且M y x y x ∈≤--,,012},则N 中元素的个数为( ) A .9B .6C .4D .212.已知函数21()sin cos 2f x x x x =++,则下列结论正确的是( ) A .()f x 的最大值为1B .()f x 的最小正周期为2πC .()y f x =的图像关于直线3x π=对称D .()y f x =的图像关于点7,012π⎛⎫⎪⎝⎭对称 二、填空题:本大题共4小题,每小题5分,共20分。

【答案】【金太阳】2020年全国100所名校最新高考模拟示范卷 理科数学(四)

【答案】【金太阳】2020年全国100所名校最新高考模拟示范卷 理科数学(四)

3c 1 c2 3c2
3c 1 ,得 c2 3, c
3,
2
4
2
3c 1
a2 b2 c2 1
b
1,cos C

2
2ab
2
7.答案:C
2 cos 2x 2x 1
2x 1
1 2x
解析: f (x) cos 2x
cos 2x , f (x)
cos(2x) cos 2x f (x) ,
B
5
5
5
解析: x
6
是函数 f (x) 的一条对称轴, f (x)
f
3
x ,令 x 0 ,得 f (0)
f
3

33

3 a ,所以 a 1,①正确; f (x) sin x 22
3
cos
x
2 sin
x
3

T 又因为函数 f (x) 在区间 (x1, x2 ) 上具有单调性, x2 x1 的最大值为 2 ,且 f (x1) f (x2 ) ,
AB AC
2
10
解析: cos BAC
,解得 1 .
AB AC 5 1 2 10
5.答案:B
1 解析:设该椭圆长轴长为 a ,半焦距为 c ,依题意可得月球半径约为 3476 1738 ,
2
a c 100 1738 1838 a 1988
c 150 75
,离心率 e
,
97 13
19 (1) x2 8 y
1 3 (2) 直线 AB 斜率的取值范围是 4 , 4
20 (1) 0.4 21 (1) m 1
11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届全国100所名校高考模拟金典卷理科数学(四)试题一、单选题
(★) 1 . 已知集合,,则()
A.B.
C.D.
(★) 2 . 若复数(为虚数单位),则()
A.B.C.D.
(★★) 3 . 袋子中装有大小、形状完全相同的个白球和个红球,现从中不放回地摸取两个球,已知第二次摸到的红球,则第一次摸到红球的概率为()
A.B.C.D.
(★) 4 . 已知角的终边经过点,则()
A.B.C.D.
(★) 5 . 若函数,在其定义域上单调递增,则实数的取值范围是()A.B.C.D.
(★) 6 . 已知双曲线,经点的直线与有唯一公共点,则直线的方程为()
A.B.
C.或D.或
(★) 7 . 在中,角,的对边分别是,,且,,,若解此三角形有两解,则的取值范围是()
A.B.C.D.
(★) 8 . 二项式的展开式中含有非零常数项,则正整数的最小值为()
A.7B.12C.14D.5
(★★) 9 . 榫卯(sǔnmǎo)是两个木构件上所采用的一种凹凸结合的连接方式.凸出部分叫榫,凹进去的部分叫卯,榫和卯咬合,起到连接作用.代表建筑有北京的紫禁城、天坛祈年殿,山西悬空寺等,如图是一种榫卯构件中榫的三视图,则该榫的表面积和体积为()
A.B.
C.D.
(★★) 10 . 运行程序框图,如果输入某个正数后,输出的,那么的值为()
A.3B.4C.5D.6
(★) 11 . 已知定义在非零实数集上的奇函数,函数与图像共有4
个交点,则该4个交点横坐标之和为()
A.2B.4C.6D.8
(★★★★) 12 . 已知函数,若时,函数至少有2个零点,其
中为自然对数的底数,则实数的取值范围是()
A.B.C.D.
二、填空题
(★) 13 . 已知、为两个单位向量,且,则与夹角的余弦值为 __________ .(★) 14 . 椭圆的离心率为_________.
(★) 15 . 已知,满足则的最大值为__________.
(★★) 16 . 如图,在直角梯形中,,,,是边的
中点,沿翻折成四棱锥,则点到平面距离的最大值为
__________ .
三、解答题
(★★) 17 . 已知数列的前项和为,数列是首项为1,公差为2的等差数列. (1)求数列的通项公式;
(2)设数列满足,求数列的前项和.
(★★) 18 . 在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,.
(1)求证:;
(2)设为的中点,点在线段上,若直线平面,求的长;
(3)求二面角的余弦值.
(★★) 19 . 已知抛物线上一点到焦点的距离.
(1)求抛物线的方程;
(2)过点引圆的两条切线,切线与抛物线
的另一交点分别为,线段中点的横坐标记为,求的取值范围.
(★★) 20 . 交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为 a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表
浮动因素
浮动比率
上一年度未发生有责任道路交
通事故
下浮10%
上两年度未发生有责任道路交
通事故
下浮
上三年度未发生有责任道路交
通事故
下浮30%
上一个年度发生一次有责任不
涉及死亡的道路交通事故
0%
上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故
上浮10%
上一个年度发生有责任交通死
亡事故
上浮30%
某机构为了解某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型
A 1
A 2
A 3
A 4
A 5
A 6
数量
10
5
5
20
15
5
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题: (1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记 为某同学家的一辆该品牌车在第四年续保时的费用,求 的分布列与数学期望;(数学期望值保







(2
)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车
辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值 .
(★★★★) 21 . 已知函数.
(1)求函数的极小值;
(2)求证:当时,.
(★★) 22 . 选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极
点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为(且). (I)求直线的极坐标方程及曲线的直角坐标方程;
(Ⅱ)已知是直线上的一点,是曲线上的一点,,,若的最大值为2,求的值.
(★★) 23 . 设函数.
(1)求不等式的解集;
(2)若函数的最大值为,正实数满足,求的最小值.。

相关文档
最新文档