2020届全国100所名校最新高考模拟示范卷高三理科数学模拟测试试题(一)(带答案解析)

合集下载

2020年高考全国I卷理科数学试题(含答案)

2020年高考全国I卷理科数学试题(含答案)

绝密★启用前2020年普通高等学校招生全国统一考试理科数学注意事项:1. 答卷前,考生务必将白己的姓名、考生号等填写在答题卡和试卷指定位H±o2. 回答选择题时,选出每小题答案后,用铅笔把答题R对应题日的答案标号涂黑。

如需改动,用橡皮擦T净后,再选涂梵他答案标号。

冋答非选择题时,将答案写在答题卡上。

写在木试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

L 若z=l+i,则k2-2z∣=A. 0B. 1C. √2D・ 22. 设^A={x∖x2 4<0}, B- {x∣2r÷α<0}, WA^B-{x∖-2≤κ<∖},则旷A. -4 B∙ -2 C. 2 D. 43. 埃及胡夫金字塔是古代世界建筑奇迹之•,它的形状可视为•个正四棱锭•以该卩q核锥的高为边长的正方形而枳等于该四棱维一个侧而三角形的面枳,则几侧面三角形底边上的髙与底而正方形的边长的比值4. 已知/为抛物线Cy=2砂(p>0)上•点,点/到C的焦点的距离为12,到)轴的距离为9,则严5∙某校一个课外学习小组为研究某作物种子的发芽率y和温度X (单位:O C)的关系,在20个不同的温度亦+ 1A. 2B. 3C. 6D. 9为442条件卜•进行种子发芽实验•由实验数据(兀丿)(心12….20)得到卜•而的散点图:100%8. (.r + ^-)(x + >05的展开式中QJ 的系数为 XA ・5 B. IO C. 15D. 209∙己知 αe (0,π)t M. 3cos2α 一 Scosa==5» 则 Sina =A.逅B. ZC.1 D.迈 333910.已知4氏C 为球O 的球面上的三个点.OQ 为Z ∖∕BC 的外接圆.KOO I 的面积为4兀・由此散点图,在10。

2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)理科数学+答案+全解全析纯word版(2020.6.15)

2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)理科数学+答案+全解全析纯word版(2020.6.15)

2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)理科数学本卷满分150分,考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|||2}P x x =>,2{|230}Q x x x =--≤,则P Q =I A .(2,)+∞B .(1,)+∞C .(2,3]D .[1,2)-2.已知i 为虚数单位,(2i)67i z -=+,则复平面内与z 对应的点在 A .第一象限B .第二象限C .第三象限D .第四象限3.若26cos 2cos21αα+=-,则tan α= A .2±B .3±C .2D .3-4.已知实数,,a b c 满足lg 222,log ,sin a b a c b ===,则,,a b c 的大小关系是 A .a b c >>B .b c a >>C .a c b >>D .b a c >>5.已知函数()sin 3cos f x x x ωω=-(0ω>)的图象与x 轴的交点中,两个相邻交点的距离为π,把函数()f x 的图象上每一点的横坐标缩小到原来的一半,再沿x 轴向左平移3π个单位长度,然后纵坐标扩大到原来的2倍得到函数()g x 的图象,则下列命题中正确的是 A .()g x 是奇函数B .()g x 的图象关于直线6x π=对称 C .()g x 在[,]312π-π上是增函数D .当[,]66x π-π∈时,()g x 的值域是[0,2]6.函数2()cos sin(1)31x f x x =⋅-+的图象大致为7.在ABC △中,已知1()2AD AB AC =+u u u r u u u r u u u r ,13AE AD =u u u r u u u r ,若以,AD BE u u u r u u u r 为基底,则DC u u u r可表示为A .2133AD BE +u u ur u u u rB .23AD BE +u u ur u u u rC .13AD BE +u u u r u u u rD .1233AD BE +u u ur u u u r8.记不等式组21312y x x y y y kx ≤-⎧⎪+≤⎪⎨≥-⎪⎪≥-⎩表示的平面区域为D ,若平面区域D 为四边形,则实数k 的取值范围是A .11144k << B .11144k <≤ C .11133k <<D .11133k ≤≤9.1872年,戴德金出版了著作《连续性与无理数》,在这部著作中以有理数为基础,用崭新的方法定义了无理数,建立起了完整的实数理论.我们借助划分数轴的思想划分有理数,可以把数轴上的点划分为两类,使得一类的点在另一类点的左边.同样的道理把有理数集划分为两个没有共同元素的集合A 和B ,使得集合A 中的任意元素都小于集合B 中的任意元素,称这样的划分为分割,记为A /B .以下对有理数集的分割不会出现的类型为 A .A 中有最大值,B 中无最小值 B .A 中无最大值,B 中有最小值 C .A 中无最大值,B 中无最小值D .A 中有最大值,B 中有最小值10.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,O 为坐标原点,A 为OM 的中点,若C 的渐近线与以AM 为直径的圆相切,则双曲线C 的离心率等于 A 32 B 23C 3D 211.已知函数()|2|2f x x =-+,()ln g x ax x =-,若0(0,e)x ∀∈,12,(0,e)x x ∃∈满足0()f x = 12()()g x g x =,其中12x x ≠,则实数a 的取值范围是 A .5[,e)eB .1(,e)eC .1[1,e)e+D .15[1,]e e+12.如图,已知平面四边形P'CAB 中,AC BC ⊥,且6AC =,27BC =,214P'C P'B ==BC 将P'BC △折起到PBC △的位置,构成一个四面体,当四面体PABC 的体积最大时,四面体PABC 的外接球的体积等于 A .5003πB .2563πC .50πD .96π二、填空题:本题共4小题,每小题5分,共20分。

2020年高考理科数学全国1卷(word版,含答案)

2020年高考理科数学全国1卷(word版,含答案)

1.【ID:4002604】若,则()A.B.C.D.【答案】D【解析】解:,则.故选D.2.【ID:4002605】设集合,,且,则()A.B.C.D.【答案】B【解析】解:易求得:,,则由,得,解得.故选B.3.【ID:4002606】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C【解析】解:如图,设正四棱锥的底面边长为,斜高,则,两边同时除以,得:,解得:,故选C.4.【ID:4002607】已知为抛物线:上一点,点到的焦点的距离为,到轴的距离为,则()A.B.C.D.【答案】C【解析】解:由题意知,,则.故选C.5.【ID:4002608】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是()A.B.C.D.【答案】D【解析】解:由图易知曲线特征:非线性,上凸,故选D.6.【ID:4002609】函数的图象在点处的切线方程为()A.B.C.D.【答案】B【解析】解:,则切线斜率,又,则切线方程为.故选B.7.【ID:4002610】设函数在的图象大致如下图,则的最小正周期为()A.B.C.D.【答案】C【解析】解:由图可估算,则.故选C.由图可知:,由单调性知:,解得,又由图知,则,当且仅当时满足题意,此时,故最小正周期.8.【ID:4002611】的展开式中的系数为()A.B.C.D.【答案】C【解析】解:,要得到项,则应取项,则其系数为.故选C.9.【ID:4002612】已知,且,则()A.B.C.D.【答案】A【解析】解:由,得,解得:或(舍),又,则.故选A.10.【ID:4002613】已知,,为球的球面上的三个点,为的外接圆.若的面积为,,则球的表面积为()A.B.C.D.【答案】A【解析】解:由条件易得:,由,则,则,所以球的表面积为.故选A.11.【ID:4002614】已知:,直线:,为上的动点.过点作的切线,,切点为,,当最小时,直线的方程为()A.B.C.D.【答案】D【解析】解::,则,如图,由圆的切线性质,易知:,则,所以最小时,最短,即最短,此时,易求得:,则直线:,整理,得:.故选D.12.【ID:4002615】若,则()A.B.C.D.【答案】B【解析】根据题意,有,若,则,不符合题意,因此.13.【ID:4002616】若,满足约束条件,则的最大值为________.【答案】1【解析】解:作不等式组满足的平面区域如图:易得:,,,因为区域为封闭图形,分别将点的坐标代入,得最大值为.14.【ID:4002617】设,为单位向量,且,则________.【答案】【解析】解:因为,,则,则.15.【ID:4002618】已知为双曲线:的右焦点,为的右顶点,为上的点,且垂直于轴.若的斜率为,则的离心率为________.【答案】2【解析】解:如图,,,则由题意得:,解得:,(舍),所以的离心率为.16.【ID:4002619】如图,在三棱锥的平面展开图中,,,,,,则________.【答案】【解析】在中,;在中,,由展开图的生成方式可得,在中,由余弦定理可得,于是,因此在中,由余弦定理可得.17. 设是公比不为的等比数列,为,的等差中项.(1)【ID:4002620】求的公比.【答案】【解析】解:设数列的公比为,则,,即,解得或(舍去),的公比为.(2)【ID:4002621】若,求数列的前项和.【答案】【解析】解:记为的前项和.由及题设可得,.所以,.可得.所以.18. 如图,为圆锥的顶点,是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,为上一点,.(1)【ID:4002622】证明:平面.【答案】见解析【解析】方法:以为原点,所在直线为轴,建立如图所示的空间直角坐标系,则有,,,,,.,,,则,,,平面.方法:设,由题设可得,,,.因此,从而.又,故.所以平面.(2)【ID:4002623】求二面角的余弦值.【答案】【解析】由知,,,平面的一个法向量为,设平面的一个法向量为,则,即,解得,,二面角的余弦值为.19. 甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰:当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为.(1)【ID:4002624】求甲连胜四场的概率.【答案】【解析】解:.(2)【ID:4002625】求需要进行第五场比赛的概率.【答案】【解析】(甲连胜场)(乙连胜场)(丙连胜场).(3)【ID:4002626】求丙最终获胜的概率.【答案】【解析】丙最终获胜,有两种情况,丙连胜或输一场.(丙连胜),丙输一场,则共进行场,丙可以在①第场输,、场胜;②第、场胜,场输;③第、、场胜,第场输,(丙第场输,,场胜);(丙第,场胜,第场输);(丙第,,场胜,第场输),(丙胜).20. 已知,分别为椭圆:的左、右顶点.为的上顶点,,为直线上的动点,与的另一交点为,与的另一交点为.(1)【ID:4002627】求的方程.【答案】【解析】由题意知,,,故,,,故椭圆的方程为.(2)【ID:4002628】证明:直线过定点.【答案】见解析【解析】方法:设,,故:,,故:,联立,,同理可得,,①当时,:,②当时,,:,③当且时,,:,令,故直线恒过定点.方法:设,,.若,设直线的方程为,由题意可知.因为直线的方程为,所以.直线的方程为,所以.可得.又,故,可得,即.①将代入得.所以,.代入①式得.解得(舍去),.故直线的方程为,即直线过定点.若,则直线的方程为,过点.综上,直线过定点.21. 已知函数.(1)【ID:4002629】当时,讨论的单调性.【答案】当时,函数单调递减;当时,函数单调递增.【解析】当时,,其导函数,又函数为单调递增函数,且,于是当时,函数单调递减;当时,函数单调递增.(2)【ID:4002630】当时,,求的取值范围.【答案】【解析】方法:根据题意,当时,不等式显然成立;当时,有,记右侧函数为,则其导函数,设,则其导函数,当时,函数单调递减,而,于是.因此函数在上单调递增,在上单调递减,在处取得极大值,也为最大值.因此实数的取值范围是,即.方法:等价于.设函数,则.(i)若,即,则当时,.所以在上单调递增,而,故当时,,不合题意.(ii)若,即,则当时,;当时,.所以在,上单调递减,在上单调递增.又,所以当且仅当,即.所以当时,.(iii)若,即,则.由于,故由(ii)可得.故当,.综上,的取值范围是.22. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)【ID:4002631】当时,是什么曲线?【答案】为以坐标原点为圆心,半径为的圆.【解析】解:,的参数方程为,则的普通方程为:,是以坐标原点为圆心,半径为的圆.(2)【ID:4002632】当时,求与的公共点的直角坐标.【答案】【解析】解:当时,:,消去参数,得的直角坐标方程为:,的直角坐标方程为:,联立得,其中,,,解得,与的公共点的直角坐标为.23. 已知函数.(1)【ID:4002633】画出的图象.【答案】见解析【解析】解:如图,.(2)【ID:4002634】求不等式的解集.【答案】【解析】解:方法:由题意知,结合图象有,当时,不等式恒成立,故舍去;当,即时,不等式恒成立;当时,由,得,,解得,综上,.方法:函数的图象向左平移个单位长度后得到函数的图象.的图象与的图象的交点坐标为.由图象可知当且仅当时,的图象在的图象上方.故不等式的解集为.。

2020年全国100所名校最新高考模拟示范卷高三数学(理)(五)试题解析(含答案)

2020年全国100所名校最新高考模拟示范卷高三数学(理)(五)试题解析(含答案)

则该商鞅铜方升的俯视图的面积是正视图面积的(

A. 1.5 倍 答案: C
B. 2 倍
C. 2.5 倍
D. 3.5 倍
令 f (x) 2x 1.35 x 2.35, f (1.35) 0 ,再结合 f ( x) 在 R 的单调性,可求出 x ,根据
三视图的对应长度关系,即可求解 . 解:
2x 1.35 2.35 x 化为 2x 1.35 x 2.35 0 ,
即可求解 .
解:
不等量关系,
当 x? [0,2 ] 时, x
,2
55

5
∵ f x 在 0,2 上有且仅有 5 个零点,
∴5 2
6
12
,∴
29
.
5
5
10
故选 :A.
点评:
本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题
.
10.已知曲线 x2 4 y ,动点 P 在直线 y 3 上,过点 P 作曲线的两条切线 l1,l2 ,切
的一对“线性对称点” .若实数 a 与 b 和 a b 与 c 为函数 f (x) 3x 的两对“线性对称
点”,则 c 的最大值为(

A. log 3 4
B. log 3 4 1
答案: D
4
C.
3
D. log3 4 1
根据已知有 3a b
3c
3a
b
c
,可得
3c
1
1 3a b
,只需求出 3a b 的最小值,根据 1
1
由题知 a
55
50
1,1 b
log 4 5
log 4 2
1

高考-2020届全国100所名校最新高考模拟示范卷高三理科数学模拟测试试题(二)(word无答案)

高考-2020届全国100所名校最新高考模拟示范卷高三理科数学模拟测试试题(二)(word无答案)

2020届全国100所名校最新高考模拟示范卷高三理科数学模拟测试试题(二)(word无答案)2020届全国100所名校最新高考模拟示范卷高三理科数学模拟测试试题(二)一、单选题(★) 1 . 若集合,,则()A.B.C.D.(★) 2 . 是虚数单位,,则()A.3B.4C.5D.6(★) 3 . 第18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019年8月31日至9月15日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法错误的是()A.第一场得分的中位数为B.第二场得分的平均数为C.第一场得分的方差小于第二场得分的方差D.第一场与第二场得分的众数相等(★) 4 . 若双曲线的左、右焦点分别为,离心率为,点,则( )A.6B.8C.9D.10(★) 5 . 已知数列是等差数列,其前项和为,若,,则()A.78B.80C.84D.86(★★) 6 . 函数的图象大致为()A.B.C.D.(★) 7 . 图为祖冲之之子祖暅“开立圆术”中设计的立体模型.祖暅提出“祖氏原理”,他将牟合方盖的体积化成立方体与一个相当于四棱锥的体积之差,从而求出牟合方盖的体积等于(为球的直径),并得到球的体积为,这种算法比外国人早了一千多年,人们还用过一些类似的公式,根据,判断下列公式中最精确的一个是()A.B.C.D.(★) 8 . 展开式中的常数项是()A.B.C.D.(★) 9 . 某几何体的三视图如图所示,三个视图中的曲线都是圆弧,则该几何体的表面积为()A.B.C.D.(★★★★) 10 . 若存在,使得对任意恒成立,则函数在上有下界,其中为函数的一个下界;若存在,使得对任意恒成立,则函数在上有上界,其中为函数的一个上界.如果一个函数既有上界又有下界,那么称该函数有界.下述四个结论:①1不是函数的一个下界;②函数有下界,无上界;③函数有上界,无下界;④函数有界.其中所有正确结论的编号是()A.①②B.②④C.③④D.②(★★) 11 . 已知分别为椭圆的左、右焦点,是椭圆上一点,过点作的角平分线的垂线,垂足为,若(为坐标原点),则()A.B.C.D.(★★★★) 12 . 已知数列满足条件,,,则的最小值为()A.3B.2C.1D.0二、填空题(★) 13 . 已知向量,若,则实数等于_______.(★★) 14 . 若,满足约束条件,则的最大值为__________.(★) 15 . 已知函数,点和是函数图象上相邻的两个对称中心,则_________.(★★) 16 . 在正三棱柱中,,,分别为,的中点,平面过点,且平面平面,平面平面,则异面直线与所成角的余弦值为________.三、解答题(★) 17 . 在中,分别为内角的对边,且.(1)求角的大小;(2)若,为的内心,求的最大值.(★★) 18 . 如图,在四棱锥中,底面,底面为直角梯形,,★ ,,,,,分别为线段,,的中点.(1)证明:平面★平面.(2)求直线与平面所成角的正弦值.(★★) 19 . 已知点是抛物线上一点,点为抛物线的焦点,.(1)求直线的方程;(2)若直线与抛物线的另一个交点为,曲线在点与点处的切线分别为,直线相交于点,求的面积.(★★★★) 20 . 垃圾分类,是指按一定规定或标准将垃圾分类储存、分类投放和分类搬运,从而转变成公共资源的一系列活动的总称.分类的目的是提高垃圾的资源价值和经济价值,力争物尽其用.2019年6月25日,生活垃圾分类制度入法.到2020年底,先行先试的46个重点城市,要基本建成垃圾分类处理系统;其他地级城市实现公共机构生活垃圾分类全覆盖.某机构欲组建一个有关“垃圾分类”相关事宜的项目组,对各个地区“垃圾分类”的处理模式进行相关报道.该机构从600名员工中进行筛选,筛选方法:每位员工测试,,三项工作,3项测试中至少2项测试“不合格”的员工,将被认定为“暂定”,有且只有一项测试“不合格”的员工将再测试,两项,如果这两项中有1项以上(含1项)测试“不合格”,将也被认定为“暂定”,每位员工测试,,三项工作相互独立,每一项测试“不合格”的概率均为.(1)记某位员工被认定为“暂定”的概率为,求;(2)每位员工不需要重新测试的费用为90元,需要重新测试的总费用为150元,除测试费用外,其他费用总计为1万元,若该机构的预算为8万元,且该600名员工全部参与测试,问上述方案是否会超过预算?请说明理由.(★★★★) 21 . 已知函数.(1)若恒成立,.求的最大值;(2)若函数有且只有一个零点,且满足条件的,使不等式恒成立,求实数的值.(★★) 22 . 在直角坐标系中,曲线的参数方程为(为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)若直线与曲线至多只有一个公共点,求实数的取值范围;(2)若直线与曲线相交于,两点,且,的中点为,求点的轨迹方程.(★★) 23 . 已知,为正实数,.(1)证明:.(2)证明:.。

2020届全国100所名校最新高考模拟示范卷(四)高三数学(理)试题及答案

2020届全国100所名校最新高考模拟示范卷(四)高三数学(理)试题及答案

绝密★启用前2020届全国100所名校最新高考模拟示范卷(四)高三数学(理)试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上 一、单选题 1.已知集合{}|26Mx x =-<<,{}2|3log 35N x x =-<<,则MN =( )A .{}2|2log 35x x -<<B .{}2|3log 35x x -<<C .{}|36x x -<<D .{}2|log 356x x <<答案:A根据对数性质可知25log 356<<,再根据集合的交集运算即可求解. 解:∵25log 356<<, 集合{}|26Mx x =-<<,∴由交集运算可得{}2|2log 35M N x x ⋂=-<<.故选:A. 点评:本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题. 2.设复数z 满足12z zz +=+,z 在复平面内对应的点的坐标为(),x y 则( ) A .221x y =+ B .221y x =+ C .221x y =- D .221y x =-答案:B根据共轭复数定义及复数模的求法,代入化简即可求解. 解:z 在复平面内对应的点的坐标为(),x y ,则z x yi =+,z x yi =-,∵12z zz +=+,1x =+,解得221y x =+. 故选:B. 点评:本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题. 3.“2b =”是“函数()()2231f x b b x α=--(α为常数)为幂函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案:A根据幂函数定义,求得b 的值,结合充分条件与必要条件的概念即可判断. 解:∵当函数()()2231af x b b x =--为幂函数时,22311b b --=,解得2b =或12-, ∴“2b =”是“函数()()2231af x b b x =--为幂函数”的充分不必要条件.故选:A. 点评:本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.4.已知()21AB =-,,()1,AC λ=,若cos BAC ∠=,则实数λ的值是( ) A .-1 B .7C .1D .1或7答案:C根据平面向量数量积的坐标运算,化简即可求得λ的值. 解:由平面向量数量积的坐标运算,代入化简可得cos 105AB AC BAC AB AC⋅∠===. ∴解得1λ=. 故选:C. 点评:本题考查了平面向量数量积的坐标运算,属于基础题.5.嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆有下述四个结论: (1)焦距长约为300公里; (2)长轴长约为3988公里; (3)两焦点坐标约为()150,0±; (4)离心率约为75994. 其中正确结论的个数为()A .1B .2C .3D .4答案:B根据椭圆形轨道,设该椭圆长轴长为a ,半焦距为c ,先求得月球的半径r ,再根据近月点与月球表面距离为100公里,有100a c r -=+,远月点与月球表面距离为400公里,有400a c r +=+,然后两式联立求解. 解:设该椭圆长轴长为a ,半焦距为c ,依题意可得月球半径约为1347617382⨯=, 所以1001738183840017382138a c a c -=+=⎧⎨+=+=⎩,解得1988150a c =⎧⎨=⎩所以离心率150751988994c e a ===,可知结论(1)(4)正确,(2)错误; 因为没有给坐标系,焦点坐标不确定,所以(3)错误. 故选:B 点评:本题主要考查椭圆的几何性质,还考查了阅读抽象应用的能力,属于基础题. 6.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1a =,6A π=,且321c b -=,则cos C ()A .12-B .3C .12D 6 答案:A根据1a =,321c b -=,由正弦定理边化为角得到3sin 2sin sin C B A -=,由A B C π++=,得到()3sin 2sin sin C A C A -+=,再根据6A π=求解.解:由321c b -=,得32c b a -=,即3sin 2sin sin C B A -=, 所以()3sin 2sin sin C A C A -+=, 而6A π=,所以3sin 2sin sin 66C C ππ⎛⎫-+= ⎪⎝⎭, 即3113sin 2sin cos 222C C C ⎛⎫-+= ⎪ ⎪⎝⎭, 解得1cos 2C =-. 故选:A 点评:本题主要考查正弦定理和三角恒等变换,还考查了运算求解的能力,属于中档题. 7.函数()2cos2cos221xxf x x =+-的图象大致是( ) A . B .C .D .答案:C根据函数奇偶性可排除AB 选项;结合特殊值,即可排除D 选项. 解:∵()2cos221cos2cos22121x x x x f x x x +=+=⨯--,()()()2121cos 2cos22121x x x x f x x x f x --++-=⨯-=-⨯=---,∴函数()f x 为奇函数,∴排除选项A ,B ;又∵当04x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,故选:C. 点评:本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.8.设x ,y 满足约束条件2010x y x y x m -+≥⎧⎪+-≥⎨⎪≤⎩,若2z x y =+的最大值大于17,则实数m 的取值范围为() A .()4,+∞ B .13,2⎛⎫+∞⎪⎝⎭C .()6,+∞D .()5,+∞答案:D先作出不等式组表示的平面区域,然后平移直线l :20x y +=,当直线l 在y 轴上的截距最大时,z 取得最大值求解. 解:作出不等式组表示的平面区域如图所示,作出直线l :20x y +=,并平移,当直线l 经过点(),2m m +时,直线在y 轴上的截距最大,z 取得最大值, 因为2z x y =+的最大值大于17, 所以2217m m ++>,解得5m >. 故选:D 点评:本题主要考查线性规划求最值,还考查了数形结合的方法的能力,属于基础题. 9.七巧板是一种古老的中国传统智力玩具,是由七块板组成.而这七块板可拼成许多图形,人物、动物、建筑物等,在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧图谱》.若用七巧板(图1为正方形),拼成一只雄鸡(图2),在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡头或鸡尾(阴影部分)的概率为A .112B .18C .14D .316答案:D这是一个几何概型模型,设包含7块板的正方形边长为4,求得正方形的面积,即为雄鸡的面积,然后求得雄鸡鸡头(标号3或5)和鸡尾(标号6)的面积之和,代入公式求解. 解:设包含7块板的正方形边长为4,正方形的面积为4416⨯=, 则雄鸡鸡头(标号3或5)和鸡尾(标号6)的面积之和为1212132⨯⨯+⨯=, 在雄鸡平面图形上随机取一点,则恰好取自雄鸡几头或鸡尾(阴影部分)的概率为316p. 故选:D 点评:本题主要考查几何概型的概率,还考查了阅读抽象应用的能力,属于基础题.10.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为()A .2π B .3π C .4π D .6π 答案:C设AE BF a ==,13B EBF EBFV S B B '-'=⨯⨯,利用基本不等式,确定点E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解.设AE BF a ==,则()()23119333288B EBFaa V a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=,352AF =,2292A F AA AF ''=+=,13222EF AC ==, 因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角,由余弦定理得222819452424cos 9322222A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯⨯, ∴4A FE π'∠=.方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫⎪⎝⎭, ∴3,3,32A F ⎛⎫'=--⎪⎝⎭,()3,3,0AC =-, 所以9922cos ,92322A F AC A F AC A F AC +'⋅'==='⋅⨯,所以异面直线A F '与AC 所成的角为4π. 故选:C 点评:本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.11.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:①实数a 的值为1;②()()1,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π, ④12x x +的最小值为23π. 其中所有正确结论的编号是() A .①②③ B .①③④C .①④D .③④答案:B 根据56x π=是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为2Tπ=,然后由()()12f x f x =-,得到()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称求解验证. 解: ∵56x π=是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=-⎪⎝⎭, 令0x =,得()503f f π⎛⎫=⎪⎝⎭,即=1a =,①正确; ∴()sin 2sin 3π⎛⎫==- ⎪⎝⎭f x x x x .又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为2Tπ=,且()()12f x f x =-, ∴()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称,∴121233223x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π,k Z ∈, ∴12223x x k ππ+=+,k Z ∈, 当0k =时,12x x +取最小值23π,所以①③④正确,②错误.故选:B 点评:本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.12.如图,在ABC 中,AB 4=,点E 为AB 的中点,点D 为线段AB 垂直平分线上的一点,且4DE =,固定边AB ,在平面ABD 内移动顶点C ,使得ABC 的内切圆始终与AB 切于线段BE 的中点,且C 、D 在直线AB 的同侧,在移动过程中,当CA CD +取得最小值时,ABC 的面积为()A .12524-B .6512-C .12518-D .658-答案:A以AB 所在直线为x 轴,ED 所在直线为y 轴建立平面直角坐标系,利用圆的切线长定理,得到C 点的轨迹是以A 、B 为焦点的双曲线在第一象限部分,然后利用直线段最短,得到点C 的位置,再求三角形的面积. 解: 如图,以AB 所在直线为x 轴,ED 所在直线为y 轴建立平面直角坐标系,则()2,0A -,()2,0B ,()0,4D ,设ABC 的内切圆分别切BC 、AC 、AB 于F ,G ,H 点,∵3124CA CB AG BF AH HB -=-=-=-=<,所以C 点的轨迹是以A 、B 为焦点的双曲线的第一象限部分,且1a =,2c =,2223b c a =-=,∴C 的轨迹方程为()220,03y x x y ->>.∵2CA CB -=,∴2CA CB =+,∴2CA CD CB CD +=++, 则当点C 为线段BD 与双曲线在第一象限的交点时,CA CD +最小, 如图所示:线段BD 的方程为()4202y x x =-≤≤,将其代入22330x y --=,得216190x x -+=,解得835x =+835x =-,∴426512y x =-=, ∴()835,6512C -. ∴ABC 的面积为()146512125242⨯⨯=. 故选:A 点评:本题主要考查双曲线的定义,圆的切线长定理以及三角形的面积,还考查了数形结合的思想和运算求解的能力,属于中档题. 二、填空题13.若函数()()()()()2log 2242x x f x f x x ⎧->⎪=⎨+≤⎪⎩,则()()5f f -=__________. 答案:1利用分段函数,先求()5f -,再求()()5f f -的值.解: ∵()()()5130f f f -=-==,∴()()()()5041ff f f -===.故答案为:1 点评:本题主要考查分段函数求函数值问题,还考查了运算求解的能力,属于基础题. 14.若()()613x a x -+的展开式中3x 的系数为45-,则实数a =__________. 答案:13利用通项公式得到()()613x a x -+的展开式中含3x 的项为:()()23236633x C x a C x ⋅-⋅,再根据系数为45-,建立方程求解.解:因为()()613x a x -+的展开式中含3x 的项为:()()()232336633135540x C x a C x a x ⋅-⋅=-,∴13554045a -=-,解得13a =. 故答案为:13点评:本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题. 15.如图,在矩形ABCD 中,24==AD AB ,E 是AD 的中点,将ABE △,CDE △分别沿BE CE ,折起,使得平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE ,则所得几何体ABCDE 的外接球的体积为__________.答案:323π 根据题意,画出空间几何体,设BE EC BC ,,的中点分别为M N O ,,,并连接AM CM AO DN NO DO OE ,,,,,,,利用面面垂直的性质及所给线段关系,可知几何体ABCDE 的外接球的球心为O ,即可求得其外接球的体积. 解:由题可得ABE △,CDE △,BEC △均为等腰直角三角形,如图所示,设BE EC BC ,,的中点分别为M N O ,,, 连接AM CM AO DN NO DO OE ,,,,,,, 则OM BE ⊥,ON CE ⊥.因为平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE , 所以OM ⊥平面ABE ,ON ⊥平面DEC , 易得2OA OB OC OD OE =====,则几何体ABCDE 的外接球的球心为O ,半径2R =, 所以几何体ABCDE 的外接球的体积为343233V R ππ==. 故答案为:323π. 点评:本题考查了空间几何体的综合应用,折叠后空间几何体的线面位置关系应用,空间几何体外接球的性质及体积求法,属于中档题.16.若函数()2ln 2f x x x ax x =--有两个不同的极值点,则实数a 的取值范围为__________. 答案:10,4e ⎛⎫ ⎪⎝⎭由函数()2ln 2f x x x ax x =--有两个不同的极值点,则()ln 40f x x ax '=-=有两个不同的根,转化为方程ln 4x a x =有两个不同解,即函数()g x ln 4xx=的图象与直线y a =有两个公共点求解.解:由()ln 40f x x ax '=-=,得ln 4xa x=, 记()ln 4x g x x =,则()21ln 4xg x x-'=, 当()0,x e ∈时,()0g x '>,()g x 单调递增,当(),x e ∈+∞时,()0g x '<,()g x 单调递减. 又∵()14g e e=,当0x →时,()g x →-∞,当x →+∞时,()0g x →. 因为函数()2ln 2f x x x ax x =--有两个不同的极值点, 所以方程ln 4xa x=有两个不同的解, 即函数()g x 的图象与直线y a =有两个公共点, 故实数a 的取值范围为10,4e ⎛⎫ ⎪⎝⎭. 故答案为:10,4e ⎛⎫ ⎪⎝⎭点评:本题主要考查导数与函数的极值点以及导数与函数的零点问题,还考查了数形结合的思想和运算求解的能力,属于中档题. 三、解答题17.在如图所示的多面体中,四边形ABEG 是矩形,梯形DGEF 为直角梯形,平面DGEF ⊥平面ABEG ,且DG GE ⊥,//DF GE ,2222AB AG DG DF ====.(1)求证:FG ⊥平面BEF . (2)求二面角A BF E --的大小. 答案:(1)见解析;(2)23π(1)根据面面垂直性质及线面垂直性质,可证明BE FG ⊥;由所给线段关系,结合勾股定理逆定理,可证明FE FG ⊥,进而由线面垂直的判定定理证明FG ⊥平面BEF .(2)建立空间直角坐标系,写出各个点的坐标,并求得平面AFB 和平面EFB 的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角A BF E --的大小. 解:(1)证明:∵平面DGEF ⊥平面ABEG ,且BE GE ⊥, ∴BE ⊥平面DGEF , ∴BE FG ⊥,由题意可得2FG FE ==, ∴222FG FE GE +=,∵FE FG ⊥,且FE BE E ⋂=, ∴FG ⊥平面BEF .(2)如图所示,建立空间直角坐标系,则()1,0,0A ,()1,2,0B ,()0,2,0E ,()0,1,1F ,()1,1,1FA =--,()1,1,1FB =-,()0,1,1FE =-.设平面AFB 的法向量是()111,,n x y z =,则11111111100000x y z x z FA n x y z y FB n --==⎧⎧⎧⋅=⇒⇒⎨⎨⎨+-==⋅=⎩⎩⎩,令11x =,()1,0,1n =,由(1)可知平面EFB 的法向量是()0,1,1m GF ==,∴1cos<,222n m n m n m⋅>===⨯⋅,由图可知,二面角A BF E --为钝二面角,所以二面角A BF E --的大小为23π. 点评:本题考查了线面垂直的判定,面面垂直及线面垂直的性质应用,空间向量法求二面角的大小,属于中档题.18.在等差数列{}n a 中,12a =,35730a a a ++=.(1)求数列{}n a 的通项公式;(2)记23n n a an b =+,当*n N ∈时,1n n b b λ+>,求实数λ的取值范围.答案:(1)2n a n =(2)实数λ的取值范围是97,13⎛⎫-∞ ⎪⎝⎭(1)根据12a =,35730a a a ++=,利用“1,a d ”法求解.(2)由(1)得到2349n naa n n nb =+=+,将()114949n n n n λ+++>+对*n N ∀∈恒成立,转化为5419nλ<⎛⎫+ ⎪⎝⎭对*n N ∀∈恒成立求解. 解:(1)在等差数列{}n a 中,3575330a a a a ++==,∴510a =,所以{}n a 的公差51251a a d -==-, ∴()112n a a n d n =+-=. (2)∵2349n naa n n nb =+=+,∴()114949n n n n λ+++>+对*n N ∀∈恒成立,即4499595444949419n n n n n n n n λ⨯+⨯⨯<=+=+++⎛⎫+ ⎪⎝⎭对*n N ∀∈恒成立, 又∵55974441341199n+≥+=⎛⎫++ ⎪⎝⎭,∴9713λ<,即实数λ的取值范围是97,13⎛⎫-∞ ⎪⎝⎭.点评:本题主要考查等差数列的基本运算以及有关数列的不等式恒成立问题,还考查了运算求解的能力,属于中档题.19.在直角坐标系xOy 中,曲线1C 上的任意一点M 到直线1y =-的距离比M 点到点()02F ,的距离小1.(1)求动点M 的轨迹1C 的方程;(2)若点P 是圆()()222221C x y -++=:上一动点,过点P 作曲线1C 的两条切线,切点分别为A B 、,求直线AB 斜率的取值范围.答案:(1)28x y =;(2)13,44⎡⎤⎢⎥⎣⎦(1)设(),M x y ,根据题意可得点M 的轨迹方程满足的等式,化简即可求得动点M 的轨迹1C 的方程;(2)设出切线PA PB 、的斜率分别为12k k ,,切点()12,A x x ,()22,B x y ,点()P m n ,,则可得过点P 的拋物线的切线方程为()y k x m n =-+,联立抛物线方程并化简,由相切时0∆=可得两条切线斜率关系12,k k +12k k ;由抛物线方程求得导函数,并由导数的几何意义并代入抛物线方程表示出12,y y ,可求得4AB mk =,结合点()P m n ,满足()()22221x y -++=的方程可得m 的取值范围,即可求得AB k 的范围.解:(1)设点(),M x y ,∵点M 到直线1y =-的距离等于1y +, ∴11y +=,化简得28x y =,∴动点M 的轨迹1C 的方程为28x y =.(2)由题意可知,PA PB 、的斜率都存在,分别设为12k k ,,切点()12,A x x ,()22,B x y ,设点()P m n ,,过点P 的拋物线的切线方程为()y k x m n =-+,联立()28y k x m n x y⎧=-+⎨=⎩,化简可得28880x kx km n -+-=,∴26432320k km n ∆=-+=,即220k km n -+=, ∴122m k k +=,122n k k =. 由28x y =,求得导函数4xy '=, ∴114x k =,2211128x y k ==,2222228x y k ==,∴222121212121224424ABy y k k k k m k x x k k --+====--, 因为点()P m n ,满足()()22221x y -++=, 由圆的性质可得13m ≤≤,∴13444AB m k ≤=≤,即直线AB 斜率的取值范围为13,44⎡⎤⎢⎥⎣⎦. 点评:本题考查了动点轨迹方程的求法,直线与抛物线相切的性质及应用,导函数的几何意义及应用,点和圆位置关系求参数的取值范围,属于中档题.20.某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案()a 规定每日底薪100元,外卖业务每完成一单提成2元;方案()b 规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为[)[)[)[)[)[)[]2535354545555565657575858595,,,,,,,,,,,,,七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率;(2)从以往统计数据看,新聘骑手选择日工资方案()a 的概率为13,选择方案()b 的概率为23.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案()a 的概率,(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替) 答案:(1)0.4;(2)1127;(3)应选择方案()a ,理由见解析 (1)根据频率分布直方图,可求得该快餐店的骑手的人均日外卖业务量不少于65单的频率,即可估算其概率;(2)根据独立重复试验概率求法,先求得四人中有0人、1人选择方案()a 的概率,再由对立事件概率性质即可求得至少有两名骑手选择方案()a 的概率;(3)设骑手每日完成外卖业务量为X 件,分别表示出方案()a 的日工资和方案()b 的日工资函数解析式,即可计算两种计算方式下的数学期望,并根据数学期望作出选择. 解:(1)设事件A 为“随机选取一天,这一天该快餐店的骑手的人均日外卖业务量不少于65单”.根据频率分布直方图可知快餐店的人均日外卖业务量不少于65单的频率分别为0.2,0.15,0.05,∵020*******++=...., ∴()P A 估计为0.4.(2)设事件′为“甲、乙、丙、丁四名骑手中至少有两名骑手选择方案()a ”, 设事件i C ,为“甲、乙、丙、丁四名骑手中恰有()01234ii =,,,,人选择方案()a ”, 则()()()41310144212163211111333818127P B P C P C C C ⎛⎫⎛⎫⎛⎫=--=--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以四名骑手中至少有两名骑手选择方案()a 的概率为1127. (3)设骑手每日完成外卖业务量为X 件, 方案()a 的日工资()11002,*Y X X N =+∈,方案()b 的日工资()215054*15055454*X X N Y X X X N ≤∈⎧=⎨+->∈⎩,,,,,所以随机变量1Y 的分布列为()1160005180005200022200324002260015280005224E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯=.......;同理,随机变量2Y 的分布列为()21500318003230022800153300052035E Y =⨯+⨯+⨯+⨯+⨯=.......∵()()21EY E Y >,∴建议骑手应选择方案()a . 点评:本题考查了频率分布直方图的简单应用,独立重复试验概率的求法,数学期望的求法并由期望作出方案选择,属于中档题.21.已知函数()()ln 1f x m x x =+-,()sin g x mx x =-.(1)若函数()f x 在()0+∞,上单调递减,且函数()g x 在02,上单调递增,求实数m 的值;(2)求证:()()21111sin11sin 1sin 1sin 12231e n n ⎛⎫⎛⎫⎛⎫+++⋯+<⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭(*n N ∈,且2n ≥).答案:(1)1;(2)见解析(1)分别求得()f x 与()g x 的导函数,由导函数与单调性关系即可求得m 的值; (2)由(1)可知当0x >时,()ln1x x +<,当02x π<<时,sin x x <,因而()()*111sin1sinsin sin 0,213,221n N n n n⋯>∈≥⨯⨯-⨯,,,,,构造()()111ln 1sin11+sin 1+sin 1sin 12231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦,由对数运算及不等式放缩可证明()()1111ln 1sin11+sin 1+sin 1sin 2212231n n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+=-<⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦,从而不等式可证明. 解:(1)∵函数()f x 在()0+∞,上单调递减, ∴()101mf x x'=-≤+,即1m x ≤+在()0+∞,上恒成立, ∴1m ,又∵函数()g x 在02,上单调递增,∴()cos 0g x m x '=-≥,即cos m x ≥在02,上恒成立,m 1≥,∴综上可知,1m =.(2)证明:由(1)知,当1m =时,函数()()ln 1f x x x =+-在()0+∞,上为减函数,()sin g x x x =-在02,上为增函数,而()()00,00f g ==,∴当0x >时,()ln 1x x +<,当02x π<<时,sin x x <. ∴()()*111sin1sinsin sin 0,213,221n N n n n⋯>∈≥⨯⨯-⨯,,,, ∴()()111ln 1sin11+sin 1+sin 1sin 12231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()111ln 1sin1ln 1+sin ln 1+sin ln 1sin 12231n n ⎛⎫⎛⎫⎛⎫=+++⋯++ ⎪ ⎪ ⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭ ()111sin1sinsin sin 12231n n <+++⋯+⨯⨯-⨯()11111111111122312231n n n n ⎛⎫⎛⎫⎛⎫<+++⋯+=+-+-+⋯+- ⎪ ⎪ ⎪⨯⨯-⨯-⎝⎭⎝⎭⎝⎭122n=-< 即()()111ln 1sin11+sin 1+sin 1sin 212231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+<⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦, ∴()()()2*1111sin11+sin 1+sin 1sin ,212231e n N n n n ⎛⎫⎛⎫⎛⎫+⋯+<∈≥⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭,. 点评:本题考查了导数与函数单调性关系,放缩法在证明不等式中的应用,属于难题. 22.在直角坐标系xOy 中,直线l 的方程为0x y a -+=,曲线C 的参数方程为22cos 22sin x y αα=+⎧⎨=+⎩(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程;(2)若射线6πθ=与l 的交点为M ,与曲线C 的交点为A ,B ,且4OA OB OM +=,求实数a 的值.答案:(1)l :cos sin 0a ρθρθ-+=,C :24cos 4sin 40ρρθρθ--+=(2)12a =- (1)先消去参数得到C 的普通方程,然后利用cos x ρθ=,sin y ρθ=分别代入,得到直线和曲线C 的极坐标方程.(2)在极坐标系中,设1π,6M ρ⎛⎫ ⎪⎝⎭,2π,6A ρ⎛⎫ ⎪⎝⎭,3π,6B ρ⎛⎫ ⎪⎝⎭,将π6θ=代入24cos 4sin 40ρρθρθ--+=,然后利用韦达定理求解.解:(1)将cos x ρθ=,sin y ρθ=代入方程0x y a -+=中,得到直线l 的极坐标方程为cos sin 0a ρθρθ-+=;曲线C 的普通方程为()()22224x y -+-=,即224440x y x y +--+=, 所以曲线C 的极坐标方程为24cos 4sin 40ρρθρθ--+=.(2)在极坐标系中,可设1π,6M ρ⎛⎫ ⎪⎝⎭,2π,6A ρ⎛⎫ ⎪⎝⎭,3π,6B ρ⎛⎫ ⎪⎝⎭, 将π6θ=代入24cos 4sin 40ρρθρθ--+=,得()2240ρρ-+=,∴232ρρ+=,∵4OA OB OM +=,∴1ρ=即1π,26M ⎛⎫ ⎪ ⎪⎝⎭,将1π,26M ⎛⎫ ⎪ ⎪⎝⎭代入cos sin 0a ρθρθ-+=,得()111sin cos 222a ρθθ=-=⨯=-. 点评:本题主要考查参数方程,普通法方程极坐标方程间的转化以及直线与曲线的位置关系,还考查了运算求解的能力,属于中档题.23.已知不等式112x x ++-≤的解集为{}x a x b ≤≤.(1)求实数a 、b 的值;(2)设0m >,0n >,且满足122a b m n-=,求证:1212m n ++-≥. 答案:(1)1a =-,1b =(2)见解析(1)利用绝对值的几何意义,去绝对值求解.(2)由(1)得到1122m n+=,利用三角不等式转化为1212m n m n ++-≥+,再利用基本不等式求解.解:(1)原不等式等价于①122x x <-⎧⎨-≤⎩,∴x ∈∅; ②1122x -≤≤⎧⎨≤⎩,∴11x -≤≤; ③122x x >⎧⎨≤⎩,∴x ∈∅. 所以原不等式的解集为{}11x x -≤≤,∴1a =-,1b =.(2)∵122a b m n -=,∴1122m n+=, ∴()()1211212m n m n m n ++-≥++-=+()111122222222n m m n m n m n ⎛⎫⎛⎫=+⋅+=++≥ ⎪ ⎪⎝⎭⎝⎭, 当且仅当22n m m n =,即1m =,12n =时取等号, ∴1212m n ++-≥.点评:本题主要考查绝对值不等式的解法以及三角不等式和基本不等式的应用,还考查了运算求解的能力,属于中档题.。

2020届全国100所名校最新高考模拟示范卷高三理科数学模拟测试试题(三)(带答案解析)

2020届全国100所名校最新高考模拟示范卷高三理科数学模拟测试试题(三)(带答案解析)

2020届全国100所名校最新高考模拟示范卷高三理科数学模拟测试试题(三)1.复数31i z i+=-(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 2.已知全集U =R ,集合{|lg(1)}A x y x ==-,|B x y⎧==⎨⎩则()U A B =I ð( )A .(1,)+∞B .(0,1)C .(0,)+∞D .[1,)+∞ 3.已知3sin 24θ=-,则1tan tan θθ+=( ) A .83- B .43- C .83 D .434.中国古典乐器一般按“八音”分类.这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(páo )、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器.现从“八音”中任取不同的“两音”,则含有打击乐器的概率为( ) A .314 B .1114 C .114 D .275.已知不同直线l 、m 与不同平面α、β,且l α⊂,m β⊂,则下列说法中正确的是( )A .若//αβ,则l//mB .若αβ⊥,则l m ⊥C .若l β⊥,则αβ⊥D .若αβ⊥,则m α⊥6.在ABC V 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cos cos 4c a B b A -=,则2222a b c-=( ) A .32 B .12C .14D .18 7.已知2log 3a =, 4.12b -=,13827c -⎛⎫= ⎪⎝⎭,则( ) A .c b a << B .c a b << C .b c a << D .a c b <<8.已知边长为4的菱形ABCD ,60DAB ∠=︒,M 为CD 的中点,N 为平面ABCD 内一点,若AN NM =,则AM AN ⋅=u u u u r u u u r( )A .16B .14C .12D .8 9.已知()y f x =是定义在R 上的奇函数,且当0x >时,2()3f x x x =+-.若0x ≤,则()0f x ≤的解集是( )A .[2,1]--B .(,2][1,0]-∞-⋃-C .(,2][1,0)-∞-⋃-D .(,2)(1,0]-∞-⋃-10.将函数()cos f x x =的图象先向右平移56π个单位长度,在把所得函数图象的横坐标变为原来的1ω(0)>ω倍,纵坐标不变,得到函数()g x 的图象,若函数()g x 在3(,)22ππ上没有零点,则ω的取值范围是( ) A .228(0,][,]939U B .2(0,]9C .28(0,][,1]99U D .(0,1] 11.在三棱锥P ABC -中,AB BP ⊥,AC PC ⊥,AB AC ⊥,PB PC ==,点P 到底面ABC 的距离为2,则三棱锥P ABC -外接球的表面积为( )A .3π BC .12πD .24π12.已知抛物线2:4(0)C y px p =>的焦点为F ,过焦点的直线与抛物线分别交于A 、B 两点,与y 轴的正半轴交于点S ,与准线l 交于点T ,且||2||FA AS =,则||||FB TS =( )A .25B .2C .72D .313.若变量x ,y 满足约束条件20300x y x y x y -+≥⎧⎪+≤⎨⎪+≥⎩,则32z x y =+的最大值为__________.14.甲、乙两人同时参加公务员考试,甲笔试、面试通过的概率分别为45和34;乙笔试、面试通过的概率分别为23和12.若笔试面试都通过才被录取,且甲、乙录取与否15.已知双曲线22221(0,0)x y a b a b-=>>的左焦点为(F ,A 、B 为双曲线上关于原点对称的两点,AF 的中点为H ,BF 的中点为K ,HK 的中点为G ,若|HK|=2|OG|,且直线AB的斜率为4,则||AB =__________,双曲线的离心率为__________.16.已知函数()()ln ()ln x x e ax e x f x x ax --=-,若在定义域内恒有()0f x <,则实数a 的取值范围是__________.17.已知等差数列{}n a 的公差2d =,且1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)设12na nb ⎛⎫= ⎪⎝⎭,求数列{}n n a b +的前n 项和n S . 18.在四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,AC BD O =I ,1A O ⊥平面ABCD .(1)证明:1//A O 平面11B CD ;(2)若1AB AA =,求二面角111D AB A --的余弦值.19.金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:(1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;(2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人.若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为X ,写出X 的分布列,并求()E X . 附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20.已知函数()()2ln 2f x a x x x x =-+-. (1)当2a e =-(e 为自然对数的底数)时,求函数()f x 的极值;(2)()f x '为()y f x =的导函数,当0a >,120x x >>时,求证:()()1212112222x x x x f x f x f x f x ++⎛⎫⎛⎫''-<- ⎪ ⎪⎝⎭⎝⎭. 21.如图,椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为1A ,2A ,上、下顶点分别为1B ,2B ,且1()0,1B ,112A B B V 为等边三角形,过点(1,0)的直线与椭圆C 在y 轴右侧的部分交于M 、N 两点.(1)求椭圆C 的标准方程;(2)求四边形21B MNB 面积的取值范围.22.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的参数方程为22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),直线l 经过点(1,M --且倾斜角为α.(1)求曲线C 的极坐标方程和直线l 的参数方程;(2)已知直线l 与曲线C 交于,A B ,满足A 为MB 的中点,求tan α.23.设函数()121f x x x a =++-+.(1)当1a =时,解不等式()6f x ≤;(2)设12a <-,且当21a x ≤<-时,不等式()26f x x ≤+有解,求实数a 的取值范围.参考答案1.A【解析】【分析】由题,根据复数的运算,将复数化简,可得点坐标,即得结果.【详解】 因为复数3i (3)(1)121i (1)(1)i i z i i i +++===+--+ 所以在复平面所对应的点为(1,2),在第一象限故选A【点睛】本题考查了复数,掌握好复数的运算法则,属于基础题.2.D【解析】【分析】根据函数定义域的求解方法可分别求得集合,A B ,由补集和交集定义可求得结果.【详解】{}()10,1A x x =->=-∞Q ,()0,B =+∞,[)1,U A ∴=+∞ð, ()[)1,U A B ∴=+∞I ð. 故选:D .【点睛】本题考查集合运算中的补集和交集运算问题,涉及到函数定义域的求解,属于基础题. 3.A【解析】【分析】由二倍角公式求得sin cos θθ,切化弦后,结合同角三角函数平方关系可求得结果.【详解】3sin 22sin cos 4θθθ==-Q ,3sin cos 8θθ∴=-,221sin cos sin cos 18tan 3tan cos sin sin cos 38θθθθθθθθθθ+∴+=+===--. 故选:A .【点睛】本题考查三角函数值的求解问题,涉及到二倍角公式、同角三角函数平方关系的应用,属于基础题.4.B【解析】【分析】分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.【详解】从“八音”中任取不同的“两音”共有2828C =种取法;“两音”中含有打击乐器的取法共有228422C C -=种取法;∴所求概率22112814p ==. 故选:B .【点睛】 本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.5.C【解析】【分析】根据空间中平行关系、垂直关系的相关判定和性质可依次判断各个选项得到结果.【详解】对于A ,若//αβ,则,l m 可能为平行或异面直线,A 错误;对于B ,若αβ⊥,则,l m 可能为平行、相交或异面直线,B 错误;对于C ,若l β⊥,且l α⊂,由面面垂直的判定定理可知αβ⊥,C 正确;对于D ,若αβ⊥,只有当m 垂直于,αβ的交线时才有m α⊥,D 错误.故选:C .【点睛】本题考查空间中线面关系、面面关系相关命题的辨析,关键是熟练掌握空间中的平行关系与垂直关系的相关命题.6.D【解析】【分析】利用余弦定理角化边整理可得结果.【详解】 由余弦定理得:222222224a cb bc a c a b ac bc +-+-⋅-⋅=, 整理可得:2224c a b -=,222128a b c -∴=. 故选:D .【点睛】本题考查余弦定理边角互化的应用,属于基础题.7.C【解析】【分析】利用指数函数和对数函数的单调性,即可比较大小.【详解】因为2log 3(1,2)a =∈, 4.12(0,1)b -=∈,1383272c -⎛⎫== ⎪⎝⎭,且223log log 32=<, 所以b c a <<.故选:C .【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属综合基础题.8.B【解析】【分析】取AM 中点O ,可确定0AM ON ⋅=u u u u r u u u r;根据平面向量线性运算和数量积的运算法则可求得2AM uuuu r ,利用()AM AN AM AO ON ⋅=⋅+u u u u r u u u r u u u u r u u u r u u u r 可求得结果. 【详解】取AM 中点O ,连接ON ,AN NM =Q ,ON AM ∴⊥,即0AM ON ⋅=u u u u r u u u r .60DAB ∠=o Q ,120ADM ∴∠=o ,()22222cos 416828AM DM DA DM DA DM DA ADM ∴=-=+-⋅∠=++=u u u u r u u u u r u u u r u u u u r u u u r u u u u r u u u r , 则()21142AM AN AM AO ON AM AO AM ON AM ⋅=⋅+=⋅+⋅==u u u u r u u u r u u u u r u u u r u u u r u u u u r u u u r u u u u r u u u r u u u u r . 故选:B .【点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.9.B【解析】【分析】利用函数奇偶性可求得()f x 在0x <时的解析式和()0f ,进而构造出不等式求得结果.【详解】()f x Q 为定义在R 上的奇函数,()00f ∴=.当0x <时,0x ->,()23f x x x∴-=---, ()f x Q 为奇函数,()()()230f x f x x x x ∴=--=++<,由0230x x x <⎧⎪⎨++≤⎪⎩得:2x -≤或10x -≤<; 综上所述:若0x ≤,则()0f x ≤的解集为(][],21,0-∞--U . 故选:B . 【点睛】本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在0x =处有意义时,()00f =的情况. 10.A 【解析】 【分析】根据y =Acos (ωx +φ)的图象变换规律,求得g (x )的解析式,根据定义域求出56x πω-的范围,再利用余弦函数的图象和性质,求得ω的取值范围. 【详解】函数()cos f x x =的图象先向右平移56π个单位长度, 可得5cos 6y x π⎛⎫=-⎪⎝⎭的图象, 再将图象上每个点的横坐标变为原来的1ω(0)>ω倍(纵坐标不变),得到函数5()cos 6g x x πω⎛⎫=- ⎪⎝⎭的图象, ∴周期2T πω=,若函数()g x 在3(,)22ππ上没有零点, ∴ 553526626x ωπππωππω-<-<-, ∴ 35526262T ωππωπππω⎛⎫⎛⎫---≤=⎪ ⎪⎝⎭⎝⎭, 21ω∴≤,解得01ω<≤,又522635226k k πωππππωπππ⎧-+≤-⎪⎪⎨⎪+≥-⎪⎩,解得3412323k ωω-≤≤-, 当k =0时,解2839ω≤≤, 当k =-1时,01ω<≤,可得209ω<≤, ω∴∈228(0,][,]939U .故答案为:A . 【点睛】本题考查函数y =Acos (ωx +φ)的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式,求解可得,属于较难题. 11.C 【解析】 【分析】首先根据垂直关系可确定OP OA OB OC ===,由此可知O 为三棱锥外接球的球心,在PAB ∆中,可以算出AP 的一个表达式,在OAG ∆中,可以计算出AO 的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积. 【详解】取AP 中点O ,由AB BP ⊥,AC PC ⊥可知:OP OA OB OC ===,O ∴为三棱锥P ABC -外接球球心,过P 作PH ⊥平面ABC ,交平面ABC 于H ,连接AH 交BC 于G ,连接OG ,HB ,HC ,PB PC =Q ,HB HC ∴=,AB AC ∴=,G ∴为BC 的中点由球的性质可知:OG ⊥平面ABC ,OG//PH ∴,且112OG PH ==. 设AB x =,PB =Q 12AO PA ∴==12AG BC x ==Q ,∴在OAG ∆中,222AG OG OA +=,即2212x ⎛⎫+= ⎪ ⎪⎝⎭,解得:2x =,∴三棱锥P ABC -的外接球的半径为:AO ===,∴三棱锥P ABC -外接球的表面积为2412S R ππ==.故选:C . 【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置. 12.B 【解析】 【分析】过点A 作准线的垂线,垂足为M ,与y 轴交于点N ,由2FA AS =和抛物线的定义可求得TS ,利用抛物线的性质1122AF BF p+=可构造方程求得BF ,进而求得结果. 【详解】过点A 作准线的垂线,垂足为M ,AM 与y 轴交于点N ,由抛物线解析式知:(),0F p ,准线方程为x p =-.2FA AS =Q ,13SASF ∴=,133p AN OF ∴==,43AM p ∴=,由抛物线定义知:43AF AM p ==,1223AS AF p ∴==,2SF p ∴=, 2TS SF p ∴==.由抛物线性质11212AF BF p p +==得:3114p BF p+=,解得:4BF p =, 422FB p TS p∴==. 故选:B . 【点睛】本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式. 13.32【解析】 【分析】根据约束条件可以画出可行域,从而将问题转化为直线322zy x =-+在y 轴截距最大的问题的求解,通过数形结合的方式可确定过13,22B ⎛⎫- ⎪⎝⎭时,z 取最大值,代入可求得结果. 【详解】由约束条件可得可行域如下图阴影部分所示:将32z x y =+化为322z y x =-+,则z 最大时,直线322zy x =-+在y 轴截距最大; 由直线32y x =-平移可知,当322zy x =-+过B 时,在y 轴截距最大,由2030x y x y -+=⎧⎨+=⎩得:13,22B ⎛⎫- ⎪⎝⎭,max 13332222z ⎛⎫∴=⨯-+⨯= ⎪⎝⎭.故答案为:32. 【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在y 轴截距的最值的求解问题,通过数形结合的方式可求得结果. 14.815【解析】 【分析】分别求得甲、乙被录取的概率,根据独立事件概率公式可求得结果. 【详解】甲被录取的概率1433545p =⨯=;乙被录取的概率2211323p =⨯=; ∴只有一人被录取的概率()()12213212811533515p p p p p =-+-=⨯+⨯=.故答案为:815.【点睛】本题考查独立事件概率的求解问题,属于基础题.15. 【解析】 【分析】设()00,A x y ,()00,B x y --,根据中点坐标公式可得,H K 坐标,利用0OH OK ⋅=u u u r u u u r可得到A 点坐标所满足的方程,结合直线斜率可求得2200,x y ,进而求得AB ;将A 点坐标代入双曲线方程,结合焦点坐标可求得,a b ,进而得到离心率. 【详解】Q 左焦点为()F ,∴双曲线的半焦距c =.设()00,A x y ,()00,B x y --,0022x y H ⎛⎫- ⎪ ⎪⎝⎭∴,0022x y K ⎛⎫--- ⎪ ⎪⎝⎭, 2HK OG =Q ,OH OK ∴⊥,即0OH OK ⋅=u u u r u u u r ,22003044x y -∴-=,即22003x y +=,又直线AB,即004y x =,2083x ∴=,2013y =,AB ∴==A Q 在双曲线上,2200221x y a b∴-=,即2281133a b -=,结合2223c a b =+=可解得:a =1b =,∴离心率2c e a ==.故答案为:2【点睛】本题考查直线与双曲线的综合应用问题,涉及到直线截双曲线所得线段长度的求解、双曲线离心率的求解问题;关键是能够通过设点的方式,结合直线斜率、垂直关系、点在双曲线上来构造方程组求得所需变量的值.16.1,e e ⎡⎫⎪⎢⎣⎭【解析】 【分析】根据指数函数xy e =与对数函数ln y x =图象可将原题转化为()()ln 0xe axx ax --<恒成立问题,凑而可知y ax =的图象在过原点且与两函数相切的两条切线之间;利用过一点的曲线切线的求法可求得两切线斜率,结合分母不为零的条件可最终确定a 的取值范围. 【详解】由指数函数xy e =与对数函数ln y x =图象可知:ln >x e x ,()0f x ∴<恒成立可转化为0ln x e ax x ax-<-恒成立,即()()ln 0xe ax x ax --<恒成立,ln x e ax x ∴>>,即y ax =是夹在函数xy e =与ln y x =的图象之间,y ax ∴=的图象在过原点且与两函数相切的两条切线之间.设过原点且与ln y x =相切的直线与函数相切于点(),ln m m ,则切线斜率11ln m k m m ==,解得:11m ek e =⎧⎪⎨=⎪⎩;设过原点且与xy e =相切的直线与函数相切于点(),nn e,则切线斜率2nne k e n ==,解得:21n k e =⎧⎨=⎩;当1a e =时,1ln 0x x e -≤,又ln 0x ax -≠,1a e∴=满足题意; 综上所述:实数a 的取值范围为1,e e ⎡⎫⎪⎢⎣⎭. 【点睛】本题考查恒成立问题的求解,重点考查了导数几何意义应用中的过一点的曲线切线的求解方法;关键是能够结合指数函数和对数函数图象将问题转化为切线斜率的求解问题;易错点是忽略分母不为零的限制,忽略对于临界值能否取得的讨论.17.(1)2n a n =;(2)211343n n S n n =+-+⨯. 【解析】 【分析】(1)根据等比中项性质可构造方程求得1a ,由等差数列通项公式可求得结果;(2)由(1)可得n b ,可知{}n b 为等比数列,利用分组求和法,结合等差和等比数列求和公式可求得结果. 【详解】(1)124,,a a a Q 成等比数列,2214a a a ∴=,即()()21113a d a a d +=+,()()211126a a a ∴+=+,解得:12a =,()2212n a n n ∴=+-=.(2)由(1)得:2111224n a n nn b ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,114n n b b +∴=,114b =,∴数列{}n b 是首项为14,公比为14的等比数列, ()()123123n n n S a a a a b b b b ∴=+++⋅⋅⋅+++++⋅⋅⋅+()2322111124444nn n ⎡⎤+⎛⎫⎛⎫⎛⎫=++++⋅⋅⋅+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦211343nn n =+-+⨯. 【点睛】本题考查等差数列通项公式的求解、分组求和法求解数列的前n 项和的问题;关键是能够根据通项公式证得数列{}n b 为等比数列,进而采用分组求和法,结合等差和等比数列求和公式求得结果.18.(1)详见解析;(2)5. 【解析】 【分析】(1)连接11A C ,设11111B D AC O ⋂=,可证得四边形11 A OCO 为平行四边形,由此得到11AO//O C ,根据线面平行判定定理可证得结论;(2)以O 为原点建立空间直角坐标系,利用二面角的空间向量求法可求得结果. 【详解】(1)连接11A C ,设11111B D AC O ⋂=,连接1O C ,Q 在四棱柱1111ABCD A B C D -中,1,O O 分别为11,AC A C 的中点,11//OC A O ∴,∴四边形11 A OCO 为平行四边形,11A O//O C ∴,1A O ⊄Q 平面11B CD ,1O C ⊂平面11B CD ,1//AO ∴平面11B CD .(2)以O 为原点,1,,OB OC OA 所在直线分别为,,x y z 轴建立空间直角坐标系O xyz -.设1OA =,Q 四边形ABCD为正方形,1AB AA ∴==11OA ∴=,则()0,1,0A -,()10,0,1A ,()11,1,1B ,()11,1,1D -, ()11,2,1AB ∴=u u u r ,()112,0,0B D =-u u u u r ,()111,1,0A B =u u u u r,设()1111,,n x y z =u r 为平面11AB D 的法向量,()2222,,n x y z =u u r为平面11A AB 的法向量,由1111100n AB n B D ⎧⋅=⎪⎨⋅=⎪⎩u v u u u vu v u u u u v 得:11112020x y z x ++=⎧⎨-=⎩,令11y =,则10x =,12z =-,由2121100n AB n A B ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u v u u v u u u u v 得:22222200x y z x y ++=⎧⎨+=⎩,令21x =,则21y =-,21z =, ()10,1,2n ∴=-u r ,()21,1,1n =-u u r,121212cos ,5n n n n n n ⋅∴<>===-⋅u r u u ru r u u r u r u u r ,Q 二面角111D AB A --为锐二面角,∴二面角111D AB A --的余弦值为5. 【点睛】本题考查立体几何中线面平行关系的证明、空间向量法求解二面角的问题;关键是能够熟练掌握二面角的向量求法,易错点是求得法向量夹角余弦值后,未根据图形判断二面角为锐二面角还是钝二面角,造成余弦值符号出现错误.19.(1)有99%把握认为愿意参加新生接待工作与性别有关;(2)详见解析. 【解析】 【分析】(1)计算得到 6.635k >,由此可得结论;(2)根据分层抽样原则可得男生和女生人数,由超几何分布概率公式可求得X 的所有可能取值所对应的概率,由此得到分布列;根据数学期望计算公式计算可得期望. 【详解】(1)∵2K Q 的观测值()2160604040203210.667 6.6358080100603k ⨯⨯-⨯==≈>⨯⨯⨯,∴有99%的把握认为愿意参加新生接待工作与性别有关.(2)根据分层抽样方法得:男生有31065⨯=人,女生有21045⨯=人, ∴选取的10人中,男生有6人,女生有4人.则X 的可能取值有0,1,2,3,()306431020101206C C P X C ∴====,()216431060111202C C P X C ====,()1264310363212010C C P X C ====,()036431041312030C C P X C ====,X ∴的分布列为:()1131601236210305E X ∴=⨯+⨯+⨯+⨯=.【点睛】本题考查独立性检验、分层抽样、超几何分布的分布列和数学期望的求解;关键是能够明确随机变量服从于超几何分布,进而利用超几何分布概率公式求得随机变量每个取值所对应的概率.20.(1)极大值21e --,极小值2e -;(2)详见解析. 【解析】 【分析】首先确定函数的定义域和()f x ';(1)当2a e =-时,根据()f x '的正负可确定()f x 单调性,进而确定极值点,代入可求得极值;(2)通过分析法可将问题转化为证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+,设121x t x =>,令()()21ln 1t h t t t -=-+,利用导数可证得()0h t >,进而得到结论.【详解】由题意得:()f x 定义域为()0,∞+,()()()121122x x a f x a x x x -+⎛⎫'=-+-= ⎪⎝⎭,(1)当2a e =-时,()()()21x x e f x x--'=,∴当()0,1x ∈和(),e +∞时,()0f x '>;当()1,x e ∈时,()0f x '<,()f x ∴在()0,1,(),e +∞上单调递增,在()1,e 上单调递减, ()f x ∴极大值为()121221f e e =-+-=--,极小值为()()22212f e e e e e e =--+-=-.(2)要证:()()1212112222x x x x f x f x f x f x ++⎛⎫⎛⎫''-<- ⎪ ⎪⎝⎭⎝⎭, 即证:()()()1212122x x f x f x f x x '+⎛⎫-<-⎪⎝⎭, 即证:()()2211222211ln 2ln 2a x x x x a x x x x -+----+()12121222a x x a x x x x ⎛⎫<++--- ⎪+⎝⎭,化简可得:()1212122lna x x x a x x x ->+.0a >Q ,()1212122ln x x x x x x -∴>+,即证:12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+, 设121x t x =>,令()()21ln 1t h t t t -=-+,则()()()22101t h t t t -'=>+, ()h t ∴在()1,+∞上单调递增,()()10h t h ∴>=,则由12112221ln 1x xx x x x ⎛⎫- ⎪⎝⎭>+,从而有:()()1212112222x x x x f x f x f x f x ++⎛⎫⎛⎫''-<- ⎪ ⎪⎝⎭⎝⎭.【点睛】本题考查导数在研究函数中的应用,涉及到函数极值的求解、利用导数证明不等式的问题;本题不等式证明的关键是能够将多个变量的问题转化为一个变量的问题,通过构造函数的方式将问题转化为函数最值的求解问题.21.(1)2213x y +=;(2)3,12⎛+ ⎝⎦. 【解析】 【分析】(1)根据1B 坐标和112A B B ∆为等边三角形可得,a b ,进而得到椭圆方程;(2)①当直线MN 斜率不存在时,易求,M N 坐标,从而得到所求面积;②当直线MN 的斜率存在时,设方程为()1y k x =-,与椭圆方程联立得到韦达定理的形式,并确定k 的取值范围;利用21NOB OMN MOB S S S S =++△△△,代入韦达定理的结论可求得S 关于k 的表达式,采用换元法将问题转化为S m m=+-,m ∈的值域的求解问题,结合函数单调性可求得值域;结合两种情况的结论可得最终结果. 【详解】(1)()10,1B Q ,1b ∴=,112A B B ∆Q为等边三角形,a ∴==∴椭圆的标准方程为2213x y +=.(2)设四边形21B MNB 的面积为S .①当直线MN的斜率不存在时,可得1,3M ⎛- ⎝⎭,1,3N ⎛⎝⎭,1211233S ⎛⎫=⨯+⨯=+ ⎪ ⎪⎭∴⎝. ②当直线MN 的斜率存在时,设直线MN 的方程为()1y k x =-, 设()11,M x y ,()22,N x y ,联立()22131x y y k x ⎧+=⎪⎨⎪=-⎩得:()2222316330k x k x k +-+-=,2122631k x x k ∴+=+,21223331k x x k -=+,()1212y y k x x ∴-=-=. 10x >Q ,20x >,120x x ∴>,1k ∴>,面积()121212111122OMN MO NOB B S S S S x x y y =++=⨯+⨯+⨯-⨯△△△222233131313k k k k k=+=+++23k+.令t =231S t +=+,t ∈,令m t =+S =4m m=+-,m ∈,Q ()S m在定义域内单调递减,3123S ∴<<+.综上所述:四边形21B MNB面积的取值范围是3,123⎛+ ⎝⎦.【点睛】本题考查直线与椭圆的综合应用问题,涉及到椭圆方程的求解、椭圆中的四边形面积的取值范围的求解问题;关键是能够将所求面积表示为关于某一变量的函数,将问题转化为函数值域的求解问题.22.(1)4cos ρθ=,1cos t sin x t y αα=-+⎧⎪⎨=-⎪⎩;(2.【解析】 【分析】(1)由曲线C 的参数方程消去参数可得曲线C 的普通方程,由此可求曲线C 的极坐标方程;直接利用直线的倾斜角以及经过的点求出直线的参数方程即可;(2)将直线的参数方程,代入曲线C 的普通方程224x y x +=,整理得)26cos 320t tαα-++=,利用韦达定理,根据A 为MB 的中点,解出α即可.【详解】 (1)由22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数)消去参数,可得()2224x y -+=,即224x y x +=,∴已知曲线C 的普通方程为224x y x +=, Q cos x ρθ=,222x y ρ=+,∴24cos ρρθ=,即4cos ρθ=, ∴曲线C 的极坐标方程为4cos ρθ=,Q 直线l经过点(1,M --,且倾斜角为α,∴直线l的参数方程:1cos sin x t y t αα=-+⎧⎪⎨=-⎪⎩(t 为参数,0απ≤≤).(2)设,A B 对应的参数分别为A t ,B t . 将直线l 的参数方程代入C 并整理,得)26cos 320t tαα-++=,∴)6cos A B t t αα+=+,32A B t t ⋅=.又A 为MB 的中点,∴2B A t t =,∴)2cos 4sin 6A t πααα⎛⎫=+=+ ⎪⎝⎭,8sin 6B t πα⎛⎫=+ ⎪⎝⎭,∴232sin 326A B t t πα⎛⎫⋅=+= ⎪⎝⎭,即2sin ()16πα+=,Q 0απ≤≤,∴7666πππα≤+<, ∴62ππα+=,即3πα=,∴tan3π=【点睛】本题考查了圆的参数方程与极坐标方程之间的互化以及直线参数方程的应用,考查了计算能力,属于中档题.23.(1)[2,3]-;(2)12,2⎛⎫-- ⎪⎝⎭. 【解析】 【分析】(1)通过分类讨论去掉绝对值符号,进而解不等式组求得结果;(2)将不等式整理为3a x --≤,根据能成立思想可知max 3a x --≤,由此构造不等式求得结果. 【详解】(1)当1a =时,()6f x ≤可化为125x x ++-≤,21,2123,1212,1x x x x x x x ->⎧⎪++-=-≤≤⎨⎪-<-⎩Q∴由2215x x >⎧⎨-≤⎩,解得23x <≤;由1235x -≤≤⎧⎨≤⎩,解得12x -≤≤;由1125x x <-⎧⎨-≤⎩,解得21x -≤<-.综上所述:所以原不等式的解集为[]2,3-.(2)21a x ≤<-Q ,()26f x x ≤+,12126x x a x ∴--+-+≤+,3a x ∴--≤,()26f x x ≤+Q 有解,31a ∴--<-,即2a >-,又21a <-,12a ∴<-, ∴实数a 的取值范围是12,2⎛⎫-- ⎪⎝⎭.【点睛】本题考查绝对值不等式的求解、根据不等式有解求解参数范围的问题;关键是明确对于不等式能成立的问题,通过分离变量的方式将问题转化为所求参数与函数最值之间的比较问题.。

2020届全国100所名校高三最新高考模拟示范卷(六)模拟测试数学试题(解析版)

2020届全国100所名校高三最新高考模拟示范卷(六)模拟测试数学试题(解析版)

2020届全国100所名校高三最新高考模拟示范卷(六)模拟测试数学试题一、单选题1.已知集合2{|2,||2,},{|(2)9}P x x k k k Q x x ==∈=+<Z …,则P Q =I ( ) A .{4,2,0,1}-- B .{4,2,0}-- C .{|41}x x -<… D .{|45}x x -<…【答案】B【解析】集合{4,2,0,2,4}P =--,集合Q 是一元二次不等式解的集合,求出解集,与P 集合的交集运算求出公共部分.【详解】{|2,||2,}{4,2,0,2,4},P x x k k k Z ==∈=--…2{|(2)9}{|51}Q x x x x =+<=-<<,所以{4,2,0}P Q ⋂=--. 故选:B. 【点睛】本题考查一元二不等式的解法和集合交集运算. 交集运算口诀:“越交越少,公共部分”. 2.已知复数z 满足|1|||,z i z z +-=在复平面内对应的点为(,)x y ,则( ) A .1y x =+ B .y x =C .2y x =+D .y x =-【答案】A【解析】设z x yi =+代入,两边平方化简可得. 【详解】由题知z x yi =+ ,且|1|||z i z +-=,2222(1)(1)x y x y ∴++-=+,化简整理得1y x =+.故选:A. 【点睛】本题考查复数的模长运算.复数的模等于复数在复平面上对应的点到原点的距离,也等于复数对应的向量的模.3.已知13 11531log,log,363a b cπ-===,则,,a b c的大小关系是( )A.b a c<<B.a c b<<C.c b a<<D.b c a<<【答案】D【解析】利用对数函数和指数函数的单调性判断.【详解】115511log log1,65a=>=1133log log10,3bπ=<=130331c-<==,则01c<<,所以b c a<<.故选:D.【点睛】本题考查指对数值大小比较.指数函数值大小比较:常化为同底或同指,利用指数函数的单调性,图象或1,0等中间量进行比较.对数函数值大小比较:(1)单调性法:在同底的情况下直接得到大小关系,若不同底,先化为同底;(2)中间量过渡法:寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”;(3)图象法:根据图象观察得出大小关系.4.中国折叠扇有着深厚的文化底蕴.如图(2),在半圆O中作出两个扇形OAB和OCD,用扇环形ABDC(图中阴影部分)制作折叠扇的扇面.记扇环形ABDC的面积为1S,扇形OAB的面积为2S,当1S与2S的比值为51-时,扇面的形状较为美观,则此时扇形OCD的半径与半圆O的半径之比为( )A.514B.512C.35D52【答案】B【解析】扇环形ABDC的面积1S等于扇形OAB的面积减扇形OCD的面积;设半径代入求解.【详解】设AOBθ∠=,半圆O的半径为r,扇形OCD的半径为1r,依题意,有221211512212r rrθθθ--=,即2212512r rr--=,所以22123562551()242rr---===,得1512rr-=.故选:B.【点睛】本题考查弧度制下扇形面积计算问题.其解题策思路:(1)明确弧度制下扇形面积公式,在使用公式时,要注意角的单位必须是弧度.(2)分析题目已知哪些量、要求哪些量,然后灵活地运用弧长公式、扇形面积公式直接求解,或合理地利用圆心角所在三角形列方程(组)求解.5.函数ln()sinxf x xx=+的部分图象大致是( )A.B.C.D.【答案】C【解析】先判断函数的奇偶性,根据奇偶函数图象特征排除,再利用特值验证排除可得解.【详解】因为ln||0,()sin()()xx f x x f xx-≠-=-+=--,ln()sin xf x xx∴=+奇函数,图象关于原点对称,所以排除选项D;因为2ln2()102fπππ=+>,所以排除选项A;因为ln ()00f πππ=+>,所以排除选项B ;因此选项C 正确.故选:C. 【点睛】本题考查函数图象识别问题.其解题思路:由解析式确定函数图象:①由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置; ②由函数的单调性,判断图象的变化趋势; ③由函数的奇偶性,判断图象的对称性; ④由函数的周期性,判断图象的循环往复. 函数图象识别有时常用特值法验证排除6.“车走直、马走日、炮打隔子、象飞田、小卒过河赛大车”,这是中国象棋中的部分下棋规则.其中“马走日”是指马走“日”字的对角线,如棋盘中,马从点A 处走出一步,只能到点B 或点C 或点D 或点E .设马从点A 出发,必须经过点,M N (点,M N 不考虑先后顺序)到达点P ,则至少需走的步数为( )A .5B .6C .7D .8【答案】B【解析】分步计算,第一步从点A 经过点M ,第二步从点M 经过点N ,第三步从点N 到达点P , 【详解】由图可知,从N 到P 只需1步,从M 到N 至少需走2步,从A 到M 至少需走3步,从A 到N 至少需走3步.所以要使得从点A 经过点,M N 到点P 所走的步数最少,只需从点A 先到点M ,再到点N ,最后到点P ,这样走的步数为6. 故选:B. 【点睛】本题考查分步乘法计数原理.(1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)谨记分步必须满足的两个条件:一是各步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.7.已知双曲线222:1(0)3x y C a a -=>的右焦点为F ,圆222x y c +=(c 为双曲线的半焦距)与双曲线C 的一条渐近线交于,A B 两点,且线段AF 的中点M 落在另一条渐近线上,则双曲线C 的方程是( )A .22143x y -= B .22133y x -=C .22123x y -=D .2213y x -=【答案】D【解析】渐近线过圆心,代入求出渐近线,点(c,0)F 在圆222x y c +=上,得AF BF ⊥,由AB 中点O 及线段AF 的中点M ,由中位线得渐近线与BF 平行,建立方程组求解. 【详解】不妨设双曲线C 的一条渐近线方程为y x a=,代入圆222x y c +=,得x a =±,则y =(,(A a B a -.易知点(c,0)F 在圆222x y c +=上,所以AF BF ⊥,得1AF BF k k ⋅=-,即1c a a c⋅=-+-①.因为线段AF 的中点M 落在另一条渐近线上,且||||OA OF c ==,所以,AF 与该渐近线垂直,所以该渐近线与BF平行,得a c a=--②.解①②组成的方程组,得1,2a c ==,所以双曲线C 的方程为2213y x -=.故选:D. 【点睛】本题考查利用双曲线的几何性质求双曲线方程. 求双曲线方程的思路:(1)如果已知双曲线的中心在原点,且确定了焦点在x 轴上或y 轴上,则设出相应形式的标准方程,然后根据条件确定关于a b c ,,的方程组,解出22a b ,,从而写出双曲线的标准方程(求得的方程可能是一个,也有可能是两个,注意合理取舍,但不要漏解). (2)当焦点位置不确定时,有两种方法来解决:一种是分类讨论,注意考虑要全面;另一种是设双曲线的一般方程为()2210mx ny mn <+=求解. 8.在三棱锥P ABC -中,PA ⊥平面,ABC AB BC ⊥,且2AB =.若三棱锥P ABC -的外接球体积为36π,则当该三棱锥的体积最大时,其表面积为( )A .6+B .8+C .8+D .6+【答案】C【解析】第一步确定球心位置在PC 的中点,求出半径得到各棱长,再计算各面面积可解. 【详解】因为PA ⊥平面ABC ,所以PA BC ⊥,又因为AB BC ⊥,所以BC ⊥平面PAB ,所以BC PB ⊥, 设PC 的中点为O ,则O 到P ABC -的四个顶点的距离都相等,所以点O 是三棱锥外接球球心,又由外接球的体积为34363R ππ=,得外接球半径3R =,所以6PC =.设,PA a BC b ==,则2222PA AB BC PC ++=,得2232a b +=,所以221111162323323P ABCa b V b a ab -+=⨯⨯⨯=⨯=…, 当且仅当4a b ==时,P ABC V -取得最大值163.此时PB AC ==,所以,三棱锥的表面积1122424822S =⨯⨯⨯+⨯⨯⨯=+故选:C. 【点睛】本题考查与球有关外接问题及求锥体的表面积. 其解题规律:(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12. (2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.二、多选题9.已知()f x 是定义域为R 的偶函数,在(,0)-∞上单调递减,且(3)(6)0f f -⋅<,那么下列结论中正确的是( ) A .()f x 可能有三个零点 B .(3)(4)0f f ⋅-…C .(4)(6)f f -<D .(0)(6)f f <-【答案】AC【解析】由题知()f x 在(0+)∞,上单调递增,利用偶函数性质结合图像可解. 【详解】因为()f x 是偶函数,又(3)(6)0f f -⋅<,所以(3)(6)0f f ⋅<. 又()f x 在(0,)+∞上单调递增,所以函数()f x 在(0,)+∞上有一个零点, 且(3)0,(6)0f f <>.所以函数()f x 在(,0)(0,)-∞+∞U 上有两个零点. 但是(0)f 的值没有确定,所以函数(0)f 可能有三个零点,所以A 项正确; 又(4)(4),4(3,6)f f -=∈,所以(4)f -的符号不确定,所以B 项不正确; C 项显然正确;由于(0)f 的值没有确定,所以(0)f 与(6)f -的大小关系不确定,所以D 项不正确. 故选:AC. 【点睛】本题考查函数奇偶性与单调性.函数的奇偶性体现的是一种对称关系,而函数的单调性体现的是函数值随自变量变化而变化的规律.比较大小的解法:利用函数奇偶性,把不在同一单调区间的两个或多个自变量的函数值转化到同一单调区间上,利用其单调性比较大小.10.已知,a b r r是单位向量,且(1,1)a b +=-r r ,则( )A .||2a b +=r rB .a r 与b r垂直C .a r 与a b -r r 的夹角为4πD .||1a b -=r r【答案】BC【解析】(1,1)a b +=-r r两边平方求出||a b +=r r1,求出a b ⋅=r r ;||a b -r r 平方可求模长;用向量夹角的余弦值公式可求a r 与a b -r r 的夹角. 【详解】由(1,1)a b +=-r r 两边平方,得2222||21(12|)|a b a b ++⋅=+-=r r r r ,则||a b +=r rA 选项错误;因为,a b r r是单位向量,所以1122a b ++⋅=r r ,得0a b ⋅=r r,所以B 选项正确;则222||22a b a b a b -=+-⋅=u u r u u r r r r r,所以||a b -=r r D 选项错误;2()cos ,2||||a a b a a b a a b ⋅-〈-〉====-r rr r r r r r r r r u u , 所以,a r 与a b -r r 的夹角为4π.所以C 选项正确;故选:BC. 【点睛】本题考查平面向量数量积的应用. 求向量模的常用方法:(1)若向量a r 是以坐标形式出现的,求向量a r 的模可直接利用公式a r =(2)若向量a b r r , 是以非坐标形式出现的,求向量a r的模可应用公式22•a a a a rr r r==或2222||)2?(a b a b a a b b 北?r r r r r r r r ==+,先求向量模的平方,再通过向量数量积的运算求解.判断两向量垂直:根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.解两个非零向量之间的夹角:根据公式•a bcos a b q =求解出这两个向量夹角的余弦值.11.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 35B .DP 5C .1AP PC +6D .1AP PC +的最小值为1705【答案】AD【解析】DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC V 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可. 【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知115,2A B A D BD ===,所以1A B 边上的高为355h =111,AC BC ,得11A BC V ,以1A B 所在直线为轴,将11A BC V 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知11122,2,cos 10AA AC AAC ''==∠=-, 所以217042222()10AC '=+-⨯⨯⨯-=故选:AD. 【点睛】本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化. 12.已知函数()2sin()6f x x πω=-的图象的一条对称轴为x π=,其中ω为常数,且(0,1)ω∈,则以下结论正确的是( )A .函数()f x 的最小正周期为3πB .将函数()f x 的图象向左平移6π所得图象关于原点对称C .函数()f x 在区间[,]62ππ-上单调递增 D .函数()f x 在区间(0,100)π上有66个零点 【答案】AC【解析】由对称轴为x π=,且(0,1)ω∈求出函数解析式,再用三角函数图象与性质分别求解即可得答案. 【详解】由函数()2sin()6f x x πω=-的图象的一条对称轴为x π=,得()62k k ππωππ-=+∈Z ,因为(0,1)ω∈,所以20,3k ω==,则2()2sin()36f x x π=-,所以周期2323T ππ==,A 项正确;将函数()f x 的图象向左平移6π, 得22()()2sin[()]2sin()6366318g x f x x x ππππ=+=+-=-, 显然()g x 的图象不关于原点对称,B 项错误: 由222()2362k x k k πππππ--+∈Z 剟,取0k =,得2x ππ-剟, 即[,]2ππ-,是函数()f x 的一个单调递增区间,又[,][,]622ππππ-⊆-,所以函数()f x 在区间[,]62ππ-上单调递增,C 项正确; 由()0f x =,得2()36x k k ππ-=∈Z ,解得3()26x k ππ=+,由30()10026k πππ<+<,得166.56k -<<,因为k Z ∈,所以0,1,2,,66k =L ,所以函数()f x 在区间(0,100)π上有67个零点,D 项错误. 故选:AC. 【点睛】本题考查三角函数图象与性质的综合应用.三角函数图象与性质的综合问题的求解思路:先将()y f x =化为+()+y Asin x B w j =的形式,再借助(+)y Asin x w j =的图象和性质(如定义域、值域、最值、周期性、对称性、单调性等)解决相关问题.三、填空题 13.函数2()(0)2xf x x x=>+的最大值为_______.【解析】求导研究函数单调性,得函数在x = 处取得最大值,代入可得. 【详解】因为2222222222()2()(2)x x x f x x x '+--==++,令()0f x '>解得x <<,又0x >,所以()f x 在上单增,在)¥上单减;所以函数()f x 的最大值为f =.. 【点睛】求函数最值的五种常用方法:单调性法:先确定函数的单调性,再由单调性求最值图象法:先作出函数的图象,再观察其最高点、最低点,求出最值基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值 换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值14.已知tan22α=,则sin()2πα+=_______. 【答案】19-【解析】先切化弦,再诱导公式化简后,运用余弦二倍角公式得解. 【详解】2tan|cos |,|sin |222323ααα∴=∴== 22451sin()cos cos sin 222999παααα∴+==-=-=-故答案为:19-. 【点睛】本题考查同角三角函数的基本关系、诱导公式、二倍角公式.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的. 应用诱导公式化简求值的关键是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解.转化过程中注意口诀“奇变偶不变,符号看象限”的应用.15.椭圆22221(0)x y a b a b +=>>的左焦点为F ,过点F且斜率为2的直线l 与椭圆交于,A B 两点(点B 在第一象限),与y 轴交于E 点,若AF EB =u u u r u u u r,则椭圆的离心率为_________.【答案】2【解析】点斜式设出线l 的方程,与椭圆联立求解,用点差法计算得,,a b c 关系可解. 【详解】直线l的方程为()2y x c =+,设FE 的中点为M,则(,)24c M -,由AF EB=u u u r u u u r 知AM MB =u u u u r u u u r,则M 为AB 的中点,设1122(,),(,)A x y B x y ,则22222211b x a y a b +=,22222222b x a y a b +=,两式相减,得2222221212()0()b x x a y y -+-=,整理得2212121212()()()()0b x x x x a y y y y -++-+=,由中点公式得:221212()02()()b x x c a y y -⋅--+=,所以2121222y y x x -==-,得222222()a b a c ==-,所以222,2c a c e a ===.故答案为:2【点睛】本题考查求椭圆离心率. 求椭圆离心率的三种方法:(1)直接求出,a c 来求解e 通过已知条件列方程组,解出,a c 的值.(2)构造,a c 的齐次式,解出e 由已知条件得出关于,a c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解.(3)通过取特殊值或特殊位置,求出离心率.在解关于离心率e 的二次方程时,要注意利用椭圆的离心率()0,1e ∈)进行根的取舍,否则将产生增根.四、双空题16.已知7件产品中有5件合格品,2件次品.为找出这2件次品,每次任取一件检验,检验后不放回,则第一次和第二次都检验出次品的概率为_________;恰好在第一次检验出正品而在第四次检验出最后一件次品的概率为__________. 【答案】121 221【解析】第一次检验出次品的概率为27,不放回,则第二次检验出次品的概率为16;第一次检验出正品而在第四次检验出最后一件次品包含两种可能:正次正次,正正次次,分别计算即可. 【详解】第一次和第二次都检验出次品的概率为12117621P =⨯=, 恰好在第一次检验出正品而在第四次检验出最后一件次品, 有两种可能:正次正次,正正次次, 概率为25241542127654765421P =⨯⨯⨯+⨯⨯⨯=. 故答案为:121,221【点睛】求复杂互斥事件概率的两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和;(2)间接法:先求该事件的对立事件的概率,再由()()1P A P A =-求解.当题目涉及“至多”“至少”型问题时,多考虑间接法.17.已知ABC ∆的内角,,A B C 所对的边分别为,,a b c ,_________,且3,3sin 3sin 4sin()a B C B C =+=+.现从:①3A π=,②3B π=,③2A B π+=这三个条件中任选一个,补充在以上问题中,并判断这样的ABC ∆是否存在,若存在,求ABC ∆的面积S _________;若不存在,请说明理由.【答案】存在,选条件①时,12S =选条件②时,20S =;选条件③时2116S =【解析】先对条件3sin 3sin 4sin()B C B C +=+ 运用正弦定理化角为边,得到334b c a +=,再利用已知和添加条件用余弦定理解三角形做出判断求解即可.【详解】若选条件①:由3sin 3sin 4sin()B C B C +=+,得334b c a +=. 又3a =,所以4b c +=.因为3A π=,所以229b c bc +-=,解得63b c ⎧+=⎪⎪⎨⎪=⎪⎩或63b c ⎧=⎪⎪⎨⎪=⎪⎩,不妨取6,3b c ⎧=⎪⎪⎨⎪=⎪⎩易知b a c >>,且a c b +>, 所以这样的ABC ∆存在,其面积117sin 223212S bc A ==⨯⨯=. 若选条件②:由3sin 3sin 4sin()B C B C +=+,得334b c a +=, 又3a =,所以4b c +=,因为3B π=,所以2293b c c =+-.解得13575b c ⎧=⎪⎪⎨⎪=⎪⎩,易知a b c >>,且b c a +>,所以这样的ABC ∆存在,其面积117sin 3225S ac B ==⨯⨯=若选条件③:由3sin 3sin 4sin()B C B C +=+,得334b c a +=,又3a =,所以4b c +=,因为2A B π+=,所以222+=a b c ,即229b c +=,解得78258b c ⎧=⎪⎪⎨⎪=⎪⎩,易知c a b >>,且a b c +>,所以这样的ABC ∆存在,其面积11721sin 322816S ab C ==⨯⨯=. 选条件①时,12S =②时,20S =;选条件③时2116S = 【点睛】本题考查三角形正弦定理、余弦定理和面积公式.应用正弦定理求角时容易出现增解或漏解的错误,要根据条件和三角形的限制条件合理取舍.求角时易忽略角的范围而导致错误,需要根据大边对大角,大角对大边的规则,画图帮助判断.利用正弦定理、余弦定理解三角形,求出三角形的有关元素之后,直接求三角形的面积,或求出两边之积及夹角正弦,再求解.五、解答题18.等差数列{}n a 的前n 项和为556,21,23n S a S a ==+. (1)求数列{}n a 的通项公式; (2)记n nnb S =,数列{}1n n b b +⋅的前n 项和为n T ,求n T . 【答案】(1)54n a n =-;(2)252n nT n =+. 【解析】(1)利用等差数列基本量求出通项公式n a ;(2)利用等差数列前n 项和公式求出n S ,代入已知求出n b ,对1n n b b +裂项, 通过裂项相消求和可解. 【详解】(1)设等差数列{}n a 的公差为d ,则1114215452(5)32a d a d a d +=⎧⎪⎨⨯+=++⎪⎩,解得115a d =⎧⎨=⎩, 所以54n a n =-.(2)由(1)可求得(53)2n n nS -=, 所以11212,5352n n n n n n b b S n S n +++====-+, 则14411()(53)(52)55352n n b b n n n n +⋅==--+-+,所以4111111[()()()]5277125352n T n n =-+-++--+L 4112()525252nn n =-=++. 【点睛】本题考查等差数列通项公式及用裂项法求和.(1)等差数列基本量计算问题的思路:与等差数列有关的基本运算问题,主要围绕着通项公式1(1)n a a n d =+-和前n 项和公式11()(1)22n n n a a n n dS na +-==+,在两个公式中共涉及五个量:1n n a d n a S ,,,,,已知其中三个量,选用恰当的公式,利用方程(组)可求出剩余的两个量. 用裂项法求和的裂项原则及规律:(1)裂项原则:一般是前边裂几项,后边就裂几项直到发现被消去项的规律为止. (2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. 19.在长方体1111ABCD A B C D -中,1//,2,1,3,6EF AD AA AF AB AD ====.(1)求证:平面1C EF ⊥平面1D EF . (2)求二面角11C D F E --的大小. 【答案】(1)证明见解析;(2)60°. 【解析】(1) 在同一平面内证11C E D E ⊥,用线面垂直的性质证1C E EF ⊥; (2) 以1D 为原点建立空间直角坐标系,使用空间向量求二面角的平面角即可. 【详解】(1)依题意,有111,2,2DE DD CC EC ====,由勾股定理可得113,6D E C E ==,又易知113C D =,所以2221111CD DE C E =+,则有11C E D E ⊥,在长方体1111ABCD A B C D -中,AD ⊥平面11CC D D ,1C E ⊂平面11CC D D , 所以1C E AD ⊥,又因为//EF AD ,所以1C E EF ⊥,又因为1EF D E E ⋂=,EF ⊂平面1D EF ,1D E ⊂平面1D EF , 所以1C E ⊥平面1D EF , 又因为1C E ⊂平面1C EF , 所以平面1C EF ⊥平面1D EF .(2)如图,建立空间直角坐标系,则11(0,0,0),(0,3,0),(0,1,2),(6,1,2)D C E F ,所以11(6,0,0),(6,2,2),(6,1,2)EF C F D F ==-=u u u r u u u u r u u u u r,设平面1D EF 的法向量为111(,,)a x y z =r,则100EF a D F a ⎧⋅=⎪⎨⋅=⎪⎩u u u v vu u u u v v ,即111160620x x y z ⎧=⎪⎨++=⎪⎩,令12y =,则(0,2,2)a =-r , 设平面11C D F 的法向量为222(,,)b x y z =r,则1100C F b D F b ⎧⋅=⎪⎨⋅=⎪⎩u u u u v vu u u u v v ,即2222226220620x y z x y z ⎧-+=⎪⎨++=⎪⎩,令22x =,则(2,0,6)b =-r , 设二面角11C D F E --的大小为θ,则||261|cos |2626||||a b a b θ⋅⨯===⋅+r rr r , 由图知,二面角11C D F E --为锐角,所以60θ︒=, 所以二面角11C D F E --为60°.【点睛】本题考查面面垂直判定及计算二面角大小. 面面垂直判定的两种方法与一个转化(1)面面垂直的定义;(2)面面垂直的判定定理()a a b a a b ^剔^,在已知两个平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直计算二面角大小的常用方法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小20.已知函数2()ln ()f x ax x a =-∈R . (1)当18a =时,证明:函数()f x 有两个零点; (2)当0a >时,求函数()f x 在区间[14],2a a 上的最小值. 【答案】(1)证明见解析;(2)当102a <…时,()f x 的最小值为34ln(2)a a -;当122a <<时,()f x 的最小值为11ln(2)22a +;当2a ≥时,()f x 的最小值为3ln 164a a -. 【解析】(1)求出导函数,得到原函数的单调区间,利用零点存在性定理即可证明. (2)解出导函数方程的根,讨论根与给定区间关系,分类讨论函数单调区间,从而求出函数最值. 【详解】(1)当18a =时,22114()ln ,()(0)844x x f x x x f x x x x'-=-=-=>.令()0f x '=,得2x =,当02x <<时,()0,()f x f x '<在(0,2)上为减函数; 当2x >时,()0,()f x f x '>在(2,)+∞上为增函数.因为1112(1)ln10,(2)ln 2ln ln 08822f f =-=>=-=<=, 2e 4(4)2ln 4ln ln 044f =-=>=,所以,当18a =时,函数()f x 有两个零点.(2)2121()2(00)ax f x ax x a x x,'-=-=>>.当0a >时,令()0f x '=,得x =,当0x <<时,()0,()f x f x '<在(上为减函数;当2x a>时,()0,()f x f x '>在)+∞上为增函数.所以,当124a a ,即2a ≥时,()f x 在[14],2a a 上单调递增,3min1()()ln 4164a af x f a ==-;当124a a <<,即122a <<时,()f x 在14[a 上单调递减,在]2a上单调递增,min 11()ln(2)22f x f a ==+;当22a a,即102a <…时,()f x 在[14],2a a 上单调递减,3min ()(2)4ln(2)f x f a a a ==-.综上所述,在[14],2a a 上,当102a <…时,()f x 的最小值为34ln(2)a a -; 当122a <<时,()f x 的最小值为11ln(2)22a +; 当2a ≥时,()f x 的最小值为3ln 164a a-.【点睛】本题考查利用函数导数解决函数零点、极值、最值问题. 其解题策略: (1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.21.已知抛物线2:(N )C y px p +=∈的焦点为F ,点P 在抛物线C 上,其纵坐标为171,||4p PF +=,且(0,2),(1,0)M N . (1)求抛物线C 的方程;(2)过M 的直线l 与抛物线C 交于,A B 两点,若AN BN ⊥,求直线l 的斜率.【答案】(1)2y x =;(2)3-+3-【解析】(1)由抛物线定义求出p 的抛物线方程.(2)设直线l 的方程为2(0)y kx k =+≠与抛物线方程联立求解,得到12x x +,12x x , 利用AN BN ⊥转化求k 即可. 【详解】(1)因为点P 在抛物线C 上,且纵坐标为1p +,所以点P 的横坐标为2(1)p p +,抛物线C 的准线为4px =-,由抛物线定义得2(1)1744p p p ++=, 化简得25940p p -+=,解得45p =(舍去)或1p =, 所以抛物线C 的方程为2y x =.(2)易知直线l 的斜率存在,设直线l 的方程为2(0)y kx k =+≠,代入2y x =中,得22(41)40k x k x +-+=,因为直线l 与抛物线C 有两个交点,所以22(41)160k k ∆=-->,得18k <. 设1122(,),(,)A x y B x y , 则12214k x x k -+=①,1224x x k = ②, 所以2121212122(2)(2)2()4y y kx kx k x x k x x k=++=+++= ③ 因为AN BN ⊥,所以1AN BN k k ⋅=-,即1212111y yx x ⋅=---,所以12121(1)(1)y y x x =---,即1212121()1y y x x x x =--++, 将①②③式代入上式,整理得2630k k ++=,解得3k =-+3k =--,因为113,388k k =-+<=-,所以,直线l 的斜率为3-3-【点睛】利用抛物线的定义解决问题时,应灵活地进行抛物线上的点到焦点距离与其到准线距离间的等价转化.“看到准线应该想到焦点,看到焦点应该想到准线”,这是解决抛物线距离有关问题的有效途径.22.在学习强国活动中,某市图书馆的科技类图书和时政类图书是市民借阅的热门图书.为了丰富图书资源,现对已借阅了科技类图书的市民(以下简称为“问卷市民”)进行随机问卷调查,若不借阅时政类图书记1分,若借阅时政类图书记2分,每位市民选择是否借阅时政类图书的概率均为12,市民之间选择意愿相互独立. (1)从问卷市民中随机抽取4人,记总得分为随机变量ξ,求ξ的分布列和数学期望;(2)(i )若从问卷市民中随机抽取(N )m m +∈人,记总分恰为m 分的概率为m A ,求数列{}m A 的前10项和;(ⅱ)在对所有问卷市民进行随机问卷调查过程中,记已调查过的累计得分恰为n 分的概率为n B (比如:1B 表示累计得分为1分的概率,2B 表示累计得分为2分的概率,N n +∈),试探求n B 与1n B -之间的关系,并求数列{}n B 的通项公式.【答案】(1)分布列见解析,6;(2)(i )10231024;(ⅱ)1112n n B B -=-+,211()332n n B =+-. 【解析】(1)独立重复试验,列出随机变量ξ可能取值为4,5,6,7,8,再求出各可能值的概率可解得.(2)(i )总分恰为m 分的概率m A 是等比数列,用基本量计算.(2)(ⅱ)递推数列化为等比数列求解.【详解】(1)ξ的可能取值为4,5,6,7,8,04411(4)C (),216P ξ=== 1134111(5)C (),24(2)P ξ=== 2224113(6)C ,2()()28P ξ===,3314111(7)C ,2()()24P ξ===4404111(8)C 2()()216P ξ=== 所有ξ的分布列为所以数学期望11311()4567861648416E ξ=⨯+⨯+⨯+⨯+⨯=. (2)(i )总分恰为m 分的概率为1()2m m A =,所以数列{}m A 是首项为12,公比为12的等比数列, 前10项和101011(1)1023221102412S -==-. (ii )已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分,再得2分,概率为1111,22n B B -=. 因为1112n n B B -+=,即1112n n B B -=-+, 所以1212()323n n B B --=--, 则{23}n B -是首项为12136B -=-,公比为12-的等比数列, 所以1211()362n n B --=--, 所以211()332n n B =+-. 【点睛】常见的二项分布的简单应用问题是求n 次独立重复试验中事件A 恰好发生k 次的概率.解题的一般思路是:根据题意设出随机变量→分析出随机变量服从二项分布→找到参数n p ,→写出二项分布的分布列→将k 值代入求解概率.递推数列+1(+ 0,10)n n a Aa B A B构=,化为等比数列 如1+112+1n n a a a =,= 化为+++1+1(+1)+1n n n n a a a a Þ11=2=2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.2B. C.3D.4
12.已知函数 ,则满足方程 的实数 的取值范围是()
A. B. C. D.
13.曲线 在 处的切线斜率为__________.
14.如图,在平行四边形 中, 为 的中点, 为 的中点,若 ,则 __________.
15.已知等差数列 的前 项和为 , , ,若 对任意 恒成立,则实数 的取值范围为__________.
9.已知圆锥 的高是底面半径的3倍,且圆锥 的底面直径、体积分别与圆柱 的底面半径、体积相等,则圆锥 与圆柱 的侧面积之比为().
A. B. C. D.
10.对于集合 ,定义: 为集合 相对于 的“余弦方差”,则集合 相对于 的“余弦方差”为()
A. B. C. D.
11.已知抛物线 的焦点为 , 的准线与对称轴交于点 ,直线 与 交于 , 两点,若 为 的角平分线,且 ,则 ( )
(1)求曲线 的普通方程与直线 的直角坐标方程;
(2)射线 与曲线 交于点 (异于原点)、与直线 交于点 ,求 的值.
23.已知函数 , .
(1)当 时,求不等式 的解集;
(2)若关于 的不等式 的解集包含 ,求 的取值集合.
参考答案
1.B
【解析】
【分析】
由图可先求 ,再根据 求阴影部分的元素个数即可.
3.C
【解析】
【分析】
根据等比数列的性质求解即可.
【详解】
∵1, ,4成等比数列,故 ,∴ ,
又∵1,4, 成等比数列,故 ,∴ , .
故选:C
【点睛】
本题主要考查了等比数列中等比中项的运用,属于基础题.
4.D
【解析】
【分析】
根据统计图表中数据依次判断各个选项即可得到结果.
【详解】
对于 , 年私人类电动汽车充电桩保有量增长率为 ,高于 年的增长率 , 错误;
16.已知双曲线 的左、右顶点分别为 、 ,点 在双曲线 上,若 ,则双曲线 的焦距为_________.
17.已知 的内角 、 、 的对边分别为 、 、 ,且 .
(1)求角 的大小;
(2)若 的面积为 ,求 的最小值.
18.如图,在四棱锥 中, , , .
(1)证明: 平面 ;
(2)若 是 的中点, , ,求二面角 的余弦值.
对于 ,公共类电动汽车充电桩保有量由小至大排序,位于第三位的是 ,故中位数为 万台, 错误;
对于 ,公共类电动汽车充电桩保有量的平均数为 万台, 错误;
对于 ,从 年开始,私人类电动汽车充电桩占比分别为 , , ,均超过 , 正确.
故选: .
【点睛】
本题考查根据统计图表解决实际问题,涉及到增长率、中位数和平均数的计算,属于基础题.
19.已知直线 与椭圆 交于不同的两点 , .
(1)若线段 的中点为 ,求直线 的方程;
(2)若 的斜率为 ,且 过椭圆 的左焦点 , 的垂直平分线与 轴交于点 ,求证: 为定值.
20.已知函数 .
(1)讨论函数 的单调性;
(2)若函数 只有一个零点,求实数 的取值范围.
21.小芳、小明两人各拿两颗质地均匀的骰子做游戏,规则如下:若掷出的点数之和为4的倍数,则由原投掷人继续投掷;若掷出的点数之和不是4的倍数,则由对方接着投掷.

即 , 至少需要 次构造.
故选: .
【点睛】
本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.
(1)规定第1次从小明开始.
(ⅰ)求前4次投掷中小明恰好投掷2次的概率;
(ⅱ)设游戏的前4次中,小芳投掷的次数为 ,求随机变量 的分布列与期望.
(2)若第1次从小芳开始,求第 次由小芳投掷的概率 .
22.在平面直角坐标系中,曲线 的参数方程为 ( 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线 的极坐标方程为 .
A.16B.17C.24D.25
6.执行如图所示的程序框图,若输入的 的值为4,则输出的 的值为().
A.6B.7C.8D.9
7.若 , ,则 ( )
A. B. C. D.1
8.关于函数 , ,有下列三个结论:① 为偶函数;② 有3个零点;③ 在 上单调递增.其中所有正确结论的编号是().
A.①②B.①③C.②③D.①②③
5.D
【解析】
ቤተ መጻሕፍቲ ባይዱ【分析】
由折线长度变化规律可知“ 次构造”后的折线长度为 ,由此得到 ,利用运算法则可知 ,由此计算得到结果.
【详解】
记初始线段长度为 ,则“一次构造”后的折线长度为 ,“二次构造”后的折线长度为 ,以此类推,“ 次构造”后的折线长度为 ,
若得到的折线长度为初始线段长度的 倍,则 ,即 ,
5.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“ 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是().(取 , )
【详解】
因为 ,所阴影部分表示的集合为 ,该集合共有4个元素.
故选:B
【点睛】
本题主要考查了根据韦恩图求解分析集合关系的问题,属于基础题.
2.A
【解析】
【分析】
先化简求得 ,再根据 求解实数 即可.
【详解】
依题意, ,因为 ,所以 ,解得 .
故选:A
【点睛】
本题主要考查了复数的除法运算以及复数相等的关系等.属于基础题.
2020届全国100所名校最新高考模拟示范卷高三
理科数学模拟测试题(一)
1.已知全集 ,集合 与 的关系如图所示,则阴影部分所表示的集合的元素共有( )
A.3个B.4个C.5个D.6个
2.设复数 ,若 ,则实数 ( )
A. B.2C. D.1
3.若1, ,4, , 成等比数列,则 ( )
A.32B.64C. D.
4.下图统计了截止到2019年年底中国电动汽车充电桩细分产品占比及保有量情况,关于这5次统计,下列说法正确的是()
A.私人类电动汽车充电桩保有量增长率最高的年份是2018年
B.公共类电动汽车充电桩保有量的中位数是25.7万台
C.公共类电动汽车充电桩保有量的平均数为23.12万台
D.从2017年开始,我国私人类电动汽车充电桩占比均超过50%
相关文档
最新文档