离散时间信号的频域分析

合集下载

实验一 离散时间信号的频域分析

实验一 离散时间信号的频域分析

实验一离散时间信号的频域分析一实验目的:信号的变换域分析是信号处理中一种有效的工具。

在离散信号的时域分析中,我们通常将信号表示成单位采样序列δ[n]的线性组合,而在频域中,我们将信号表示成复变量e-jwn或e-j(2*pi/N)n的线性组合,通过这样的表示,可以将时域的离散序列映射到频域以便于进一步的处理。

在本实验中,将学习利用MATLAB计算离散时间信号的DTFT和DFT,并加深对其相互关系的理解。

二实验原理:(1) DTFT和DFT的定义及其相互关系:序列x[n]的DTFT定义:X(e jw)=∑x[n]e-jnw(n从负无穷到正无穷)它是关于自变量w的复函数,且是以2*pi为周期的连续函数。

X(e jw)可以表示为:X(e jw)=X re(e jw)+ jX im(e jw)其中,X re(e jw)和X im(e jw)分别是X (e jw)的实部和虚部;还可以表示为:X(e jw)= |X(e jw)|e jØ(w)其中。

|X(e jw)|和Ø(w)=arg{ X(e jw)}分别是X(e jw)的幅度函数和相位函数;它们都是w的实函数,也是以2*pi为周期的周期函数。

序列x[n]的N点DFT定义:X[k]=X(e j(2*pi/N)k)=∑x[n]e-j(2*pi/N)kn (0<=n<=N-1)X[k]是周期为N的序列。

X(e jw)与X[k]的关系:X[k]是对X(e jw)在一个周期中的谱的等间隔N点采样,即:X[k]= X(e jw)|w=(2*pi/N)k而X(e jw)可以通过对X[k]内插获得。

(2)使用MATLAB命令:A.基于DTFT离散时间信号分析函数:freqz,real,imag,abs,angle,unware.函数freqz可以用来计算一个以e jw的有理分式形式给出的序列的DTFT值。

Freqz的形式多样,常见的有H=freqz(num,den,w),其中num表示序列有理分式DTFT的分子多项式系数,den表示分母多项式系数(均按z的降幂排列),矢量w表示在0到2*pi中给定的一系列频率集合点。

第三章第二节离散信号频域分析

第三章第二节离散信号频域分析
若 Y (k ) X 1 (k ) X 2 (k )
则 y (n ) IDFS [Y (k )] x1 (m) x2 (n m)
m 0
N 1
x2 (m) x1 (n m)
m 0
N 1
证: y(n) IDFS[ X 1 (k ) X 2 (k )]
j

2
j j e 2 e 2
e
3 j 2
sin 2 sin / 2
求x n 的8点DFT N 8
X k X e j
3 j k 2 4

2 k 8
e
2 sin 2 k 8 1 2 sin k 2 8 sin k 2 sin k 8
若 则有
2.周期序列的移位 设
则 如果m>N,则m=m1+Nm2
3.周期卷积 设 和 DFS系数分别为
都是周期为N的周期序列,它们的


上式表示的是两个周期序列的卷积,称为周期卷积。 周期为N的两个序列的周期卷积的离散傅里叶级数等于 它们各自离散傅里叶级数的乘积。
周期卷积的计算:
周期卷积中的序列 和 对m都是周 期为N的周期序列,它们的乘积对m也是以N为周期的, 周期卷积仅在 一个周期内求和。 相乘和相加运 算仅在m=0到N-1的区间内进行。计算出 n=0到N-1(一个周期)的结果后,再将其进行周期延拓, 就得到周期卷积 。 周期卷积满足交换律
j
2 nk N
一个域的离散造成另一个域的周期延拓, 因此离散傅里叶变换的时域和频域都是 离散的和周期的。
离散时间、连续频率—序列的傅里叶变换

离散信号的频域分析

离散信号的频域分析

e
j
3
n
j n
e 3


1
j 2 n1
(e 6

j 2 n(16)
e6
)
2
9
例1:已知正弦序列 x(n) cos n ,分别求出当 2 和 3 时,傅立叶级数表达式及相应的频谱。
x(n)
5
X
j 2 kn
(k)e 6

1
j 2 n1
j 2 kn
x(n) X (k)e N
k 0
考虑到:N→∞,2 N 0 ,记为 d;
(2 N) k (由离散量变为连续量),而
1 N d 2 , 同时
N 1

2
0
傅立叶变换式
k 0
于是,X (e j ) lim N X (k) x(n)e jn
也可简记为 X (e j) DTFT x(n), x(n) IDTFT X (e j)
或 x(n) DTFT X (e j )
15
3.2.2 非周期序列的傅立叶变换

X (e j ) x(n)e jn n
x(n) 1 X (e j )e jnd
x(n) 1 X (e j )e jnd
2 X (e j ) 称为x(n)的离散时间傅立叶变换(Discrete Time Fourier Transform, DTFT)或频谱密度函数,简称频 谱。 x(n)称为X (e j ) 的离散时间傅立叶反变换(IDTFT)或原 函数。
x(n)e N
N n0
X (k)
1
N 1
j 2 kn
x(n)e N ,

第3章离散时间信号与系统的频域分析

第3章离散时间信号与系统的频域分析

结论: 结论:序列共轭对称分量 的傅里叶变换是序列傅里 叶变换的实数部分; 叶变换的实数部分; 序列共轭反对称分量的傅 里叶变换是序列傅里叶变 换的虚数部分。 换的虚数部分。
第3章 离散时间信号与系统的频域分析
5.时域卷积定理 时域卷积定理 如果 FT [ x( n)] = X (e jω ), FT [h( n)] = H (e jω ) 且有
第3章 离散时间信号与系统的频域分析
(1)有限长序列: 有限长序列:
序列x(n)只在有限区间 1≤n≤n2之内才具有非零的有限值,在此 只在有限区间n 之内才具有非零的有限值, 序列 只在有限区间 区间外,序列值皆为零。 区间外,序列值皆为零。 其Z变换为 变换为
X (z) =
n = n1
x ( n) z − n ∑
第3章 离散时间信号与系统的频域分析
常用的Z变换是一个有理函数,用两个多项式之比表示: 常用的 变换是一个有理函数,用两个多项式之比表示: 变换是一个有理函数
P(z) X (z) = Q( z )
分子多项式P 的根是X 的零点,分母多项式Q 分子多项式P(z)的根是X(z)的零点,分母多项式Q(z) 的根是X 的极点。在极点处Z变换不存在, 的根是X(z)的极点。在极点处Z变换不存在,因此收 敛域中没有极点, 收敛域总是用极点限定其边界。 敛域中没有极点, 收敛域总是用极点限定其边界。
X (z) =
n = −∞
RN ( n ) z − n = ∑ z − n ∑
n=0

N −1
= 1 + z −1 + z − 2 + L + z − ( N −1 )
这是一个有限项几何级数之和。 这是一个有限项几何级数之和。因此

第三章 离散时间信号的频域分析_20111910119

第三章 离散时间信号的频域分析_20111910119

-4-3-2-10123402468H(e j ω)的实部ω/π振幅-4-3-2-101234-4-2024H(e j ω)的虚部ω/π振幅-4-3-2-1123402468|H(e j ω)|幅度谱ω/π振幅-4-3-2-11234-2-1012相位谱[H(e j ω)]ω/π以弧度为单位的相位第三章 离散时间信号的频域分析学院:信息学院 专业:通信工程 姓名:马正智 学号:20111910119一、实验目的1、理解和掌握基于MATLAB 仿真研究离散时间傅里叶变换的时移性质;2、理解和掌握基于MATLAB 仿真研究离散时间傅里叶变换的频移性质;3、理解和掌握基于MATLAB 仿真研究离散时间傅里叶变换的卷积性质;4、理解和掌握基于MATLAB 仿真研究离散时间傅里叶变换的调制性质;5、理解和掌握基于MATLAB 仿真研究离散时间傅里叶变换的反转性质。

二、实验内容1、离散时间傅里叶变换Q3.1 在程序P3.1中,计算离散时间傅里叶变换的原始序列是什么?MATLAB 命令pause 的作用是什么?答:离散时间傅里叶变换的原始序列:ωωωj j j e e e H ---+=6.012)(;MATLAB 命令pause 的作用:程序执行到此命令时,图像显示到此停顿,点击键盘任意键,程序继续执行画出后面的图形。

Q3.2 运行程序P3.1,求离散时间傅里叶变换的实部、虚部以及幅度和相位普。

离散时间傅里叶变换是ω的周期函数吗?若是,周期是多少?描述这四个图形表示的对称性。

图Q3.2-1 图Q3.2-2答:离散时间傅里叶变换是ω的周期函数,周期为π2;四个图形表示偶—奇对称性。

Q3.3 修改程序P3.1,在范围πω≤≤0内计算如下序列的离散时间傅里叶变换:ωωωωωωω32327.05.03.013.05.07.0)(j j j j j j j e e e e e e e U ------+-+++-=0.10.20.30.40.50.60.70.80.911111|H(e j ω)|幅度谱ω/π振幅0.10.20.30.40.50.60.70.80.91-4-2024相位谱[H(e j ω)]ω/π以弧度为单位的相位0.10.20.30.40.50.60.70.80.91-1-0.500.51H(e j ω)的实部ω/π振幅0.10.20.30.40.50.60.70.80.91-1-0.500.51H(e j ω)的虚部ω/π振幅0.10.20.30.40.50.60.70.80.91-1-0.500.51H(e j ω)的实部ω/π振幅0.10.20.30.40.50.60.70.80.91-1-0.500.51H(e j ω)的虚部ω/π振幅0.10.20.30.40.50.60.70.80.911111|H(e j ω)|幅度谱ω/π振幅00.10.20.30.40.50.60.70.80.91-6-4-20相位谱[H(e j ω)]ω/π以弧度为单位的相位并重做习题Q3.2。

离散信号的频域分析

离散信号的频域分析
添加 标题
时频变换的基本概念:时频变换是信号处理 中的一种重要方法,它能够将信号的时域和 频域信息相互转换。
添加 标题
离散信号的频域与时域的关系:离散信号的 频域与时域之间存在密切的关系。通过时频 变换,可以分析离散信号在不同时间点的频 率特征,从而更好地理解信号的特性和行为。
添加 标题
时频变换的不变性:时频变换具有一些重要 的性质,其中最重要的是时频变换的不变性。 这意味着通过时频变换得到的信号的时域和 频域特征在变换前后保持不变。
数字调制解调的 优势:抗干扰能 力强、传输距离 远等
数字音频信号 的频域分析
音频压缩与编 码
数字滤波器设 计
音频特效处理
图像压缩:离散信号的频域分析有助于图像压缩,减少存储空间和传输带宽。
图像增强:通过频域处理,可以增强图像的细节和对比度,提高图像质量。
图像识别:利用离散信号的频域特征,可以实现图像识别和分类,应用于人脸识别、物体检测等 领域。
时频变换的应用:时频变换在信号处理、 通信、雷达、声呐等领域有着广泛的应用。 通过时频变换,可以实现对信号的快速、 准确的分析和处理,从而提高信号处理的 效率和精度。
时频变换的基本原理
离散信号的频域与时域的关 系
离散信号的频域分析方法
时频变换在信号处理中的应 用
汇报人:XX
时频变换的对称性:离散信号的频域与时域之间存在对称性,即频域和时域的变换具有相互对 应的关系。
离散信号的时频分析:利用时频变换的方法,将离散信号表示为时频平面上的分布,以便同时 分析其时间和频率特性。
时频变换的物理意义:离散信号的时频变换具有物理意义,可以揭示信号在不同时间和频率下 的表现和特征。
添加 标题
离散性:离散信号的频谱是离散的,即只有某些特定的频率分量存在。

离散时间系统频域分析

离散时间系统频域分析

离散时间系统频域分析离散时间系统的频域分析是研究离散时间信号在频域上的性质和行为的方法。

在离散时间系统频域分析中,使用离散时间傅里叶变换(Discrete Fourier Transform,DFT),来将离散时间信号从时域转换到频域。

通过分析信号在频域上的频谱分布和频谱特性,可以得到离散时间系统的频率响应和频域特性,对信号的频域分布和频率区间进行评估和分析。

离散时间傅里叶变换是时域信号分析的重要工具,它可以将离散时间信号从时域转换到频域。

离散时间傅里叶变换的定义可以表示为:X(k) = Σ[x(n) * exp(-j*2πkn/N)]其中,X(k)是离散时间信号在频域的频谱,x(n)是离散时间信号,N是信号的长度,k是频谱的索引。

离散时间傅里叶变换将时域信号分解成多个频率成分,通过频谱的幅度和相位信息,可以得到信号在频域上的分布情况。

通过离散时间傅里叶变换可以得到离散时间信号的频谱,进而分析信号在频域上的频率响应和频域特性。

频谱可以反映信号在不同频率上的能量分布情况,通过观察频谱的幅度和相位,可以得到信号的频率成分、频带宽度和频率特性等信息。

在离散时间系统频域分析中,常用的分析工具有频谱图、功率谱密度、频率响应等。

频谱图可以将信号的频谱以图形形式展示出来,通过观察频谱图的形状和分布,可以得到信号在频域上的特点。

功率谱密度是指信号在不同频率上的功率分布情况,可以评估信号在不同频率上的能量分布情况。

频率响应是指系统对不同频率信号的响应情况,可以评估系统对不同频率信号的滤波和增益特性。

离散时间系统频域分析的应用包括信号处理、通信系统、控制系统等领域。

在信号处理中,通过频域分析可以对信号进行滤波、去噪、频域变换等操作,提高信号的质量和分析能力。

在通信系统中,通过频域分析可以评估信号传输和接收的性能,并对系统进行优化和改进。

在控制系统中,通过频域分析可以评估系统的稳定性和控制特性,提高系统的响应速度和稳定性。

0136-胡国庆-实验3-离散时间信号的离散频域分析

0136-胡国庆-实验3-离散时间信号的离散频域分析

数字信号处理A实验报告实验项目名称:离散信号与系统的离散频域分析(DFT)学院:______计算机与通信工程____专业:______ _通信工程 _________学号:______201454080136_______班级:______ 通信1401 ________报告人:________胡国庆 __________指导老师:___ 胡双红 _ _______实验时间:_______2016-11-28________实验三离散信号与系统的离散频域分析(DFT)一、实验目的:1、掌握离散时间系统的DFT的MATLAB实现;2、熟悉DTFT和DFT之间的关系。

3、了解信号不同变形的DFT与原信号DFT之间的关系二、实验内容:选择实验二相同的8点信号x=[1 2 3 4 4 3 2 1]1、对该信号分别做8点、16点、32点DFT,分别与DTFT合并作图并比较DFT 与DTFT之间的关系。

2、在信号每两个相邻样本之间插入一个零值,扩充为16点序列,作DFT,画出幅度谱和相位谱,并与原序列的DFT进行比较。

3、将信号以8为周期扩展,得到长为16的两个周期,作DFT,画出幅度谱和相位谱,并与原序列的DFT进行比较。

三、实验平台: MATLAB集成系统四、设计流程:五、程序清单function [Xk]=dft(xn,N)n=0:1:N-1;k=0:1:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;x=[3,2,1,2,4,3,4,1];X=dft(x,8);w=0:pi/100:2*pi;n=0:7;Xw=x*exp(-j*n'*w);figure(1);k=0:7;subplot(211);stem(k,abs(X)) hold onplot(w/pi*4,abs(Xw))subplot(212);stem(k,angle(X))hold onplot(w/pi*4,angle(Xw))X16=dft([x,zeros(1,8)],16);figure(2);k=0:15;subplot(211);stem(k,abs(X16)) Xw1=[x,zeros(1,8)]*exp(-j*k'*w);hold onplot(w/pi*8,abs(Xw1))subplot(212);stem(k,angle(X16))hold onplot(w/pi*8,angle(Xw1))X32=dft([x,zeros(1,24)],32);figure(3);k=0:31;subplot(211);stem(k,abs(X32)) Xw2=[x,zeros(1,24)]*exp(-j*k'*w);hold onplot(w/pi*16,abs(Xw2))subplot(212);stem(k,angle(X32))hold onplot(w/pi*16,angle(Xw2))x1=zeros(1,16);x1(1:2:end)=x;X4=dft(x1,16); figure(4);subplot(221);stem(0:15,abs(X4));subplot(222);stem(0:15,angle(X4));subplot(223);stem(0:7,abs(X));subplot(224);stem(0:7,angle(X));X5=dft([x x],16);figure(5);subplot(221);stem(0:15,abs(X5)); subplot(222);stem(0:15,angle(X5)); subplot(223);stem(0:7,abs(X)); subplot(224);stem(0:7,angle(X));六、调试和测试结果:8点DFT与 DTFT的代码和图:实验心得在这次实验中,自己做的时候问题比较多,请教了很多同学才做到现在的样子,对函数并不理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档