周期信号的频域分析40页PPT
信号课件§4.3周期信号的频谱.ppt

二、周期信号频谱的特点
举例:有一幅度为1,脉冲宽 度为的周期矩形脉冲,其周 期为T,如图所示。求频谱。
T 2 T 2
1
f(t) 0 … T t
2
-T
1 12 jn t jn t F f ( t ) e d t e d t n T T 2
n n sin( ) j n t sin 1e 2 2 2 2 T j n 2 T n T n
3.系统的通频带>信号的带宽,才能不失真
§4.3
周期信号的频谱
• 信号频谱的概念 • 周期信号频谱的特点 • 频带宽度
■
第 1页
一、信号频谱的概念
从广义上说,信号的某种特征量随信号频率变 化的关系,称为信号的频谱,所画出的图形称为信 号的频谱图。 周期信号的频谱是指周期信号中各次谐波幅值、 相位随频率的变化关系,即 将An~ω和n~ω的关系分别画在以ω为横轴的平 面上得到的两个图,分别称为振幅频谱图和相位频 谱图。因为n≥0,所以称这种频谱为单边谱。 也可画|Fn|~ω和n~ω的关系,称为双边谱。若Fn 为实数,也可直接画Fn 。 图示
谱线的结构与波形参数的关系 T一定,变小,此时(谱线间隔)不变。两零点之 间的谱线数目:1/=(2/)/(2/T)=T/ 增多。
一定,T增大,间隔减小,频谱变密。幅度减小。 如果周期T无限增长(这时就成为非周期信号), 那么,谱线间隔将趋近于零,周期信号的离散频谱就过 渡到非周期信号的连续频谱。各频率分量的幅度也趋近 于无穷小。
2
2
令Sa(x)=sin(x)/x (取样函数)
n n F Sa ( ) Sa ( )
第四章 周期信号的频域分析

c n = c n e − jϕ n 令: &
∞ 1 ∞ jnω t & & ∴ f (t ) = ∑ cn e = ∑ Fn e jnω t 2 n = −∞ n = −∞
& = 1 c 称为复傅里叶系数。 &n Fn 2
表明任意周期信号可以表示成 e jnω t 的线性组合, & 加权因子为 Fn 。
a− k e
− jkω0t
…
+ ak e
jkω0t
k 次谐波
例4-1:已知连续时间信号 f (t ) = 1 + cos ω0t + 2sin ( 3ω0t ) 求其傅立叶级数表示式及傅氏系数 ak ∞ 1 f (t ) = ∑ ak e jkω t 解: ak = ∫ f (t )e − jkω0t dt
不满足狄里赫利条件的周期信号
f (t )
狄里赫利条件 1 信号 f (t) 在任意一 个周期 T 内绝对可积
−2
f (t ) =
1 , 0 < t ≤1 t2
不满足条件 1
1
−1
0
1
2
t
2 信号 f (t) 在任意一
f (t )
个周期 T 内,只有有 限个极大和极小值点
3 信号 f (t) 在任意一
0
T1 T / 2
T
t
−T
−T1
0
T1
T
N =5
t
取 N =1, 5, 21, 81,用有限项傅氏级 数逼近连续时间周期脉冲信号 f (t)
ˆ f (t )
吉布斯(Gibbs)现象
信号的跳变点附近出现纹波 随项数增加,波纹峰值大小不 变,但被挤向信号的间断点处 信号连续点处傅氏级数收敛于信 号本身 信号跳变点处,傅氏级数收敛于 该处左极限和右极限的平均值
连续周期信号的频域分析

三、周期信号的频谱及其特点
3. 频谱的特性
(3) 信号的有效带宽
0~2 / 这段频率范围称为周期矩形脉冲信号的 有效频带宽度,即 2π B
信号的有效带宽与信号时域的持续时间成反比。 即 越大,其B越小;反之, 越小,其B 越大。
三、周期信号的频谱及其特点
3. 频谱的特性
(3) 信号的有效带宽 物理意义:在信号的有效带宽内,集中了信 号绝大部分谐波分量。若信号丢失有效带宽以 外的谐波成分,不会对信号产生明显影响。
n=—4 4
1 T /2 2 P T / 2 f (t )dt 0.2 T 包含在有效带宽(0 ~ 2 / )内的各谐波平均功率为
2 2 C0
2 | Cn | 2 0.1806
n=1
4
P 0.1806 1 90% P 0.200
例3 试求周期矩形脉冲信号在其有效带宽(0~2 /t)内
频谱的特性频谱的特性信号的有效带宽信号的有效带宽这段频率范围称为周期矩形脉冲信号的有效频带宽度有效频带宽度即信号的有效带宽与信号时域的持续时间信号的有效带宽与信号时域的持续时间成反比
连续周期信号的频域分析
周期信号的傅里叶级数展开 傅里叶级数的基本性质 周期信号的频谱及其特点 周期信号的功率谱
三、周期信号的频谱及其特点
三、周期信号的频谱及其特点
4. 相位谱的作用
幅频不变,零相位
幅频为常数,相位不变
四、周期信号的功率谱
帕什瓦尔(Parseval)功率守恒定理
2 1 T P 2T f (t ) dt Cn T 2 n 2
物理意义:任意周期信号的平均功率等于信号所 包含的直流、基波以及各次谐波的平均功率之和。
连续周期信号的频域分析

三、周期信号的频谱及其特点
3. 频谱的特性
(3) 信号的有效带宽
0~2 / 这段频率范围称为周期矩形脉冲信号的 有效频带宽度,即 2π B
信号的有效带宽与信号时域的持续时间成反比。 即 越大,其B越小;反之, 越小,其B 越大。
三、周期信号的频谱及其特点
3. 频谱的特性
(3) 信号的有效带宽 物理意义:在信号的有效带宽内,集中了信 号绝大部分谐波分量。若信号丢失有效带宽以 外的谐波成分,不会对信号产生明显影响。
谐波分量所具有的平均功率占整个信号平均功率 的百分比。其中A=1,T=1/4,=1/20。
f (t )
周期信号的功率谱
Cn
2
A
1 2 nπ Sa ( ) 25 5
Cn
1 25
8
2
T
2
2
T
t
C n 0.2 Sa(nπ / 5)
40 π
40 π
n 0
Cn 0.2 Sa(n0 / 40) 0.2 Sa(nπ / 5)
例3 试求周期矩形脉冲信号在其有效带宽(0~2 /t)内
谐波分量所具有的平均功率占整个信号平均功率 的百分比。其中A=1,T=1/4,=1/20。
f (t )
A
T
2
2
T
t
解: 信号的平均功率为
P | Cn | 1
0 2π / T
n 0
例2 已知连续周期信号的频谱如图,试写出 信号的Fourier级数表示式。
Cn
4 3 2 1 9 6 3 1 3 2
0
3
6
9
SSch4-1连续周期信号频域分析

因此,周期三角脉冲信号的指数形式傅立叶级数展开 式为
f (t) C ne
n= jn t 0
1 2 j ( 2 m 1 ) t 0 e 2 2m [(2 m 1 ) ] =
由
j n t 0 f( t ) C 2 Re( C e n ) 0 n 1
an jb n C n 2
j n t 0 C 2 Re( C e n ) 0 n 1
n 1
由于Fourier级数的系数Fn一般为复数,记 由于 C0是实的,所以b0=0,故 2019/2/24 信号与系统
a0 C0 2
整理后得三角形式傅立叶级数,为
a 0 f ( t ) ( a cos n t b sin n t ) 量)的线性组合, 这样,不同的信号都归结为正弦分量,为不同的信号 之间进行比较提供了途径。 (2)从系统分析角度,线性时不变系统在单频正弦 信号激励下的稳态响应仍是同频率的正弦信号。在多 个不同频率正弦信号同时激励下的总响应,只需利用 线性系统的迭加特性即可求得,而且每个正弦分量通 过系统后,是衰减还是增强一目了然。 2019/2/24 信号与系统
2019/2/24 信号与系统
2.
指数形式傅立叶级数
jn t 0 f (t) C e n n=
连续时间周期信号可以用指数形式傅立叶级数表示为
其中
1T jn t 0 2 C f ( t ) e dt T T n T 2
n 1 两项的基波频率为f0,两项合起来称为信号的基波分量 n 2 的基波频率为2f0,两项合起来称为信号的2次谐波分量
可得,周期三角脉冲信号的三角形式傅立叶级数展开式为
第四章周期信号频域分析

第四章周期信号频域分析信号分析是现代通信、电子、控制等领域中非常重要的一个方向。
在信号分析中,频域分析是一种非常常用和有效的手段。
本章将介绍周期信号的频域分析方法。
周期信号是指在时间轴上按照一定规律重复出现的信号。
周期信号可以表示为周期函数的形式,即y(t+T)=y(t),其中T为信号的周期。
在频域分析中,我们希望能够将周期信号分解为一系列的频率组成的谐波分量,从而得到信号在不同频率上的能量分布情况。
常用的周期信号频域分析方法有傅里叶级数分析和离散傅里叶变换分析两种。
傅里叶级数分析是将一个周期信号表示为一系列谐波分量的和的形式。
假设一个周期信号f(t)的周期为T,可以将其分解为如下的傅里叶级数形式:f(t) = a0 + Σ(an * cos(n * ω0 * t) + bn * sin(n * ω0 * t))其中,a0表示信号的直流分量,an和bn分别表示信号在频率为n * ω0的正弦函数和余弦函数上的系数,n为谐波次数。
离散傅里叶变换分析是将一个有限长的离散时间信号表示为一系列复数形式的谐波分量的和,常用的离散傅里叶变换分析方法是快速傅里叶变换(FFT)。
假设一个有N个采样点的离散时间信号为x(n),其离散傅里叶变换为X(k),则有:X(k)=Σ(x(n)*e^(-j*2π*k*n/N))其中,k表示谐波次数,n为采样点的序号,N为采样点的总数。
傅里叶级数分析和离散傅里叶变换分析都可以用于分析周期信号的频域特性。
通过这些方法,我们可以得到周期信号在不同频率上的谐波分量的能量大小,从而了解信号的频谱特性。
在实际应用中,频域分析常用于信号处理、滤波、频率识别、通信系统设计等各个领域。
比如,在通信系统中,我们可以通过频域分析方法来实现信号的调制解调、滤波、信道均衡等操作。
在音频处理中,我们可以通过频域分析来进行音频变调、音频合成等操作。
总结起来,周期信号的频域分析可以帮助我们了解信号在不同频率上的分布情况,从而实现信号处理、频率识别等功能。
4-2 信号的频域分析-周期信号频域分析

分析问题使用的数学工具为傅里叶级数 最重要概念:频谱函数 要点
1. 频谱的定义、物理意义 2. 频谱的特点 (离散,衰减) 3. 频谱的性质,应用性质分析复杂信号的频谱 4. 功率谱的概念及在工程中的应用
17
离散Fourier级数(DFS)
DFS的定义 常用离散周期序列的频谱分析 周期单位脉冲序列d N[k] 正弦型序列 周期矩形波序列 DFS的性质
0 2π / T
n 0
3
例2 已知连续周期信号的频谱如图,试写出 信号的Fourier级数表示式。
Cn
4 3 2 1 3 2 1 1 3 2
0
1
2
3
n
解: 由图可知 C 0 4
f (t ) C n e jn 0 t
n
C 1 3
C 2 1
三、周期信号的频谱及其特点
1. 频谱的概念
周期信号f(t)可以分解为不同频率虚指数信号之和
f (t ) C n e j n 0 t
n =
不同的时域信号,只是傅里叶级数的系数Cn不同, 因此通过研究傅里叶级数的系数来研究信号的特性。 Cn是频率的函数,它反映了组成信号各次谐波 的幅度和相位随频率变化的规律,称频谱函数。
10
例3 试求周期矩形脉冲信号在其有效带宽(0~2 /)内
谐波分量所具有的平均功率占整个信号平均功率 的百分比。其中A=1,T=1/4,=1/20。
f (t )
A
T
2
2
T
t
解: 周期矩形脉冲的傅里叶系数为
Cn A T Sa ( n 0 2 )
将A=1,T=1/4, = 1/20,0= 2/T = 8 代入上式
周期信号的频谱ppt课件

当 T t , t T
2
22 2
f (t)
A
-T
-
T 2
-τ 2o
τ 2
T 2
T
2T t
10
3.3.2 双边频谱与信号的带宽
•
复系数
Fn
1 T
T 2
T 2
f (t)e jn1t dt
1 T
2 Ae jn1t dt
2
A 1 (e jn1 2 e jn1 2 ) 2 A sin( n1 )
5
3.3.1 周期信号频谱的特点
• 振幅频谱
n
0 1
2
31 51 71
• 相位频谱
n 0
6
3.3.1 周期信号频谱的特点
• 例 f (t) 1 3cos(t 10) 2 cos(2t 20)
0.4 cos(3t 45) 0.8cos(6t 30),
试画出 f (t) 的振幅谱和相位谱。 解: f(t)为周期信号,题中所给的 f(t) 表达式可视为 f(t) 的
信号f1(t)和f2(t)的波形如图所示,设 f(t)=f1(t)*f2(t),则f(0)等于( )。
卷积练习
1
3.3 周期信号的频谱
2
3.3 周期信号的频谱 • 3.3.1 周期信号频谱的特点 • 3.3.2 双边频谱与信号的带宽 • 3.3.3 周期信号的功率
3
3.3.1 周期信号频谱的特点
以相位为纵坐标所得到的谱线图
4
3.3.1 周期信号频谱的特点
• 试画振幅谱和相位谱
矩形波
f
(t)
4A
[cos(1t
2
)
1 3
cos(31t