勾股定理单元检测题
《勾股定理》单元检测三

《勾股定理》单元检测(3)一、选择题(本大题共6小题,每小题3分,共18分)1、直角三角形一直角边长为12,另两边长均为自然数,则其周长为( )A 、36B 、28C 、56D 、不能确定 2、直角三角形两直角边长分别为3和4,则它斜边上的高是( )A 、3.5B 、2.4C 、1.2D 、53、下面几组数:①7,8,9;②12,9,15;③m 2+n 2, m 2–n 2, 2mn(m,n 均为正整数,m >n);④2a ,1a 2+,2a 2+。
其中能组成直角三角形的三边长的是 ( )A 、①②B 、①③C 、②③D 、③④ 4、三角形的三边长为ab c b a 2)(22+=+,则这个三角形是 ( )A 、等边三角形B 、钝角三角形C 、直角三角形D 、锐角三角形5、等腰三角形的腰长为10,底长为12,则其底边上的高为( )A 、13B 、8C 、25D 、646、小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( ) A 、2m B 、2.5m C 、2.25m D 、3m 二、 填空题(本大题共6小题,每小题3分,共18分) 7、如图,AC ⊥CE ,AD=BE=13,BC=5,DE=7,则AC= 。
8、已知0)10z (8y 6x 2=-+-+-,则由此z ,y ,x 为三边的三角形是 三角形。
A BCDE9、在ΔABC 中,若AB=30,AC=26,BC 上的高为24,则此三角形的周长为 。
10、如图,一直角梯形,∠B=902,AD ∥BC ,AB=BC=8,CD=10,则梯形的面积是 。
11、一直角三角形三边长分别为5,12,13,斜边延长x ,较长的直角边的长x +2,所得的仍是直角三角形,则x = 。
12、在ΔABC 中,若AB 2+BC 2=AC 2,则∠A+∠C= 0。
勾股定理单元测试题(内含答案)

勾股定理测试题一、相信你的选择1、如图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为().A.16πB.12πC.10πD.8π2、已知直角三角形两边的长为3和4,则此三角形的周长为().A.12B.7+7C.12或7+7D.以上都不对3、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m.同时梯子的顶端B下降至B′,那么BB′().A.小于1m B.大于1m C.等于1m D.小于或等于1m4、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是().A.h≤17cm B.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm二、试试你的身手5、在Rt △ABC 中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____.6、如图,矩形零件上两孔中心A 、B 的距离是_____(精确到个位).7、如图,△ABC 中,AC =6,AB =BC =5,则BC 边上的高AD =______.8、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 元.三、挑战你的技能如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A 的仰角为30°,已知侧角仪高DC =, BC =30米,请帮助小明计算出树高AB .(3取,结果保留 三个有效数字)参考答案与提示一、相信你的选择 150o 20米30米1、D (提示:在Rt △ABC 中,AB 2=AC 2-BC 2=172-152=82,∴AB =8.∴S 半圆=21πR 2=21π×(28)2=8π.故选D );2、C (提示:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或7,所以直角三角形的周长为3+4+5=12或3+4+7=7+7,故选C );3、A (提示:移动前后梯子的长度不变,即Rt △AOB 和Rt △A ′OB ′的斜边相等.由勾股定理,得32+B ′O 2=22+72,B ′O =44,6<B ′O <7,则O <BB ′<1.故应选A );4、D (提示:筷子在杯中的最大长度为22815+=17cm ,最短长度为8cm ,则筷子露在杯子外面的长度为24-17≤h ≤24-8,即7cm≤h ≤16cm ,故选D ).二、试试你的身手5.a =b ,b =4(提示:设a =3k ,b =2k ,由勾股定理,有 (3k )2+(2k )2=(213)2,解得a =b ,b =4.);6.43(提示:做矩形两边的垂线,构造Rt △ABC ,利用勾股定理,AB 2=AC 2+BC 2=192+392=1882,AB ≈43);7.(提示:设DC =x ,则BD =5-x .在Rt △ABD 中,AD 2=52-(5-x )2,在Rt △ADC 中,AD 2=62-x 2,∴52-(5-x )2=62-x 2,x =.故AD =226.36-=);8、150a .三、挑战你的技能10、解析:构造直角三角形,利用勾股定理建立方程可求得.过点D作DE⊥AB于点E,则ED=BC=30米,EB=DC=米.设AE=x 米,在Rt△ADE中,∠ADE=30°,则AD=2x.由勾股定理得:AE2+ED2=AD2,即x2+302=(2x)2,解得x=103≈.∴AB=AE+EB≈+≈(米).答:树高AB约为米.。
勾股定理单元测试卷及参考答案

勾股定理章节测试(A 卷)(满分120分,考试时间120分钟)一、选择题(每题3分,共30分)第3题图 第6题图4. 满足下列条件的三角形中,不是直角三角形的是( )A .三内角之比为1:2:3B .三边长的平方比为1:2:3C .三边长之比为3:4:5D .三内角之比为3:4:55. 如图,在单位正方形组成的网格图中有AB ,CD ,EF ,GH 四条线段,其中能构成一个直角三角形三边的线段是( ) A .CD ,EF ,GH B .AB ,EF ,GH C .AB ,CD ,GH D .AB ,CD ,EF6. 若直角三角形的两直角边长为a ,b ,斜边c 上的高为h ,则下列各式一定成立的是( )A .B .2ab h =222a b h +=ABCDE F GHDC BA lA′BAC .D .7. 如图,A ,B 是直线l 同侧的两点,作点A 关于直线l 的对称点A′,连接A′B .若点A ,B到直线l 的距离分别为2和3,则线段AB 与A′B 之间的数量关系为( ) A .B .C .D .8. 如图,在△ABC 中,∠ACB =90°,点E 为AB 的中点,点D 在BC 上,且AD =BD ,AD ,CE 相交于点F .若∠B =20°,则∠DFE 等于( ) A .70°B .60°C .50°D .40°9. 在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2,4,3,则原直角三角形纸片的斜边长是( ) A .10B.C .10或D .10或10. 如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCDE ,设正方形的中心为O ,连接AO ,如果AB =4,AO=AC 的长为( ) A.6 B.7 C.8 D.9111a b h+=222111a b h+=2213A B AB '-=2224A B AB '-=2225A B AB '+=2226A B AB '+=FE D CBA432432ECABDO二、填空题(每题3分,共18分)11. 已知△ABC 的周长是26,M 是AB 的中点,MC =MA =5,则△ABC 的面积是__________.12. 如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B'处,点A 的对应点为A',且B'C =3,则CN =______,AM =______.则线段AD 的长为_________.第14题图 第15题图15. 如图,四边形A B C D 是正方形,直线l 1,l 2,l 3分别过A ,B ,C 三点,且l 1△l 2△l 3,若l 1与l 2之间的距离为4,l 2与l 3之间的距离为5,则正方形ABCD 的面积为________.16. 如图,在△ACB 中,AB =AC ,△BAC =90°,D 为AC 的中点,AE △BD 于N ,CM △AE 交AE 的延长线于点M ,连接DE .则下列结论:△△MAC =△DBA ;△BN -CM =MN ;△△ADB =△CDE ;△BD =AE +ED .其中正确的有______________(填写序号),并证明.EDC BA DCBAl 3l 2l 1NME D CBA三.解答题17. (5分)如图,在四边形ABCD 中,AB =3cm ,AD =4cm ,BC =13cm ,CD =12cm ,且∠A =90°,求四边形ABCD 的面积.18. (5分)如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C 处有一筐水果,一只猴子从D 处爬到树顶A 处,利用拉在A 处的滑绳AC 滑到C 处,另一只猴子从D 处滑到地面B 处,再由B 跑到C ,已知两只猴子所经路程都是15m ,求树高AB .19. (6分)如图,△ABC 和△CDE 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点.若AD =5,BD =12,求DE 的长.A BCDE DC AB20. (6分)如图,在直角三角形纸片ABC 中,AB =15cm ,AC =9cm ,BC =12cm ,现将直角边AC 沿过点A 的直线折叠,使它落在AB 边上.若折痕交BC 于点D ,点C 落在点E 处,你能求出BD 的长吗?请写出求解过程.21. (8分)如图,在三角形ABC 中,AC =BC ,点O 为AB 的中点,AC△BC ,△MON =45°,求证:CN+MN =AM .22. (8分)如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA △AB 于A ,CB △AB 于B ,已知DA =15km ,CB =10km .现要在铁路AB 上建设一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在距A 多少千米处?23. 如图,△ABC 中,AB=AC,△ACB=90°,D 、E 在线段AB 上,且△DCE=45°,求证DE 2=AD 2+BE 2E DCBADCBA24. (12分)已知:如图,在△ABC 中,△A =90°,AB =AC ,BD 平分△ABC ,CE △BD 交BD 的延长线于点E .求证:CE 12BD .扩展结论:1.△AED=45°;2.BE=(1+2)EC25. (12分)如图,Rt △CEF 中,∠C =90°,∠CEF ,∠CFE 外角平分线交于点A ,过点A分别作直线CE ,CF 的垂线,B ,D 为垂足.(1)∠EAF = °(直接写出结果不写解答过程); (2)若BE =EC =3,求DF 的长.(3)如图(2),在△PQR 中,∠QPR =45°,高PH =5,QH =2,则HR 的长度是EDCB A参考答案11.39 12.4 2 13.9 14.5cm 15.41 16.△△△△17.36cm2 18. 15m 19.13 20.7.5cm21.提示:连接OC,在AM上取点H,使AH=CN,证明△OMN≌△OMH可证.22.10km23.方法一:旋转将△ACD绕点C逆时针旋转90°至△ABG,连接EG,易知△ACD=△BCG,△ACD+△BCE=45°,得△BCG+△BCE=45°即△GCE=45°,同时CG=DE,CE=CE,故△CDE△△CGE,EG=DE,而△CBG=△A=45°得△GBE=90°,故EG2=BE2+BG2,即有DE2=AD2+BE2方法二:对称法取点A关于CD的对称点F,连接EF、CF,易知△ACD△△FCD,CF=CA,DF=AD,△CFD=△A=45°而AC=BC,得BC=CF,同时△ACD=△FCD,△ACD+△BCE=45°,△CDF+△FCE=45°得△ECB=△ECF,又CE=CE,故△BCE△△FCE,EF=BE,△CFE=△B=45°,得△DFE=90°,DE2=DF2+EF2,故DE2=AD2+BE21524.(1)45°(2)DF=2 (3)7。
勾股定理单元测试卷

勾股定理单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列命题的逆命题成立的是()A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两条直线平行,同位角相等D.对顶角相等2.观察下列几组数据:①3,4,5;②4,5,6;③6,8,10;④7,24,25.其中能作为直角三角形三边长的有()A.1组B.2组C.3组D.4组3.如图,点C所表示的数是()A B.C.1D.4.如图,ABC∆中,90ACB∠=︒,4AC=,3BC=,将ADE∆沿DE翻折,使点A与点B重合,则AE的长为()A.78B.3 C.254D.2585.如图,大正方形是由边长为1的小正方形拼成的,A,B,C,D四个点是小正方形的顶点,以其中三个点为顶点,可以构成直角三角形的个数是()A .2B .1C .4D .36.已知ABC ∆的三边分别为a 、b 、c 2(12)|13|0b c -+-=,则ABC ∆的面积为( )A .30B .60C .65D .无法计算7.如图所示的24⨯的正方形网格中,ABC ∆的顶点都在小正方形的格点上,这样的三角形称为格点三角形,则点A 到BC 的距离等于( )A B .CD8.如图,由两个直角三角形和三个大正方形组成的图形,其中阴影部分面积是( )A .16B .25C .144D .1699.如图,一棵大树被台风挂断,若树在离地面3m 处折断,树顶端落在离树底部4m 处,则树折断之前高( )A .5mB .7mC .8mD .10m10.如图,长方体的高为9dm ,底面是边长为6dm 的正方形.一只蚂蚁从顶点A 开始爬向顶点B ,那么它爬行的最短路程为( )A .10dmB .12dmC .15dmD .20dm二、填空题(共5小题,每小题3分,共15分)11.在高5m ,长13m 的一段台阶上铺上地毯,台阶的剖面图如图所示,地毯的长度至少需要 m .12.如图,在ABC ∆中,10AB cm =,6AC cm =,8BC cm =,若将AC 沿AE 折叠,使得点C 与AB 上的点D 重合,则AEB ∆的面积为 2cm .13.如图,1OP =,过点P 作1PP OP ⊥,且11PP =,得1OP ;再过点1P 作121PP OP ⊥且121PP =,得2OP =;又过点2P 作232P P OP ⊥且231P P =,得32OP =⋯,依此法继续作下去,得2022OP = .14.如图,Rt ABC ∆中,90ACB ∠=︒,4AB =,分别以AC 和BC 为边,向外作等腰直角三角形ACD ∆和BCE ∆,则图中的阴影部分的面积是 .15.已知ABCAC=,BC边上的高8AD=.则边BC的长为.AB=,10∆中,17三、解答题(共8小题,共75分)16.如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离杆脚周围多大范围内有被砸伤的危险?17.如图,某人划船横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点25B m,结果他在水中实际划了65m,求该河流的宽度.18.如图,在ABCBD=.==,1AB AC∆中,CD AB⊥,垂足为D,13(1)求CD的长;(2)求BC的长.19.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点.(1)求AB 和BC ;(2)求ABC ∠的度数.20.如果直角三角形的三边的长都是正整数,这样的三个正整数叫做勾股数组.我国清代数学家罗士琳对勾股数组进行了深入研究,提出了各种有关公式400多个.他提出:当m ,n 为正整数,且m n >时,22m n -,2mn ,22m n +为一组勾股数组,直到现在,人们都普遍采用他的这一公式.(1)除勾股数3,4,5外,请再写出两组勾股数组 , ;(2)若令22x m n =-,2y mn =,22z m n =+,请你证明x ,y ,z 为一组勾股数.21.如图,在一条东西走向河流的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB AC =,由于某种原因,由C 到A 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点(H A 、H 、B 在同一条直线上),并新修一条路CH ,测得 1.5CB =千米, 1.2CH =千米,0.9HB =千米.(1)问CH 是否为从村庄C 到河边的最近路?请通过计算加以说明;(2)求新路CH 比原路CA 少多少千米?22.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.23.如图,在ABC ∆中,AB AC =,AD BC ⊥于点D ,45CBE ∠=︒,BE 分别交AC ,AD 于点E 、F .(1)如图1,若13AB =,10BC =,求AF 的长度;(2)如图2,若AF BC =,求证:222BF EF AE +=.。
第一章勾股定理 单元测试 2024-2025学年北师大版八年级数学上册

第一章勾股定理单元测试一、单选题1.平面直角坐标系中,点P (2,0)平移后对应的点为Q (5,4),则平移的距离为()A .3B .4C .5D .72.如图,在网格中的小正方形边长为1,ABC 和BCD 的顶点都在网格格点上,则ABC 和BCD 的面积之比为()A .1:2B .2:3C .3:2D .3:43.将一根橡皮筋两端固定在点A ,B 处,拉展成线段AB ,拉动橡皮筋上的一点P ,当△APB 是顶角为120°的等腰三角形时,已知AB =6cm ,则橡皮筋被拉长了()A .2cmB .4cmC .()6cmD .(4cm -4.如图,在边长为1的正方形方格中,A ,B ,C ,D 均为格点,构成图中三条线段AB ,BC ,CD .现在取出这三条线段AB ,BC ,CD 首尾相连拼三角形.下列判断正确的是()A .能拼成一个锐角三角形B .能拼成一个直角三角形C .能拼成一个钝角三角形D .不能拼成三角形5.如图,如果△ABC 与△DEF 都是正方形网格中的格点三角形(顶点在格点上),那么△DEF 与△ABC 的周长比为()A .4:1B .3:1C .2:1D 2:16.下列各组数不能组成直角三角形的一组数是()A .5,12,13B .2223,4,5C .7,24,25D .8,15,177.如图,矩形ABCD 中,AC 和BD 相交于点O ,3AD =,4AB =,点E 是CD 边上一点,过点E 作EH BD ⊥于点H ,EG AC ⊥于点G ,则EH EG +的值是()A .2.4B .2.5C .3D .48.如图,在7×7的正方形网格中,每个小正方形的边长为1,画一条线段50A ,B 在小正方形的顶点上,设AB 与网格线相交所成的锐角为α,则不同角度的α有()A .1种B .2种C .3种D .4种9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE AF =,AC 与EF 相交于点G .下列结论:①AC 垂直平分EF ;②当AEB AEF ∠=∠时,45EAF ∠=︒;③当15DAF ∠=︒时,AEF 为等边三角形:④当C =2−2B 时,BE DF EF +=.其中正确的结论有()个A .1B .2C .3D .410.在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD 可以进行如下操作:①把△ABF 翻折,点B 落在C 边上的点E 处,折痕为AF ,点F 在BC 边上;②把△ADH 翻折,点D 落在AE 边上的点G 处,折痕为AH ,点H 在CD 边上,若AD =6,CD =10,则EH EF =()A .32B .53C .43D .54二、填空题11.如图,一高层住宅发生火灾,消防车立即赶到距大厦8米处(车尾AE 到大厦墙面CD ),升起云梯到火灾窗口B .已知云梯AB 长17米,云梯底部距地面的高 1.5AE =米,则发生火灾的住户窗口距离地面多高度BD 是.12.在Rt △ABC 中,90C ∠=︒,10AB =,则2222AB AC BC ++=.13.如图所示,等腰三角形ABC 的底边为8cm ,腰长为5cm ,一动点P (与B 、C 不重合)在底边上从B 向C 以1cm/s 的速度移动,当P 运动秒时,△ACP 是直角三角形14.已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE 等于.15.在矩形ABCD 中,AB =4,AD =9,点E 在BC 上,CE =4,点F 是AD 上的一个动点,连接BF ,若将四边形ABEF 沿EF 折叠,点A 、B 分别落在点A ′、B '处,则当点B 恰好落在矩形ABCD 的一边上时,AF 的长为.三、解答题16.如图,在四边形ABCD 中,90B ∠=︒,AC 为对角线,8AB =,6BC =,215CD =,10AD =.(1)求AC 的长;(2)求ACD 的面积.17.某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离了欲到达点B ,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度(两岸可近似看做平行).18.如图,在四边形ABCD 中,CD =AD =2,∠D =90°,AB =5.BC =3.(1)求∠C 的度数;(2)求四边形ABCD 的面积.19.如图所示,有一张长方形纸片ABCD ,8AB =,6AD =.现折叠该纸片使得AD 边与对角线DB 重合,折痕为DG ,点A 落在F 处,(1)DF =____________,BF =____________;(2)求AG 的长.20.如图,射线AM AN ⊥于点A 、点C 、B 在AM 、AN 上,D 为线段AC 的中点,且DE BC ⊥于点E .(1)若10BC =,直接写出22AC AB +的值;(2)若8AC =,ABC 的周长为24,求ABC 的面积;(3)若6AB =,C 点在射线AM 上移动,问此过程中,22BE CE -的值是否为定值?若是,请求出这个定值;若不是,请求出它的取值范围.21.如图,在平面直角坐标系中,O 为坐标原点,ABC 的边BC 在x 轴上,A C 、两点的坐标分别为0,、s 0,−5,0,且−32+3−12=0,点P 从B 出发以每秒2个单位的速度沿射线BO 匀速运动,设点P 运动时间为t 秒.(1)求A C 、两点的坐标;(2)连接PA ,当POA 的面积是2,求t 的值?(3)当P 在线段BO 上运动时,是否存在一点P ,使PAC 是等腰三角形?若存在,请直接写出满足条件的所有P 点的坐标.。
《勾股定理》单元检测

《勾股定理》单元检测一.选择题(每小题2分,共计30分)1.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=52.下列几组数:①9,12,15;②8,15,17;③7,24,25;④3a,4a,5a(a为大于1的自然数).其中是勾股数的有()A.1组B.2组C.3组D.4组3.如图一个圆桶儿,底面直径为12cm,高为8cm,则桶内能容下的最长的木棒为()A.8cm B.10cm C.4cm D.20cm4.如图,一架云梯25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了()A.4米B.6米C.8米D.10米第3题图第4题图第5题图5.如图,在△ABC中,AB=AC=10,AD是角平分线,AD=6,则BC的长度为()A.6 B.8 C.12 D.166.在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形7.若一直角三角形两边长分别为12和5,则第三边长为()A.13 B.13或C.13或15 D.158.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个9.若等腰三角形的腰长为10cm,底边长为16cm,则顶角的平分线的长为()A.6cm B.8cm C.10cm D.12cm10、一根竹子长16米,折断后竹子顶端落在离竹子的底端8米处,折断处离地面的高度是A.10米B.9米C.7米D.6米第10题图第11题图11.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为()A.2 B.C.D.12.直角三角形两直角边长分别为5和12,则它斜边上的高是()A.B. C.D.13.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是4、6、3、4,则最大正方形E的面积是()A.17 B.36 C.77 D.94第13题图第14题图第15题图14.如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4.若BD是△ABC的角平分线,则点D到BC边的距离()A.B.1 C.D.15.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为A.4 B.6 C.16 D.55《勾股定理》单元检测16.已知,则以a、b、c为三边的三角形的形状是.17.如图,已知在Rt△ABC中,∠ACB=90°,AB=8,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于.第17题图第18题图第19题图18.如图所示,△OA1A2、△OA2A3、△OA3A4均为直角三角形,则OA10=.19.如图,分别以Rt△ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,容易得出S1、S2、S3之间有的关系式.20.如图是2002年8月在北京召开的第24届国际数学家大会会标的图形,它由四个相同的直角三角形拼合而成.若大正方形的面积为13,每个直角三角形直角边的和是5,则中间小正方形的面积为.21.在如图所示的方格(小正方形的边长为1)上,画出一条线段AB,使AB的长为.(要求端点在格点上)第20题图第21题图第22题图22.如图,一个电子跳蚤在4×5的网格(网格中小格子均为边长为1的正方形)中,沿A→B→C→A跳了一圈,它跳的总路程是.23.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=,b=,c=.三.解答题(26-31每小题7分,32-33每小题8分。
第十七章《勾股定理》单元同步检测试题及答案

第十七章《勾股定理》单元检测题题号 一 二 三总分 19 20 21 22 23 24分数一、选择题(每小题3分,共30分)1.分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤321,421,521.其中能构成直角三角形的有( )组 A.2B.3C.4D.52.已知△ABC 中,∠A =12∠B =13∠C ,则它的三条边之比为( ) A.1∶1∶2 B.1∶3∶2 C.1∶2∶3 D.1∶4∶1 3.如图所示,数轴上点A 所表示的数为a ,则a 的值是( )A .5+1B .-5+1C .5-1D . 54.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12:13.其中直角三角形有( )A .1个B .2个C .3个D .4个5.放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )A.600米B.800米C.1000米D.不能确定6.如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( ) A.L 1 B.L 2 C.L 3 D.L 47.如图,一根垂直于地面的旗杆在离地面5m 的B 处撕裂折断,旗杆顶部落在离旗杆底部12m 的A 处,则旗杆折断部分AB 的高度是( ) A .5mB .12mC .13mD .18m7题图 8题图8.如图,P 为等腰△ABC 内一点,过点P 分别作三条边BC 、CA 、AB 的垂线,垂足分别为D 、E 、F ,已知AB=AC =10,BC =12,且PD ︰PE ︰PF =1︰3︰3,则AP 的长为( ) A .43B .203C .7D .89.如图,在△ABC 中,∠ACB =90°,AC =40,CB =9,M ,N 在AB 上且AM =AC ,BN =BC ,则MN 的长为( )[来源:]A .6B .7C .8D .910.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A .25海里B .30海里C .35海里D .40海里二、填空题(每小题4分,共24分)5m BCAD图111.如果梯子的底端离建筑物,那么长的梯子可以到达建筑物的高度是.12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200 m,结果他在水中实际游了520 m,则该河流的宽度为____________ m.13.如图,三个正方形的面积分别为S1=3,S2=2,S3=1,则分别以它们的一边为边围成的三角形中,∠1+∠2=____________度.14.一个直角三角形的两边长分别为5 cm,12 cm,则这个直角三角形的第三边长为____________.15.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为____________.16.如图,一个三级台阶,它的每一级的长、宽和高分别为20,3,2,A和B 是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是____________.17.如图,有一个长为50cm,宽为30cm,高为40cm的长方体木箱,一根长70cm 的木棍________放入(填“能”或“不能”).18.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过路径的长为_______.三、解答题(共46分)19.(6分)如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.20.(8分)如图,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向行了100 3 km到达B点,然后再沿北偏西30°方向行了100 km到达目的地C点,求出A,C两点之间的距离.21.(8分)如图,△ABC中,AB=AC,D是AC边上的一点,CD=1,BC=5,BD =2.(1)求证:△BCD是直角三角形;(2)求△ABC的面积.22.(8分)甲、乙两位探险者今年到沙漠进行探险,没有了水,需要寻找水源,为了不至于走散,他们用两部对话机联系,已知对话机的有效距离为12千米.如图,早晨8:00甲先出发,他以4千米/时的速度向东行走,1小时后乙出发,他以6千米/时的速度向北行进.上午10:00,甲步行到A,乙步行到B,问甲、乙二人相距多远?还能保持联系吗?23.(8分)如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?24.(8分)如图所示,某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?参考答案一.选择题:题号 1 2 3 4 5 6 7 8 9 10 答案 B B C C C B C B C C二.填空题:11.12.480 13.90 14.13 cm或119 cm9216.25 17.能 1841三.解答题:19.解:(1)∵AD⊥BC,∴△ABD和△ACD均为直角三角形.∴AB2=AD2+BD2,AC2=AD2+CD2.又∵AD=12,BD=16,CD=5,∴AB=20,AC=13.∴△ABC的周长为20+13+16+5=54.(2)由(1)知AB=20,AC=13,BC=21,∵AB2+AC2=202+132=569,BC2=212=441,∴AB2+AC2≠BC2.∴△ABC不是直角三角形.20.解:∵AD∥BE,∴∠ABE=∠DAB=60°.又∵∠CBF=30°,∴∠ABC=180°-∠ABE-∠CBF=180°-60°-30°=90°.在Rt△ABC中,AB=1003km,BC=100 km,∴AC=AB2+BC2=(1003)2+1002=200(km),∴A,C两点之间的距离为200 km.21.(1)证明:∵CD=1,BC=5,BD=2,∴CD2+BD2=BC2.∴△BDC是直角三角形.(2)设AB=AC=x,在Rt△ADB中,∵AB2=AD2+BD2,∴x2=(x-1)2+22.解得x=52.∴AC=52.∴S△ABC=12AC·BD=12×52×2=52.22.解:∵早晨8:00甲先出发,他以4千米/时的速度向东行走,1小时后乙出发,他以6千米/时的速度向北行进,∴上午10:00时,OA=8千米,OB=6千米,(3分)∴AB=82+62=10(千米)<12千米,(6分)∴甲、乙二人相距10千米,还能保持联系.(8分)23.解:如图,连接BD.(1分)∵∠A=90°,AB=3m,AD=4m,∴在Rt△ABD 中,由勾股定理得BD2=AB2+AD2=32+42=52,即BD=5m.在△CBD中,CD2=132,BC2=122,BD2=52,∵122+52=132,即BC2+BD2=CD2,∴∠DBC=90°.(5分)故S四边形ABCD =S△BAD+S△DBC=12·AD·AB+12DB·BC=12×4×3+12×5×12=36(m2).(7分)∴学校需投入的资金为36×200=7200(元).(9分)答:学校需要投入7200元购买草皮.(10分)24.解:根据题意,得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30(海里),∵242+182=302,即PQ2+PR2=QR2,∴∠QPR=90°.由“远航号”沿东北方向航行可知,∠QPS=45°,则∠SPR=45°,即“海天”号沿西北方向航行.。
人教版八年级下册数学 第十七章 勾股定理 单元测试

人教版八年级下册数学第十七章 勾股定理 单元测试一.单选题(本大题共12小题,每小题3分,共36分)1.在△ABC 中,∠C =90°,AB =3,则222AB BC AC ++的值为( )A .24B .18C .12D .92.已知点M 的坐标为()3,4-,则下列说法正确的是( )A .点M 在第二象限内B .点M 到x 轴的距离为3C .点M 关于y 轴对称的点的坐标为()3,4D .点M 到原点的距离为53.如图,八年级一班的同学准备测量校园人工湖的深度,他们把一根竹竿AB 竖直插到水底,此时竹竿AB 离岸边点C 处的距离0.8CD =米.竹竿高出水面的部分AD 长0.2米,如果把竹竿的顶端A 拉向岸边点C 处,竿顶和岸边的水面刚好相齐,则人工湖的深度BD 为( )A .1.5米B .1.7米C .1.8米D .0.6米4.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .4.75 cmC .6 cmD .5cm5.《九章算术》中有一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:如图,一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?若设折断处离地面x 尺,则下面所列方程正确的是( )A .2223(1)x x +=-B .222(1)3x x +-=C .222(10)3x x +-=D .2223(10x)x +=-6.如图,x 轴、y 轴上分别有两点A(3,0)、B(0,2),以点A 为圆心,AB 为半径的弧交x 轴负半轴于点C ,则点C 的坐标为( )A .(﹣1,0)B .(20) C .3,0) D .(30)7.如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE V 沿DE 翻折,使点A 与点B 重合,则CE 的长为( )A .198B .2C .254D .748.如图,Rt ABC 中,8,6,90AB BC B ==∠=︒,M ,N 分别是边,AC AB 上的两个动点.将ABC 沿直线MN 折叠,使得点A 的对应点D 落在BC 边的三等分点处,则线段BN 的长为( )A .3B .53C .3或53D .3或1549.△ABC 的三边长a ,b ,c(b ﹣12)2+|c ﹣13|=0,则△ABC 的面积是( )A .65B .60C .30D .2610.如图,斜靠在墙上的一根竹竿,AB =10m ,BC =6m ,若A 端沿垂直于地面的方向AC 下移2m ,则B 端将沿CB 方向移动的距离是( )米.A .1.6B .1.8C .2D .2.211.中国古代称直角三角形为勾股形,如果勾股形的三边长为三个正整数,则称三边长叫“勾股数”;如果勾股形的两直角边长为正整数,那么称斜边长的平方叫“整弦数”对于以下结论:①20是“整弦数”;②两个“整弦数”之和一定是“整弦数”;③若c 2为“整弦数”,则c 不可能为正整数;④若m =a 12+b 12,n =a 22+b 22,11a b ≠22a b ,且m ,n ,a 1,a 2,b 1,b 2均为正整数,则m 与n之积为“整弦数”;⑤若一个正奇数(除1外)的平方等于两个连续正整数的和,则这个正奇数与这两个连续正整数是一组“勾股数”.其中结论正确的个数为( )A .1个B .2个C .3个D .4个12.如图所示,ABCD 是长方形地面,长20AB =,宽10AD =,中间整有一堵砖墙高2MN =,一只蚂蚁从A 点爬到C 点,它必须翻过中间那堵墙,则它至少要走( )A .20B .24C .25D .26二.填空题(本大题共8小题,每小题3分,共24分)13.一根直立于水中的芦节(BD )高出水面(AC )2米,一阵风吹来,芦苇的顶端D 恰好到达水面的C 处,且C 到BD 的距离AC =6米,水的深度(AB )为________米14.如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交边AB 于点E .若5AC =,4BE =,45B ∠=︒,则AB 的长为_________.15.如图所示,在四边形ABCD 中,AB =5,BC =3,DE ⊥AC 于E ,DE =3,S △DAC =6,则∠ACB 的度数等于 _____.16.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草.则他们仅仅少走了 _____步路.(假设2步为1米)17.观察下列几组勾股数,并填空:①6,8,10,②8,15,17,③10,24,26,④12,35,37,则第⑥组勾股数为______.18.如图,AB ⊥BC 于点B ,AB ⊥AD 于点A ,点E 是CD 中点,若BC =5,AD =10,BE =132,则AB 的长是 _____.19.如图,Rt △ABC ≌Rt △FDE ,∠ABC =∠FDE =90°,∠BAC =30°,AC =4,将Rt△FDE 沿直线l 向右平移,连接BD 、BE ,则BD+BE 的最小值为___.20.如图所示的是我国古代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由4个全等的直角三角形与1个小正方形拼成的一个大正方形,若大正方形的边长为5,小正方形的边长为1.(1)如图1,若用a ,b 表示直角三角形的两条直角边(a<b ),则ab=______.(2)如图2,若拼成的大正方形为正方形ABCD ,中间的小正方形为正方形EFGH ,连接AC ,交BG 于点P ,交DE 于点M ,AFP CGP S S -△△=______.三.解答题(本大题共5小题,每小题8分,共40分)21.在ABC 中,90C =∠,3AC =,4CB =,CD 是斜边AB 上高.(1)求ABC 的面积;(2)求斜边AB ;(3)求高CD .22.如图,在△ABC 中,∠B =45°,∠C =30°,边AC 的垂直平分线分别交边BC 、AC 于点D 、E ,DC =6.求AB 的长.23.琪琪与婷婷进行遥控赛车游戏,终点为点A ,琪琪的赛车从点C 出发,以4米/秒的速度由西向东行驶,同时婷婷的赛车从点B 出发,以3米/秒的速度由南向北行驶(如图).已知赛车之间的距离小于或等于25米时,遥控信号会产生相互干扰,40AC =米,30AB =米,(1)出发3秒钟时,遥控信号是否会产生相互干扰?(2)当两赛车距A 点的距离之和为35米时,遥控信号是否会产生相互干扰?24.先阅读下列一段文字,再解答问题:已知在平面内有两点111222(,),(,)P x y P x y ,其两点间的距离公式为12PP 同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为21x x -或21y y -(1)已知点M (2,4),N (3,8),试求M ,N 两点间的距离;(2)已知点(0,6)(3,2),(3,,2)A B C -,判断线段AB ,BC ,AC 中哪两条是相等的?并说明理由.25.在平面直角坐标系xOy中,对于点A,规定点A的α变换和β变换.α变换:将点A向左平移一个单位长度,再向上平移两个单位长度;β变换:将点A向右平移三个单位长度,再向下平移一个单位长度(1)若对点B进行α变换,得到点(1,1),则对点B进行β变换后得到的点的坐标为.=,求m的值.(2)若对点C(m,0)进行α变换得到点P,对点C(m,0)进行β变换得到点Q,OP OQ(3)点D为y轴的正半轴上的一个定点,对点D进行α变换后得到点E,点F为x轴上的一个动点,对点+的最小值为D的坐标.F进行β变换之后得到点G,若DG EF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABC 为直角三角形的是( )
A.∠A+∠B=∠C
B.∠A∶∠B∶∠C =1∶2∶3
C. a2 c2 b2
D. a ∶ b ∶ c =3∶4∶6
8.如图,在 Rt△ABC 中,∠B=90°,以 AC 为直径的圆恰好
B
过点 B.若 AB=8,BC=6,则阴影部分的面积是( )
A.100π 24 B.100π 48 C. 25π 24 D. 25π 48
C
A
9.如图所示为一种“羊头”形图案,其作法是:从正方 形①开始,以它的一边为斜边,向外作等腰直角三角形, 然后再以其直角边为边,分别向外作正方形②和②',…, 依此类推,若正方形①的面积为 64,则正方形⑤的面积 为( )
③' ④'
②' ② ①
③ ④
A.2
B.4
C.8
D.16
10.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾
二、填空题(每小题 4 分,共 20 分)
11.如图,字母 B 所代表的正方形的面积为
.
D.121
6.若直角三角形的三边长为 6,8,m,则 m2 的值为( )
A.10
B.100
C. 28
D.100 或 28
7.在 Rt△ABC 中,∠C=90°,AC=9,BC=12,则点 C 到斜边 AB 的距离是( )
A. 36 5
B. 12 5
C.9
D.6
25 B
169
(11 题图)
(14 题图)
Q 5cm
2cm 4cm P
(15 题图)
1
12.等腰△ABC 的腰长 AB 为 10 cm,底边 BC 为 16 cm,则底边上的高为
. B 的正南方向 120 n mile 的 A 处,以 65 n mile/h 的速度要将一批货物送到货轮上,问
(1)试判断△BDE 的形状,并说明理由;
C'
三、解答题(共 50 分)
(2)若 AB 4 , AD 8,求△BDE 的面积.
A
E
D
16.(本小题满分 12 分,每题 6 分)
(1)如图所示, B OAF 90,BO=3 cm,AB=4 cm,AF=12 cm,求图中半圆
B
C
的面积.
O
20.(本小题满分 12 分)
忽略不计)范围为____________.
19.(本小题满分 10 分)
A
15.如图,长方体的底面边长分别为 2 cm 和 4 cm,高为 5 cm.若一只蚂蚁从 P
点开始经过 4 个侧面爬行一圈到达 Q 点,则蚂蚁爬行的最短路径长为
cm.
如图,将长方形 ABCD 沿着对角线 BD 折叠,使点 C 落在 C '处, BC '交 AD 于点 E.
B
如图,△ ABC 是直角三角形,∠BAC=90°,D 是斜边 BC 的中点,E,F 分别是
(2)如图,在 Rt△ABC 中,∠C=90°,AC=8,在△ABE
A
中,DE 是 AB 边上的高,DE=12,S△ABE=60,求 BC 的长.
A
F E
AB,AC 边上的点,且 DE⊥DF. (1)如图 1,试说明 BE2 CF 2 EF 2 ;
三、股四,则弦五”的记载.如图 1 是由边长
相等的小正方形和直角三角形构成的,可以用
其面积关系验证勾股定理.图 2 是由图 1 放入
长方形内得到的,∠BAC=90°,AB=3,AC=4,
点 D,E,F,G,H,I 都在长方形 KLMJ 的边
上,则长方形 KLMJ 的面积为( )
A.90
B.100
C.110
B.3
C.4
) D.5
3.三角形的三边长 a , b , c 满足 a b2 c2 2ab ,则这个三角形是( )
A.等边三角形
B.钝角三角形 C.直角三角形 D.锐角三角形
4.已知直角三角形的斜边长为 10,两直角边的比为 3∶4,则较短直角边的长为( )
A.3
B.6
C.8
D.5
5.△ABC 中,∠A,∠B,∠C 的对边分别记为 a , b , c ,由下列条件不能判定△
《勾股定理》单元检测题
一、选择题(每小题 3 分,共 30 分) 1.如图,阴影部分是一个长方形,它的面积是( )
A.3 cm2
4cm
3cm
B.4 cm2
1cm
C.5 cm2
F
A
B
D.6 cm2
D
(1 题图)
E (2 题图C)
2.如图,正方形 ABCD 的边长为 1,则正方形 ACEF 的面积为(
A.2
D
17.(本小题满分 8 分)
C
B
如图所示的一块草坪,已知 AD=12m,CD=9m,∠ADC=90°,AB=39 m,BC=36 m,求
这块草坪的面积.
C
B
D
18.(本小题满分 8 分)
A
如图,一艘货轮在 B 处向正东方向航行,船速为 25 n mile/h,此时,一艘快艇在
(2)如图 2,若 AB=AC,BE=12,CF=5,求△ DEF 的面积.
A
E F
A E
F
B 图1 D2
2
13.一艘轮船以 16 km/h 的速度离开港口向东北方向航行,另一艘轮船同时离开 快艇最快需要多少时间?
B
港口以 30 km/h 的速度向东南方向航行,它们离开港口半小时后相距_______ km.
14.如图是一个圆柱形饮料罐,底面半径是 5,高是 12,上底面中心有一个小
圆孔,则一条到达底部的直吸管在罐内部分 a 的长度(罐壁的厚度和小圆孔的大小