2014年广州市中考数学试题及答案

合集下载

广东省2014年中考数学试题及答案

广东省2014年中考数学试题及答案

2014年广东省初中毕业生学业考试数学试卷1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号,姓名.考场号.座位号.用2B 铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦擦干净后,再选涂其他答案标号;不能答在试卷上.4.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔.圆珠笔和涂改液.不按以上要求作答的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.一.选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 在1,0,2,-3这四个数中,最大的数是( )A.1B.0C.2D.-32. 在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D. 3. 计算3a -2a 的结果正确的是( )A.1B.aC.-aD.-5a 4. 把39x x -分解因式,结果正确的是( )A.()29x x -B.()23x x - C.()23x x + D.()()33x x x +-5. 一个多边形的内角和是900°,这个多边形的边数是( ) A.10 B.9 C.8 D.76. 一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A.47 B.37 C.34D.137. 如图7图,□ABCD 中,下列说法一定正确的是(A.AC=BDB.AC ⊥BDC.AB=CDD.AB=BC 题7图D8. 关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A.94m >B.94m <C.94m =D.9-4m <9. 一个等腰三角形的两边长分别是3和7,则它的周长为( ) A.17 B.15 C.13 D.13或1710. 二次函数()20y ax bx c a =++≠的大致图象如题10图所示, 关于该二次函数,下列说法错误的是( )A.函数有最小值B.对称轴是直线x =21C.当x <21,y 随x 的增大而减小 D.当 -1 < x < 2时,y >0二. 填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11. 计算32x x ÷= ;12. 据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ;13. 如题13图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若BC=6,则DE= ;题13图 题14图14. 如题14图,在⊙O 中,已知半径为5,弦AB 的长为8, 那么圆心O 到AB 的距离为 ;15. 不等式组2841+2x x x ⎧⎨-⎩<>的解集是 ;16. 如题16图,△ABC 绕点A 顺时针旋转45°得到△C B A ''若∠BAC=90°,AB=AC=2, 题16图 则图中阴影部分的面积等于 .BB三.解答题(一)(本大题3小题,每小题6分,共18分)17.()11412-⎛⎫-+-- ⎪⎝⎭18. 先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x =19. 如题19图,点D 在△ABC 的AB 边上,且∠ACD=∠A. (1)作∠BDC 的平分线DE ,交BC 于点E(2)在(1)的条件下,判断直线DE 与直线 AC 的位置关系(不要求证明).题19图四.解答题(二)(本大题3小题,每小题7分,共21分)20. 如题20图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60°(A.B.D 三点在同一直线上)。

2014年广东省广州市中考数学试卷

2014年广东省广州市中考数学试卷

2014年广东省广州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)..C D.3.(3分)(2014•广州)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=().C D.+=C5.(3分)(2014•广州)已知⊙O1和⊙O2的半径分别为2cm和3cm ,若O1O2=7cm,则⊙O1和⊙O2的位置关系是6.(3分)(2014•广州)计算,结果是()D.7.(3分)(2014•广州)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,8.(3分)(2014•广州)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=().D9.(3分)(2014•广州)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列10.(3分)(2014•广州)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG 相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2•S△EFO=b 2•S△DGO.其中结论正确的个数是()二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2014•广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是_________°.12.(3分)(2014•广州)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为_________.13.(3分)(2014•广州)代数式有意义时,x应满足的条件为_________.14.(3分)(2014•广州)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为_________.(结果保留π)15.(3分)(2014•广州)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:_________,该逆命题是_________命题(填“真”或“假”).16.(3分)(2014•广州)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为_________.三、解答题(共9小题,满分102分)17.(9分)(2014•广州)解不等式:5x﹣2≤3x,并在数轴上表示解集.18.(9分)(2014•广州)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.19.(10分)(2014•广州)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.20.(10分)(2014•广州)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.21.(12分)(2014•广州)已知一次函数y=kx﹣6的图象与反比例函数y=﹣的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.22.(12分)(2014•广州)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(12分)(2014•广州)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.24.(14分)(2014•广州)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.25.(14分)(2014•广州)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD 上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF 的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.2014年广东省广州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)..C D.3.(3分)(2014•广州)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=().C D.=.C+=,错误;5.(3分)(2014•广州)已知⊙O1和⊙O2的半径分别为2cm和3cm,若O1O2=7cm,则⊙O1和⊙O2的位置关系是6.(3分)(2014•广州)计算,结果是()D.=7.(3分)(2014•广州)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,8.(3分)(2014•广州)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=().D==,AC=AB=BC=9.(3分)(2014•广州)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列10.(3分)(2014•广州)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG 相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2•S△EFO=b 2•S△DGO.其中结论正确的个数是()==()二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2014•广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140°.12.(3分)(2014•广州)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为10.13.(3分)(2014•广州)代数式有意义时,x应满足的条件为x≠±1.14.(3分)(2014•广州)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为24π.(结果保留π)15.(3分)(2014•广州)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题(填“真”或“假”).16.(3分)(2014•广州)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.+);时,有最小值;<∴最小值为故答案为三、解答题(共9小题,满分102分)17.(9分)(2014•广州)解不等式:5x﹣2≤3x,并在数轴上表示解集.18.(9分)(2014•广州)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.19.(10分)(2014•广州)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.±20.(10分)(2014•广州)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.=.21.(12分)(2014•广州)已知一次函数y=kx﹣6的图象与反比例函数y=﹣的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.,根据反比例函数与一次函数的交点问题,解方程组得,解方程组或,22.(12分)(2014•广州)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.=323.(12分)(2014•广州)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.,得出=;=,cosC==4B=,,DM==24.(14分)(2014•广州)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.x xx x(﹣﹣(,﹣,==(,﹣),﹣﹣)y=t+,+t+=0t=故将抛物线向左平移25.(14分)(2014•广州)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD 上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF 的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.的比,然后利用=的值,进而求出BCBFCG=x=CE==的值为======r=BE=OP=r=OM=((AD===2,,,(舍去)32+20,=.。

2014广州中考数学试题

2014广州中考数学试题

##市20##中考数学试卷一、选择题〔共10小题,每小题3分,满分30分〕 1、a 〔a ≠0〕的相反数是 A . ﹣a B . a 2 C . |a| D . 1/a 2、下列图形中,是中心对称图形的是 A . B . C .D .3、如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tanA= A .3/5 B .4/5 C . 3/4 D .4/34、下列运算正确的是A . 5ab ﹣ab=4B .112a b a b +=+ C . a 6÷a 2=a 4 D . 〔a 2b 〕3=a 5b 3 5、已知⊙O 1和⊙O 2的半径分别为2cm 和3cm,若O 1O 2=7cm,则⊙O 1和⊙O 2的位置关系是 A . 外离 B . 外切 C . 内切 D . 相交 6、计算,结果是A .x ﹣2 B . x +2C .D .7、在一次科技作品制作比赛中,某小组八件作品的成绩〔单位:分〕分别是7,10,9,8, 7,9,9,8,对这组数据,下列说法正确的是 A . 中位数是8 B . 众数是9 C . 平均数是8 D . 极差是78、将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它 形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC= A . B . 2 C . D . 2 9、已知正比例函数y=kx 〔k <0〕的图象上两点A 〔x 1,y 1〕、B 〔x 2,y 2〕,且x 1<x 2,则下 列不等式中恒成立的是 A . y 1+y 2>0 B . y 1+y 2<0 C . y 1﹣y 2>0 D . y 1﹣y 2<0 10、如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE,DE 和 FG 相交于点O,设AB=a,CG=b 〔a >b 〕.下列结论:①△BCG ≌△DCE ;②BG ⊥DE ;③=;④〔a ﹣b 〕2•S △EFO =b 2•S △DGO .其中结论正确的个数是 A . 4个 B . 3个 C . 2个 D . 1个 二、填空题〔共6小题,每小题3分,满分18分〕11、△ABC 中,已知∠A=60°,∠B=80°,则∠C 的外角的度数是.12、已知OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA,PE ⊥OB,垂足分别为点D 、 E,PD=10,则PE 的长度为. 13、代数式有意义时,x 应满足的条件为.14、一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为.〔结果保留π〕 15、已知命题:"如果两个三角形全等,那么这两个三角形的面积相等.〞写成它的逆命题:,该逆命题是命题〔填"真〞或"假〞〕.16、若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1〔x2+x1〕+x22的最小值为.三、解答题〔共9小题,满分102分〕17、解不等式:5x﹣2≤3x,并在数轴上表示解集.18、如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.19、已知多项式A=〔x+2〕2+〔1﹣x〕〔2+x〕﹣3.〔1〕化简多项式A;〔2〕若〔x+1〕2=6,求A的值.20、某校初三〔1〕班50名学生需要参加体育"五选一〞自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球 b 0.32推铅球 5 0.10合计50 1〔1〕求a,b的值;〔2〕若将各自选项目的人数所占比例绘制成扇形统计图,求"一分钟跳绳〞对应扇形的圆心角的度数;〔3〕在选报"推铅球〞的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中治多有一名女生的概率.21、已知一次函数y=kx﹣6的图象与反比例函数y=﹣的图象交于A、B两点,点A的横坐标为2.〔1〕求k的值和点A的坐标;〔2〕判断点B所在象限,并说明理由.22、从##到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.〔1〕求普通列车的行驶路程;〔2〕若高铁的平均速度〔千米/时〕是普通列车平均速度〔千米/时〕的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23、如图,△ABC中,AB=AC=4,cosC=.〔1〕动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E〔保留作图痕迹,不写作法〕;〔2〕综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.24、已知平面直角坐标系中两定点A〔﹣1,0〕、B〔4,0〕,抛物线y=ax2+bx﹣2〔a≠0〕过点A,B,顶点为C,点P〔m,n〕〔n<0〕为抛物线上一点.〔1〕求抛物线的解析式和顶点C的坐标;〔2〕当∠APB 为钝角时,求m 的取值X 围;〔3〕若m >3/2,当∠APB 为直角时,将该抛物线向左或向右平移t 〔0<t <5/2〕个单位,点C 、 P 平移后对应的点分别记为C ′、P ′,是否存在t,使得首位依次连接A 、B 、P ′、C ′所构成的多边形的周长最短?若存在,求t 的值并说明抛物线平移的方向;若不存在, 请说明理由.25、如图,梯形ABCD 中,AB ∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E 为线段CD上一动点〔不与点C 重合〕,△BCE 关于BE 的轴对称图形为△BFE,连接CF .设CE=x, △BCF 的面积为S 1,△CEF 的面积为S 2.〔1〕当点F 落在梯形ABCD 的中位线上时,求x 的值; 〔2〕试用x 表示,并写出x 的取值X 围;〔3〕当△BFE 的外接圆与AD 相切时,求的值.2014##中考参考答案1-5 ADDCA 6-10 BBACB 11、140 12、10 13、1x ≠± 14、24π 15、如果两个三角形的面积相等,那么这两个三角形全等 假16、5/4 17、解:523x x -≤数轴如图:18、证明:四边形ABCD 是平行四边形,∴在AOE ∆和COF ∆中, ∴AOE ∆≌COF ∆<ASA >19、解:〔1〕原式2244223A x x x x x =++++---33x =+〔2〕2(1)6x +=16x ∴+=± ∴当161x =-时,333(61)336A x =+=-+=当261x =--时,333(61)336A x =+=--+=- 20、解:〔1〕120.2450a ==500.3216b =⨯= 〔2〕一分钟跳绳对应扇形的圆心角的度数为:0.16360=57.6⨯︒︒〔3〕∵依题意设3名男生分别为A 、B 、C ;2名女生为D 、E 画树状图得:∴从5名学生中随机选取2人共有20种可能,其中至多有1名女生的情况有18种可能,∴189=2010P=(至多有一名女生的概率)21、解:〔1〕当2x=时,代入反比例函数中,y k=-,所以点A坐标为(2,)k-把A的坐标代入一次函数6y kx=-中,解得2k=,所以点A的坐标为(2,2)-〔2〕一次函数为:26y x=-,反比例函数4yx=-联立两个函数:264y xyx=-⎧⎪⎨=-⎪⎩得到22640x x--=解方程22640x x--=得122,1x x==把1x=代入一次函数中,4y=-,所以点(1,4)B-,在第四象限.22、解〔1〕400 1.3520⨯=〔千米〕答:普通列车的行驶路程为520千米.〔2〕设普通列车平均速度为x千米/小时,则高铁的平均速度为2.5x千米/小时,得:解方程可得:120x=经检验120x=是原分式方程的解答:高铁的平均速度为300千米/小时.23、解:〔1〕如图所示,上图即是所求作.〔2〕如图所示,连接AE,AE是O的直径,90AEC∴∠=︒,即AE BC⊥,又AB AC=∴AE平分BAC∠,〔3〕如图所示,作DF BC⊥于点F,连接CD,则90ADC∠=︒AB AC=,ABC ACB∴∠=∠在Rt ABE ∆中,cos cos BE ABC ACB AB ∠=∠=在Rt BCD ∆中,cos BD DBC BC ∠=24、解:<1>代入()10A ,-,()40B ,二次函数:22y ax bx =+-得: 0201642a b a b =--⎧⎨=+-⎩, 解得:1232a b ⎧=⎪⎪⎨⎪=-⎪⎩ ∴抛物线解析式为:213222y x x =--.对称轴为直线322b x a =-=,代入213222y x x =--则顶点32528C ,⎛⎫- ⎪⎝⎭. <2>如图所示,设抛物线与y 轴交点D ,连接AD,BD ∵()()()104002A ,,B ,,D ,--由勾股定理得:22125AD =+=, 224225BD =+=,145AB =+= ∴222AD BD AB +=,∴ABD ∆为直角三角形,90ADB ∠=︒. 由图可得:当10m -<<时,APB ∠为钝角.∵抛物线关于轴对称32x =对称,∴D 的对称点'D 的坐标为:()32,-由图可得:当34m <<时,APB ∠为钝角.综上所述:当10m -<<或34m <<时,APB ∠为钝角. 〔3〕线段AB 和C P ''的长是定值,∴要使四边形ABP C ''的周长最短,只要AC BP ''+最短.如果将C P ''向右平移,显然有AC BP AC BP ''+>+,∴不存在某个位置,使四边形ABP C ''的周长最短,应将线段C P ''向左平移.由题知(32)P -,, 设线段C P ''向左移了t 个单位,则P '为(3,2)t --,C '为325(,)28t --, 作C '关于x 轴的对称点C ''325(,)28t -,此时AC AC '''=,再作平行四边形ABB C '''. 5AB =,B '∴为1325(,)28t -,此时AC BB '''=,连接BP ',B P ''交x 轴于M .AC BP BB BP B P ''''''∴+=+≥,∴AC BP ''+最小值B P ''.此时,B 在直线B P ''上,设直线B P ''的解析式(0)y kx b k =+≠,代入B P '',得2(3)1513()82k t b k t b ①②又B 在B P ''上∴04kb ③,联立①②③,得1541t25、解:<1>如图所示: 〔1〕方法一:MN 是梯形的中位线,∵CB 4BCE =,关于BE 轴对称图形为BFE∵MN 是中位线,即N 是CB 的中点 在直角三角形FNB 中,所以0NBF 6∠=︒,所以0CBE FBE 3∠=∠=︒ 在直角三角形CBE 中,∴433x =方法二:MN 是梯形的中位线,∵CB 4BCE =,关于BE 轴对称图形为BFE ∵MN 是中位线,即N 是CB 的中点 在直角三角形FNB 中, 过E 作EG MN ⊥,如图所示23GF x =, 2GE =在直角三角形EGF 中,所以()22223x x=+解得433x =〔2〕如图,FC 与EB 相交于点O∵BCE 关于BE 轴对称图形为BFE ∴EOC EOF,BOC BOF ≅≅∴()22210516BCO ECOs s EC x x s sCB ⎛⎫===<≤ ⎪⎝⎭〔3〕如图所示:设BFE 外接圆G 的半径是r ,BE 为直径,切点为Q ,过A 作AJ CD ⊥,与MG 交于点P ,过G 作GK DC ⊥∵MG 是四边形DABE 的中位线∴()12MG DE AB =+∴1422x MG ,MA AD =-===在RT EKG 中,由〔1〕〔2〕可得:2641760x x +-=解得132x =--〔舍去〕232,x =-+。

2014年广东省广州市中考真题数学

2014年广东省广州市中考真题数学

2014年广东省广州市中考真题数学一、选择题(共10小题,每小题3分,满分30分)1.(3分)a(a≠0)的相反数是( )A. -aB. a2C. |a|D.解析:a的相反数为-a.答案:A.2.(3分)下列图形中,是中心对称图形的是( )A.B.C.D.解析:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;答案:D.3.(3分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=( )A.B.C.D.解析:在直角△ABC中,∵∠ABC=90°,∴tanA==.答案:D.4.(3分)下列运算正确的是( )A.5ab-ab=4B. +=C. a6÷a2=a4D. (a2b)3=a5b3解析:A、原式=4ab,错误;B、原式=,错误;C、原式=a4,正确;D、原式=a6b3,错误,答案:C5.(3分)已知⊙O1和⊙O2的半径分别为2cm和3cm,若O1O2=7cm,则⊙O1和⊙O2的位置关系是( )A.外离B. 外切C. 内切D. 相交解析:∵⊙O1与⊙O2的半径分别为3cm、2cm,且圆心距O1O2=7cm,又∵3+2<7,∴两圆的位置关系是外离.答案:A.6.(3分)计算,结果是( )A.x-2B.x+2C.D.解析:==x+2,答案:B.7.(3分)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是( )A.中位数是8B.众数是9C.平均数是8D.极差是7解析:A、按从小到大排列为:7,7,8,8,9,9,9,10,中位数是:(8+9)÷2=8.5,故本选项错误;B、9出现了3次,次数最多,所以众数是9,故本选项正确;C、平均数=(7+10+9+8+7+9+9+8)÷8=8.375,故本选项错误;D、极差是:10-7=3,故本选项错误.答案:B.8.(3分)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=( )A.B. 2C.D. 2解析:如图1,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2,∴AB=BC===,如图2,∠B=60°,连接AC,∴△ABC为等边三角形,∴AC=AB=BC=.9.(3分)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是( )A. y1+y2>0B. y1+y2<0C. y1-y2>0D. y1-y2<0解析:∵直线y=kx的k<0,∴函数值y随x的增大而减小,∵x1<x2,∴y1>y2,∴y1-y2>0.答案:C.10.(3分)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG 相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a-b)2·S△EFO=b2·S△DGO.其中结论正确的个数是( )A.4个B. 3个C. 2个D. 1个解析:①∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,在△BCG和△DCE中,,∴△BCG≌△DCE(SAS),②∵△BCG≌△DCE,∴∠CBG=∠CDE,又∠CBG+∠BGC=90°,∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH⊥DE;③∵四边形GCEF是正方形,∴GF∥CE,∴=,∴=是错误的.④∵DC∥EF,∴∠GDO=∠OEF,∵∠GOD=∠FOE,∴△OGD∽△OFE,∴=()2=()2=,∴(a-b)2·S△EFO=b2·S△DGO.故应选B二、填空题(共6小题,每小题3分,满分18分)11.(3分)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是°.解析:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.答案:140.12.(3分)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为 .解析:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=10.答案:10.13.(3分)代数式有意义时,x应满足的条件为.解析:由题意得,|x|-1≠0,解得x≠±1.答案:x≠±1.14.(3分)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为.(结果保留π)解析:∵如图所示可知,圆锥的高为4,底面圆的直径为6,∴圆锥的母线为:5,∴根据圆锥的侧面积公式:πrl=π×3×5=15π,底面圆的面积为:πr2=9π,∴该几何体的表面积为24π.故答案为:24π.15.(3分)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:,该逆命题是命题(填“真”或“假”). 解析:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题,答案:如果两个三角形的面积相等,那么这两个三角形全等,假.16.(3分)若关于x的方程x2+2mx+m2+3m-2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.解析:由题意知,方程x2+2mx+m2+3m-2=0有两个实数根,则△=b2-4ac=4m2-4(m2+3m-2)=8-12m≥0,∴m≤,∵x1(x2+x1)+x22=(x2+x1)2-x1x2=(-2m)2-(m2+3m-2)=3m2-3m+2=3(m2-m++)+2=3(m-)2 +;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;答案:.三、解答题(共9小题,满分102分)17.(9分)解不等式:5x-2≤3x,并在数轴上表示解集.解析:移项,合并同类项,系数化成1即可.答案:5x-2≤3x,5x-3x≤2,2x≤2,x≤1,在数轴上表示为:.18.(9分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.解析:根据平行四边形的性质得出OA=OC,AB∥CD,推出∠EAO=∠FCO,证出△AOE≌△COF 即可.答案:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA).19.(10分)已知多项式A=(x+2)2+(1-x)(2+x)-3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.解析:(1)先算乘法,再合并同类项即可;(2)求出x+1的值,再整体代入求出即可.答案:(1)A=(x+2)2+(1-x)(2+x)-3=x2+4x+4+2+x-2x-x2-3=3x+3;(2)∵(x+1)2=6,∴x+1=±,∴A=3x+3=3(x+1)=±3.∴A=±3.20.(10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.解析:(1)根据表格求出a与b的值即可;(2)根据表示做出扇形统计图,求出“一分钟跳绳”对应扇形的圆心角的度数即可;(3)列表得出所有等可能的情况数,找出抽取的两名学生中至多有一名女生的情况,即可求出所求概率.答案:(1)根据题意得:a=1-(0.18+0.16+0.32+0.10)=0.24;b=×0.32=16;(2)作出扇形统计图,如图所示:根据题意得:360°×0.16=57.6°;(3)列表如下:所有等可能的情况有20种,其中抽取的两名学生中至多有一名女生的情况有18种,则P==.21.(12分)已知一次函数y=kx-6的图象与反比例函数y=-的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.解析:(1)先把x=2代入反比例函数解析式得到y=-k,则A点坐标表示为(2,-k),再把A(2,-k)代入y=kx-6可计算出k,从而得到A点坐标;(2)由(1)得到一次函数与反比例函数的解析式分别为y=2x-6,y=-,根据反比例函数与一次函数的交点问题,解方程组即可得到B点坐标.答案:(1)把x=2代入y=-得y=-k,把A(2,-k)代入y=kx-6得2k-6=k,解得k=2,所以A点坐标为(2,-2);(2)B点在第四象限.理由如下:一次函数与反比例函数的解析式分别为y=2x-6,y=-,解方程组得或,所以B点坐标为(1,-4),所以B点在第四象限.22.(12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.解析:(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;(2)设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可;答案:(1)根据题意得:400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,根据题意得:-=3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.23.(12分)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.解析:(1)先作出AC的中垂线,再画圆.(2)边接AE,AE是BC的中垂线,∠DAE=∠CAE,得出=;(3)利用△BDE∽△BCA求出BD,再利用余弦求出BM,用勾股定理求出DM.答案:(1)如图(2)如图,连接AE,∵AC为直径,∴∠AEC=90°,∵AB=AC,∴∠DAE=∠CAE,∴=;(3)如图,连接AE,DE,作DM⊥BC交BC于点M,∵AC为直径,∴∠AEC=90°,∵AB=AC=4,cosC=.∴EC=BE=4,∴BC=8,∵点A、D、E、C共圆∴∠ADE+∠C=180°,又∵∠ADE+∠BDE=180°,∴∠BDE=∠C,∴△BDE∽△BCA,∴=,即BD·BA=BE·BC,∴BD×4=4×8∴BD=,∵∠B=∠C,∴cos∠C=cos∠B=,∴=,∴BM=,∴DM===.24.(14分)已知平面直角坐标系中两定点A(-1,0)、B(4,0),抛物线y=ax2+bx-2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.解析:(1)待定系数法求解析式即可,求得解析式后转换成顶点式即可.(2)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以-1<m <0,或3<m<4.(3)左右平移时,使A′D+DB″最短即可,那么作出点C′关于x轴对称点的坐标为C″,得到直线P″C″的解析式,然后把A点的坐标代入即可.答案:(1)∵抛物线y=ax2+bx-2(a≠0)过点A,B,∴,解得:,∴抛物线的解析式为:y=x2-x-2;∵y=x2-x-2=(x-)2-,∴C(,-).(2)如图1,以AB为直径作圆M,则抛物线在圆内的部分,能是∠APB为钝角,∴M(,0),⊙M的半径=.∵P是抛物线与y轴的交点,∴OP=2,∴MP==,∴P在⊙M上,∴P的对称点(3,-2),∴当-1<m<0或3<m<4时,∠APB为钝角.(3)存在;抛物线向左或向右平移,因为AB、P′C′是定值,所以A、B、P′、C′所构成的多边形的周长最短,只要AC′+BP′最小;第一种情况:抛物线向右平移,AC′+BP′>AC+BP,第二种情况:向左平移,如图2所示,由(2)可知P(3,-2),又∵C(,-),∴C'(-t,-),P'(3-t,-2),∵AB=5,∴P″(-2-t,-2),要使AC′+BP′最短,只要AC′+AP″最短即可,点C′关于x轴的对称点C″(-t,),设直线P″C″的解析式为:y=kx+b,,解得,∴直线y=x+t+,点A在直线上,∴-+t+=0,∴t=.故将抛物线向左平移个单位连接A、B、P′、C′所构成的多边形的周长最短.25.(14分)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD 上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF 的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.解析:(1)利用梯形中位线的性质,证明△BCF是等边三角形;然后解直角三角形求出x的值;(2)利用相似三角形(或射影定理)求出线段EG与BE的比,然后利用=求解;(3)依题意作出图形,当△BFE的外接圆与AD相切时,线段BC的中点O成为圆心.作辅助线,如答图3,构造一对相似三角形△OMP∽△ADH,利用比例关系列方程求出x的值,进而求出的值.答案:(1)当点F落在梯形ABCD中位线上时,如答图1,过点F作出梯形中位线MN,分别交AD、BC于点M、N.由题意,可知ABCD为直角梯形,则MN⊥BC,且BN=CN=BC.由轴对称性质,可知BF=BC,∴BN=BF,∴∠BFN=30°,∴∠FBC=60°,∴△BFC为等边三角形.∴CF=BC=4,∠FCB=60°,∴∠ECF=30°.设BE、CF交于点G,由轴对称性质可知CG=CF=2,CF⊥BE.在Rt△CEG中,x=CE===.∴当点F落在梯形ABCD的中位线上时,x的值为.(2)如答图2,由轴对称性质,可知BE⊥CF.∵∠GEC+∠ECG=90°,∠GEC+∠CBE=90°,∴∠GEC=∠CBE,又∵∠CGE=∠ECB=90°,∴Rt△BCE∽Rt△CGE,∴,∴CE2=EG·BE①,同理可得:BC2=BG·BE②,①÷②得:==.∴====.∴=(0<x≤5).(3)当△BFE的外接圆与AD相切时,依题意画出图形,如答图3所示.设圆心为O,半径为r,则r=BE=.设切点为P,连接OP,则OP⊥AD,OP=r=.过点O作梯形中位线MN,分别交AD、BC于点M、N,则OM为梯形ABED的中位线,∴OM=(AB+DE)=(3+5-x)=(8-x).过点A作AH⊥CD于点H,则四边形ABCH为矩形,∴AH=BC=4,CH=AB=3,∴DH=CD-CH=2.在Rt△ADH中,由勾股定理得:AD===2.∵MN∥CD,∴∠ADH=∠OMP,又∵∠AHD=∠OPM=90°,∴△OMP∽△ADH,∴,即,化简得:16-2x=,两边平方后,整理得:x2+64x-176=0,解得:x1=-32+20,x2=-32-20(舍去),∴x=-32+20,∴==139-80.。

2014年广东省广州市中考数学试卷(答案)

2014年广东省广州市中考数学试卷(答案)

参考答案一、选择题1.A2.D3.D4.C5.A6.B7.B8.A9.C 10.B二、填空题11.14012.1013.x≠±114.24π15.如果两个三角形的面积相等,那么这两个三角形全等;假16.三、解答题17.解:5x-2≤3x,移项,得5x-3x≤2,合并同类项,得2x≤2,系数化成1,x≤1,在数轴上表示为:.18.证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA).19.解:(1)A=(x+2)2+(1-x)(2+x)-3=x2+4x+4+2+x-2x-x2-3=3x+3;(2)∵(x+1)2=6,∴x+1=±,∴A=3x+3=3(x+1)=±3.∴A=±3.20.解:(1)根据题意得:a=1-(0.18+0.16+0.32+0.10)=0.24;b=×0.32=16;(2)作出扇形统计图,如图所示:根据题意得:360°×0.16=57.6°;(3)男生编号为A、B、C,女生编号为D、E,由枚举法可得:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10种,其中DE为女女组合,∴抽取的两名学生中至多有一名女生的概率为:.21.解:(1)把x=2代入y=-,得:y=-k,把A(2,-k)代入y=kx-6,得:2k-6=k,解得k=2,所以一次函数与反比例函数的解析式分别为y=2x-6,y=-,则A点坐标为(2,-2);(2)B点在第四象限.理由如下:一次函数与反比例函数的解析式分别为y=2x-6,y=-,解方程组,得:或,所以B点坐标为(1,-4),所以B点在第四象限.22.解:(1)根据题意得:400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:-=3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.23.解:(1)如图(2)如图,连接AE,∵AC为直径,∴∠AEC=90°,∵AB=AC,∴∠DAE=∠CAE,∴=;(3)如图,连接AE,DE,作DM⊥BC交BC于点M,∵AC为直径,∴∠AEC=90°,∵AB=AC cosC=.∴EC=BE=4,∴BC=8,∵点A、D、E、C共圆∴∠ADE+∠C=180°,又∵∠ADE+∠BDE=180°,∴∠BDE=∠C,∴△BDE∽△BCA,∴=,即BD•BA=BE•BC∴BD×4=4×8∴BD=,∵∠B=∠C∴cos∠C=cos∠B=,=∴BM =,∴DM=.24.解:(1)∵抛物线y=ax2+bx-2(a≠0)过点A,B,∴,解得:,∴抛物线的解析式为:y =x2-x-2;∵y =x2-x-2=(x-)2-,∴C (,-).(2)如图1,以AB为直径作圆M,则抛物线在圆内的部分,能使∠APB为钝角,∴M(,0),⊙M的半径=.∵P是抛物线与y轴的交点,∴OP=2,5,2MP∴∴P在⊙M上,∴P的对称点(3,-2),∴当-1<m<0或3<m<4时,∠APB为钝角.(3)存在;抛物线向左或向右平移,因为AB、P′C′是定值,所以A、B、P′、C′所构成的多边形的周长最短,只要AC′+BP′最小;第一种情况:抛物线向右平移,AC′+BP′>AC+BP,第二种情况:向左平移,如图2所示,由(2)可知P(3,-2),又∵C(,-)∴C'(-t,-),P'(3-t,-2),∵AB=5,∴P″(-2-t,-2),要使AC′+BP′最短,只要AC′+AP″最短即可,点C′关于x轴的对称点C″(-t,),设直线P″C″的解析式为:y=kx+b,,解得∴直线y=x+t+,点A在直线上,∴-+t+=0∴t=.故将抛物线向左平移个单位连接A、B、P′、C′所构成的多边形的周长最短.25.解:(1)当点F落在梯形ABCD中位线上时,如答图1,过点F作出梯形中位线MN,分别交AD、BC于点M、N.由题意,可知ABCD为直角梯形,则MN⊥BC,且BN=CN =B C.由轴对称性质,可知BF=BC,∴BN =BF,∴∠BFN=30°,∴∠FBC=60°,∴△BFC为等边三角形.∴CF=BC=4,∠FCB=60°,∴∠ECF=30°.设BE、CF交于点G,由轴对称性质可知CG =CF=2,CF⊥BE.在Rt△CEG中,cos30CGx CE===︒∴当点F落在梯形ABCD的中位线上时,x 的值为.(2)如答图2,由轴对称性质,可知BE⊥CF.∵∠GEC+∠ECG=90°,∠GEC+∠CBE=90°,∴∠GEC=∠CBE,又∵∠CGE=∠ECB=90°,∴Rt△BCE∽Rt△CGE,∴,∴CE2=EG•BE①同理可得:BC2=BG•BE②①÷②得:==.22112.162CEFBCFCF EGS S EG x S S BG CF BG ∆∆∴====∴=(0<x ≤5).(3)当△BFE 的外接圆与AD 相切时,依题意画出图形,如答图3所示. 设圆心为O ,半径为r ,则r =BE =.设切点为P ,连接OP ,则OP ⊥AD ,OP =r =.过点O 作梯形中位线MN ,分别交AD 、BC 于点M 、N ,则OM 为梯形ABED 的中位线,∴OM =(AB +DE )=(3+5-x)=(8-x ). 过点A 作AH ⊥CD 于点H ,则四边形ABCH 为矩形, ∴AH =BC =4,CH =AB =3,∴DH =CD -CH =2. 在Rt △ADH 中,由勾股定理得:AD ===2.∵MN ∥CD ,∴∠ADH =∠OMP ,又∵∠AHD =∠OPM =90°, ∴△OMP ∽△ADH ,1(8)2,,4x OM OP AD AH -∴== 化简得:16-2x =,两边平方后,整理得:x 2+64x -176=0, 解得:x 1=-32+20,x 2=-32-20(舍去) ∵0<-32+20≤5∴x =-32+20符合题意,22113916S x S ∴==-。

2014年广州中考数学试卷答案详解

2014年广州中考数学试卷答案详解

秘密★启用前广州市2014年初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题同的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.a (0a ≠)的相反数是().(A )a-(B )a(C )a(D )1【考点】相反数的概念【分析】任何一个数a 的相反数为a -.【答案】A2.下列图形是中心对称图形的是().(A )(B )(C )(D )【考点】轴对称图形和中心对称图形.【分析】旋转180°后能与完全重合的图形为中心对称图形.【答案】D3.如图1,在边长为1的小正方形组成的网格中,ABC △的三个顶点均在格点上,则tan A =().(A )35(B )45(C )34(D )43【考点】正切的定义.【分析】4tan 3BC A AB ==.【答案】D 4.下列运算正确的是().(A )54ab ab -=(B )112a b a b+=+(C )624a a a ÷=(D )()3253a b a b =【考点】整式的加减乘除运算.【分析】54ab ab ab -=,A 错误;11a ba b ab++=,B 错误;624a a a ÷=,C 正确;()3263a b a b =,D 错误.【答案】C5.已知1O 和2O 的半径分别为2cm 和3cm ,若127cm O O =,则1O 和2O 的位置关系是().(A )外离(B )外切(C )内切(D )相交【考点】圆与圆的位置关系.【分析】两圆圆心距大于两半径之和,两圆外离.【答案】A6.计算242x x --,结果是().(A )2x -(B )2x +(C )42x -(D )2x x+【考点】分式、因式分解【分析】()()2224222x x x x x x +--==+--【答案】B7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是().(A )中位数是8(B )众数是9(C )平均数是8(D )极差是7【考点】数据【分析】中位数是8.5;众数是9;平均数是8.375;极差是3.【答案】B8.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当90B =︒∠时,如图2-①,测得2AC =,当=60B ︒∠时,如图2-②,AC =().(A )2(B )2(C )6(D )22图2-①图2-②【考点】正方形、有60︒内角的菱形的对角线与边长的关系【分析】由正方形的对角线长为2可知正方形和菱形的边长为222=,当B ∠=60°时,菱形较短的对角线等于边长,故答案为2.【答案】A9.已知正比例函数y kx =(0k <)的图象上两点A (1x ,1y )、B (1x ,2y ),且12x x <,则下列不等式中恒成立的是().(A )120y y +>(B )120y y +<(C )120y y ->(D )120y y -<【考点】反比例函数的增减性【分析】反比例函数ky x=中0k <,所以在每一象限内y 随x 的增大而减小,且当0x <时,0y >,0x >时0y <,∴当12x x <时,12y y >,故答案为120y y ->【答案】C10.如图3,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG DE 、,DE 和FG 相交于点O .设AB a =,CG b =(a b >).下列结论:①BCG DCE △≌△;②BG DE ⊥;③DG GOGC CE=;④()22EFO DGO a b S b S -⋅=⋅△△.其中结论正确的个数是().(A )4个(B )3个(C )2个(D )1个【考点】三角形全等、相似三角形【分析】①由,,BC DC CG CE BCG DCE ==∠=∠可证()BCG DCE SAS △≌△,故①正确;②延长BG 交DE 于点H ,由①可得CDE CBG ∠=∠,DGH BGC ∠=∠(对顶角)∴BCG DHG ∠=∠=90°,故②正确;③由DGO DCE △∽△可得DG GODC CE=,故③不正确;④EFO DGO △∽△,EFODGO S S ∆∆等于相似比的平方,即222(()EFO DGO S EF b S DG a b ∆∆==-,∴22()EFO DGO a b S b S ∆∆-=,故④正确.【答案】B第二部分非选择题(共120分)二、填空题(共6小题,每小题3分,满分18分)11.ABC △中,已知60A =︒∠,80B =︒∠,则C ∠的外角的度数是_____.【考点】三角形外角【分析】本题主要考察三角形外角的计算,40C =︒∠,则C ∠的外角为18040140︒-︒=︒【答案】140︒12.已知OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为点D E 、,10PD =,则PE 的长度为_____.【考点】角平线的性质【分析】角平分线上的点到角的两边距离相等.【答案】1013.代数式11x -有意义时,x 应满足的条件为______.【考点】分式成立的意义,绝对值的考察【分析】由题意知分母不能为0,即1x ≠,则1x =±【答案】1x ≠±14.一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积为_______(结果保留π).【考点】三视图的考察、圆锥体全面积的计算方法【分析】从三视图得到该几何体为圆锥体,全面积=侧面积+底面积,底面积为圆的面积为:29r ππ=,侧面积为扇形的面积12LR =,首先应该先求出扇形的半径R ,由勾股定理得5R =,6L d ππ==,则侧面积1=56=152ππ⨯⨯,全面积15+9=24πππ.【答案】24π15.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________,该逆命题是_____命题(填“真”或“假”).【考点】命题的考察以及全等三角形的判定【分析】本题主要考察命题与逆命题的转换,以及命题真假性的判断【答案】如果两个三角形的面积相等,那么这两个三角形全等.假命题.16.若关于x 的方程222320x mx m m +++-=有两个实数根1x 、2x ,则()21212x x x x ++的最小值为___.【考点】一元二次方程根与系数的关系,最值的求法【分析】该题主要是考察方程思想与函数思想的结合,由根与系数的关系得到:122x x m +=-,21232x x m m =+-,原式化简2332m m =-+.因为方程有实数根,∴0≥△,23m ≤.当23m =时,2332m m -+最小值为54.【答案】54三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤).17.(本小题满分9分)解不等式:523x x -£,并在数轴上表示解集.【考点】不等式解法【分析】利用不等式的基本性质,将两边不等式同时减去3x ,再同时加上2,再除以2,不等号的方向不变.注意在数轴上表示时,此题是小于等于号,应是实心点且方向向左.【答案】解:移项得,532x x -≤,合并同类项得,22x ≤,系数化为1得,1x ≤,在数轴上表示为:18.(本小题满分9分)如图5,平行四边形ABCD 的对角线AC BD 、相交于点O ,EF 过点O 且与AB 、CD 分别交于点E F 、,求证:AOE COF △≌△.图5【考点】全等三角形的性质与判定、平行四边形的性质【分析】根据平行四边形的性质可知,AO CO =,EAO FCO =∠∠,又根据对顶角相等可知,AOE COF =∠∠,再根据全等三角形判定法则ASA ,AOE COF △≌△,得证.【答案】证明:∵平行四边形ABCD 的对角线AC BD 、相交于点O∴AO CO =,AB CD ∥∴EAO FCO=∠∠在AOE △和COF △中,EAO FCOAO CO AOE COFìÐ=Ðïï=íïÐ=Ðïî∴AOE COF△≌△19.(本小题满分10分)已知多项式()()()22123A x x x =++-+-.(1)化简多项式A ;(2)若()216x +=,求A 的值.【考点】(1)整式乘除(2)开方,正负平方根【分析】(1)没有公因式,直接去括号,合并同类型化简(2)由第一问答案,对照第二问条件,只需求出1x +,注意开方后有正负【答案】解:(1)2(2)(1)(2)3A x x x =++-+-2244223x x x x x =+++-+--22()(42)(423)x x x x x =-+-+++-33x =+(2)2(1)6x +=,则1x +=33A x ∴=+3(1)x =+=±20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远90.18三级蛙跳12a一分钟跳绳80.16投掷实心球b0.32推铅球50.10合计501(1)求a ,b 的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.【考点】(1)频率(2)①频率与圆心角;②树状图,概率【分析】(1)各项人数之和等于总人数50;各项频率之和为1(2)所占圆心角=频率*360(3)画出列表图,至多有一名女生包括有一个女生和一个女生都没有两种情况.【答案】(1)()509128516a =-+++=()10.180.160.320.100.24b =-+++=(2)“一分钟跳绳”所占圆心角=0.16360=57.6⨯︒︒(3)至多有一名女生包括两种情况有1个或者0个女生列表图:男A男B 男C 女D 女E 男A(A ,B )(A ,C )(A ,D )(A ,E )男B (B ,A )(B ,C )(B ,D )(B ,E )男C (C ,A )(C ,B )(C ,D )(C ,E )女D (D ,A )(D ,B )(D ,C )(D ,E )女E(E ,A )(E ,B )(E ,C )(E ,D )有1个女生的情况:12种有0个女生的情况:6种至多有一名女生包括两种情况18种至多有一名女生包括两种情况=1820=910=0.9021.(本小题满分12分)已知一次函数6y kx =-的图像与反比例函数2ky x=-的图像交于A B 、两点,点A 的横坐标为2.(1)求k 的值和点A 的坐标;(2)判断点B 的象限,并说明理由.【考点】○1一次函数;○2反比例函数;○3函数图象求交点坐标【分析】第(1)问根据A 点是两个图象的交点,将A 代入联立之后的方程可求出k ,再将A 点的横坐标代入函数表达式求出纵坐标;第(2)问根据一次函数与反比例函数的解析式分析两图像经过的象限,得出两图像交点所在象限.此题主要考查反比例函数与一次函数的性质【答案】解:(1)将6y kx =-与2ky x=-联立得:22k y x k y x ⎧=-⎪⎪⎨⎪=-⎪⎩26kkx x∴-=-○1A 点是两个函数图象交点,将2x =带入○1式得:2262kk -=-解得2k =故一次函数解析式为26y x =-,反比例函数解析式为4y x=-将2x =代入26y x =-得,2262y =⨯-=-A ∴的坐标为(2,2)k =-(2)B 点在第四象限,理由如下:一次函数26y x =-经过第一、三、四象限,反比例函数经过第二、四象限,因此它们的交点都是在第四象限.22、(本小题满分12分)从广州某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【考点】行程问题的应用【分析】路程=速度×时间,分式方程的实际应用考察【解析】(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米)(2)设普通列车的平均速度为x 千米/时,则高铁平均速度为2.5x 千米/时.依题意有:52040032.5x x-=可得:120x =答:高铁平均速度为 2.5×120=300千米/时.23、(本小题满分12分)如图6,ABC △中,AB AC ==,cos 5C =.(1)动手操作:利用尺规作以AC 为直径的O ,并标出O 与AB 的交点D ,与BC 的交点E(保留作图痕迹,不写作法):(2)综合应用:在你所作的圆中,①求证: DECE =;②求点D 到BC 的距离.【考点】(1)尺规作图;(2)①圆周角、圆心角定理;②勾股定理,等面积法【分析】(1)先做出AB 中点O ,再以O 为圆心,OA 为半径画圆.(2)①要求 DE EC =,根据圆心角定理,同圆中圆心角相等所对的弧也相等,只需证出EOC DOE ∠=∠即可,再根据等腰三角形中的边角关系转化.②首先根据已知条件可求出8BC =,依题意作出高DH ,求高则用勾股定理或面积法,注意到AC 为直径,所以想到连接CD ,构造直角三角形,进而用勾股定理可求出BD ,CD的长度,那么在Rt BDC △中,求其高,就只需用面积法即可求出高DH .【答案】(1)如图所示,圆O 为所求(2)①如图连接OE OD 、,设B α∠=,又,AB AC OA OD OE OC ====OEC C B α∴∠=∠=∠=1802EOC A α︒∠=∠=-则2(1802)(1802)1802DOE DOC EOC ααα︒︒︒∠=∠-∠=⨯---=-EOC DOE ∴∠=∠ DEEC ∴=②连接CD ,过A 作AM BC ⊥于M ,过D 作DH BC ⊥于H∴cosC=CM AC ==又AB AC =4CM ∴=,28BC CM ==又AC 为直径90ADC BDC ︒∴∠=∠=设BD a =,则AD a =,在Rt BDC ∆和Rt ADC ∆中,有2222AC AD BC BD -=-即(()22228a a --=-解得:a =即CD =又11BCDS DH BC BD CD ∆=⋅=⋅即1182255DH ⨯⋅=⨯⨯165DH ∴=24.(本小题满分14分)已知平面直角坐标系中两定点A (-1,0),B (4,0),抛物线22y ax bx =+-(0a ≠)过点A 、B ,顶点为C .点P (m ,n )(n <0)为抛物线上一点.(1)求抛物线的解析式与顶点C 的坐标.(2)当∠APB 为钝角时,求m 的取值范围.(3)若32m >,当∠APB 为直角时,将该抛物线向左或向右平移t (502t <<)个单位,点P 、C 移动后对应的点分别记为'P 、'C ,是否存在t ,使得首尾依次连接A 、B 、'P 、'C 所构成的多边形的周长最短?若存在,求t 值并说明抛物线平移的方向;若不存在,请说明理由.【考点】动点问题.(1)二次函数待定系数法;(2)存在性问题,相似三角形;(3)最终问题,轴对称,两点之间线段最短【答案】(1)解:依题意把,A B 的坐标代入得:2016440a b a b --=⎧⎨+-=⎩;解得:1232a b ⎧=⎪⎪⎨⎪=-⎪⎩∴抛物线解析式为213222y x x =--∴顶点横坐标3b x =-=,将3x =代入抛物线得2133325((2y =-⨯-⨯-=-325(,28C ∴-(2)如图,当90APB ︒∠=时,设200013(,2)22D x x x --,则001,4,ED x DF x =+=-20013222BF x x =--过D 作直线l x 轴,,AE l BF l⊥⊥AED BFD ∴∆∆ AE DF ED BF∴=2000200013242213222x x x x x ---∴=+--(注意用整体代入法)解得120,3x x ==1(0,2)D ∴-,2(3,2)D -当P 在12,AD BD 之间时,90APB ︒∠>10m ∴-<<或34m <<时,APB ∠为钝角.(3)依题意3m >,且90APB ︒∠=(3,2)P ∴-设,P C 移动t (0t >向右,t o <向左)325(3,2),(,)28P t C t ''∴+-+-连接,,AC P C P B''''则ABP C C AB BP P C C A''''''=+++又,AB P C ''的长度不变∴四边形周长最小,只需BP C A ''+最小即可将C A '沿x 轴向右平移5各单位到BC ''处P '沿x 轴对称为P ''∴当且仅当P ''、B 、C ''三点共线时,BP 'C A '+最小,且最小为P C '''',此时1325(,)28C t ''+-(3,2)P t ''+,设过P C ''''的直线为y kx b =+,代入1325();28(3)2t k b t k b ⎧++=-⎪⎨⎪++=⎩∴412841(3)228k t b ⎧=-⎪⎪⎨+⎪=+⎪⎩即4141(3)22828t y x +=-++将(4,0)B 代入,得:4141(3)4202828t +-⨯++=,解得:1541t =-∴当,P 、C 向左移动1541单位时,此时四边形ABP’C’周长最小。

2014年广州市中考数学试卷

2014年广州市中考数学试卷

2014年广州市中考数学试卷一、选择题。

1、a(a ≠0)的相反数是( )(A )-a (B )a ² (C )a (D )1a 2、下列图形中是中心对称图形的是( )(A ) (B ) (C ) (D )3、如图1,在边长为1的正方形组成的网格中,△ABC 的三个顶点均在格点上,则tanA=( )(A ) 35 (B )45 (C ) 34 (D ) 434、下列运算正确的是( )(此题图形模糊,有待进一步更新)(A ) 54ab ab -= (B )112a b a b+=+ (C ) 624a a a ÷= (D ) 2393()a b a b =5、已知圆1o 和圆2o 的半径分别为2cm 和3cm ,若2o 1o =7cm ,则圆1o 和圆2o 的位置关系是( )(A ) 外离 (B )外切 (C )内切 (D )相交6、计算242x x --,结果是( ) (A ) 2x - (B ) 2x + (C ) 42x - (D )2x x + 7、在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是( )(A ) 中位数是8 (B ) 众数是9 (C )平均数是8 (D )极差是78、将四根长度相等的细木条首位相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠B=90°时,如图,测得AC=2cm ,当∠B=60°时,如图,AC=( )(A ) 2 (B ) 2 (C ) 6 (D )229、已知正比例函数(0)y kx k =<的图像上两点11(,)A x y 、22(,)B x y ,且12x x <,则下列不等式中恒成立的是( )(A ) 120y y +> (B )120y y +< (C ) 120y y -> (D )120y y -< 10、如图3,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 交于O 点,设,(),BCG DCE AB a CG b a b ==>下列结论:1、△≌△DG GO BG DE 3=GC CE2、⊥;、22EFO DGO 4()=a b S b S -••△△、 其中结论正确的有( )(A )4个 (B )3个 (C )2个 (D )1个二、填空题11、△ABC 中,已知∠A=60°,∠B=80°,则∠C 的外角的度数是 12、已知OC 是∠AOB 的角平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为点D 、E ,PD=10,则PE 的长度为13、代数式11x -有意义时,x 应满足的条件为 14、一个几何体的三视图如图,根据图示数据计算该几何体的全面积为15、已知命题“如果两个三角形全等,那么这两个三角形的面积相等。

2014广州中考数学试卷及答案(word已排版-黄立宗分享)

2014广州中考数学试卷及答案(word已排版-黄立宗分享)

2014年广州市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟 注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔走宝自已的考生号、姓名;走宝考场室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. (0)a a ≠的相反数是 ( )A .a -B .2a C .||a D .1a2.下列图形中,是中心对称图形的是 ( )A .B .C .D .3.如图1,在边长为1的小正方形组成的网格中,ABC ∆的三个顶点均在格点上, 则tan A =( ) A .35 B .45 C .34 D .434.下列运算正确的是( )A .54ab ab -=B .112a b a b+=+ C .624a a a ÷= D .2353()a b a b = 5.已知1O 和2O 的半径分别为2cm 和3cm ,若127cm O O =,则1O 和2O 的位置关系是( )A . 外离B .外切C .内切D .相交6.计算242x x --,结果是 ( )A .2x -B .2x +C .42x - D .2x x+ 7.在一次科技作品制作比赛中,某小组八件作品成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是 ( )A . 中位数是8B . 众数是9C . 平均数是8D . 极差是78.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变.当90B ∠=︒时,如图2-①,测得2AC =.当60B ∠=︒时,如图2-②,AC =( )A .2 C .9.已知正比例函数(0)y kx k =<的图象上两点11(,)A x y 、22(,)B x y ,且12x x <, 则下列不等式中恒成立的是( )A .120y y +>B .120y y +<C .120y y ->D .120y y -<10.如图3,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O .设A B a =,()CG b a b =>.下列结论:①BCG DCE ∆≅∆;②BG D E ⊥;③D G G OG C C E=;④22()EFO DGO a b S b S ∆∆-⋅=⋅.其中结论正确的个数是 ( ) A .4个 B .3 个 C .2个 D .1个第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11. ABC ∆中,已知60A ∠=︒,80B ∠=︒,则C ∠的外角..的度数是______︒. 12. 已知OC 是AOB ∠的平分线,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为点D 、E ,10PD =,则PE 的长度为______.13. 代数式11x -有意义时,x 应满足的条件为______. 14. 一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积...为______.(结果保留π)15. 已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题: ,该逆命题是 命题(填“真”或“假”). 16. 若关于x 的方程222320x mx m m +++-=有两个实数根1x 、2x ,则21212()x x x x ++的最小值为______.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解不等式:523x x -≤,并在数轴上表示解集.18.(本小题满分9分)如图5,ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F ,求证:AOE COF ∆≅∆.19.(本小题满分10分)已知多项式2(2)(1)(2)3A x x x =++-+-(1)化简多项式A ; (2)若2(1)6x +=,求A 的值.20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a b ,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数; (3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5 名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.21.(本小题满分12分)已知一次函数6y kx =-的图象与反比例函数2ky x=-的图象交于A B 、两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在的象限,并说明理由.22.(本小题满分12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(本小题满分12分)如图6,ABC ∆中,AB AC ==cos C =(1)动手操作:利用尺规作以AC 为直径的O ,并标出O 与AB 的交点D ,与BC 的交点E (保留作图痕迹,不写作法);(2)综合应用:在你所作的图中, ①求证:DE CE =; ②求点D 到BC 的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年市初中毕业生学业考试
数 学
本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟
注意事项:
1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔走宝自已的考生号、;走宝考场室号、座位号,再用2B 铅笔把对应这两个的标号涂黑。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分 选择题(共30分)
一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)
一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合
题目要求的.)
1. (0)a a ≠的相反数是 ( )
A .a -
B .2
a
C .||a
D .
1a
2.下列图形中,是中心对称图形的是 ( )
A .
B .
C .
D .
3.如图1,在边长为1的小正方形组成的网格中,ABC ∆的三个顶点均在格点上,则tan A =( )
A .35
B .
45
C .
34
D .
43
4.下列运算正确的是( )
A .54ab ab -=
B .
112
a b a b
+=
+ C .6
24a
a a ÷=
D .2
353()a
b a b =
5.已知
1O 和2O 的半径分别为2cm 和3cm ,若127cm O O =,则1O 和2O 的位置关系是
( )
A . 外离
B .外切
C .切
D .相交
6.计算242
x x --,结果是 ( )
A .2x -
B .2x +
C .
4
2
x - D .
2
x x
+
7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,
9,8.对这组数据,下列说确的是 ( )
A . 中位数是8
B . 众数是9
C . 平均数是8
D . 极差是7
8.将四根长度相等的细木条首尾相接,用钉子钉成四边形
ABCD ,转动这个四边形,使它形状改变.当
90B ∠=︒时,如图2-①,测得2AC =.当60B ∠=︒时,如图2-②,AC =( )
A B .2
C D .
图2-①
图2-②
9.已知正比例函数
(0)y kx k =<的图象上两点11(,)A x y 、22(,)B x y ,且12x x <,则下列不等式中
恒成立的是( )
A .120y y +>
B .
120y y +<
C .
120y y ->
D .
120y y -<
10.如图3,四边形ABCD 、CEFG 都是正方形,
点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O .设AB a =,()CG b a b =>.下列结论:①BCG DCE ∆≅∆;②BG DE ⊥;

DG GO GC CE
=
;④22
()EFO DGO a b S b S ∆∆-⋅=⋅.其中结论正确的个数是 ( ) A .4个
B .3 个
C .2个
D .1个
第二部分 非选择题(共120分)
二、填空题(本大题共6小题,每小题3分,满分18分)
11. ABC ∆中,已知60A ∠=︒,80B ∠=︒,则C ∠的外角..
的度数是______︒.
12. 已知OC 是AOB ∠的平分线,点P 在OC 上,PD OA ⊥,PE
OB ⊥,垂足分别为点D 、E ,
10PD =,则PE 的长度为______.
13. 代数式
1
1
x -有意义时,x 应满足的条件为_
_____. 14. 一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积...
为______. (结果保留π)
15. 已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题: ,该逆命题是 命题(填“真”或“假”). 16. 若关于x 的方程2
22320x
mx m m +++-=有两个实数根1x 、2x ,则21212()x x x x ++的最
小值为_
_____.
三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)
解不等式:523x x -≤,并在数轴上表示解集.
18.(本小题满分9分) 如图5,
ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F ,
求证:AOE COF ∆≅∆.
19.(本小题满分10分) 已知多项式
2(2)(1)(2)3A x x x =++-+-
(1)化简多项式A ;
(2)若2
(1)6x +=,求A 的值.
20.(本小题满分10分)
某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:
(1)求a b ,的值;
(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数; (3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5 名学生中随机
抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.
21.(本小题满分12分) 已知一次函数
6y kx =-的图象与反比例函数2k
y x
=-
的图象交于A B 、两点,点A 的横坐标为2. (1)求k 的值和点A 的坐标;
(2)判断点B 所在的象限,并说明理由.
22.(本小题满分12分)
从到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.
(1)求普通列车的行驶路程;
(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.
23.(本小题满分12分)
如图6,ABC ∆中,45AB AC ==,5cos C =
.
(1)动手操作:利用尺规作以
AC 为直径的O ,并标出O 与AB 的交点D ,与BC 的交点E (保
留作图痕迹,不写作法); (2)综合应用:在你所作的图中,
①求证:DE
CE =;
②求点D 到BC 的距离。

24.(本小题满分14分) 已知平面直角坐标系中两定点
(1,0)A -、(40)B ,,抛物线22(0)y ax bx a =+-≠过点A B 、,
顶点为C ,点(,)(0)P m n n <为抛物线上一点. (1)求抛物线的解析式和顶点C 的坐标; (2)当APB ∠为钝角时,求m 的取值围; (3)若3,2m
>当APB ∠为直角时,将该抛物线向左或向右平移5
(0)2
t t <<个单位,点C 、P 平移
后对应的点分别记为''C P 、,是否存在t ,使得首尾依次连接''A B P C 、、、所构成的多边形的
周长最短?若存在,求t 的值并说明抛物线平移的方向;若不存在,请说明理由.
25.(本小题满分14分) 如图7,梯形
ABCD 中,AB ∥CD ,90
ABC ∠=,
3AB =,4BC =,5CD =,点E 为线段CD
上一动点(不与点C 重合),BCE ∆关于BE 的轴对称图形为BFE ∆,连接CF ,设CE x =,BCF
∆的面积为1S ,CEF ∆的面积为2S . (1)当点F 落在梯形
ABCD 的中位线上时,求x 的值;
(2)试用x 表示
21
S S ,并写出x 的取值围;
(3)当BFE 的外接圆与AD 相切时,求
21
S S 的值.。

相关文档
最新文档