第一章勾股定理单元测试卷(最新整理)
数学八年级上《第一章勾股定理》单元测试(含答案解析)

先根据题意画出图形,再根据勾股定理解答即可.
此题将勾股定理与实际问题相结合,考查了同学们的观察力和由具体到抽象的推理能力,有一定难度.
10.试题分析:根据对称性可知: , ,又 ,所以 ∽ ,根据相似的性质可得出: , ,在 中,由勾股定理可求得AC的值, , ,将这些值代入该式求出BE的值.
二、填空题(本大题共10小题,共30.0分)
11. 如图,有一块田地的形状和尺寸如图所示,则它的面积为______ .
12.在 中,已知两边长为5、12,则第三边的长为______ .
13. 如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要______ 元钱.
14. 如图,有一个长为50cm,宽为30cm,高为40cm的长方体木箱,一根长70cm的木棍______放入 填“能”或“不能” .
15. 如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则 周长的最小值为______.
整理得: ,
解得: , 两直角边分别为12cm,16cm,
则这个直角三角形的周长为 .
故选D
根据两直角边之比,设出两直角边,再由已知的斜边,利用勾股定理求出两直角边,即可得到三角形的周长.
此题考查了勾股定理,利用了方程的思想,熟练掌握勾股定理是解本题的关键.
5. 解: 的面积 ,
由勾股定理得, ,
则 ,
【解答】
解:由图可知,直角三角形的斜边长为即为大正方形的边长,
根据勾股定理可知大正方形的面积为 , ,即 , , 小正方形的面积 大正方形的面积 个直角三角形的面积 .
第1章勾股定理 单元综合测试题 2022—2023学年北师大版数学八年级上册(含答案)

2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元综合测试题(附答案)一.选择题(共10小题,满分40分)1.我国汉代的赵爽在注释《周髀算经》时给出了勾股定理的无字证明,人们称它为“赵爽弦图”,“赵爽弦图”指的是()A.B.C.D.2.下列各组数中,属于勾股数的是()A.1,1.7,2B.1.5,2,2.5C.6,8,10D.5,6,73.如图,以Rt△ABC的三边为直径分别向外作半圆,若斜边AB=3,则图中阴影部分的面积为()A.9πB.C.D.3π4.如图,在△ABC中,AB=AC=10,BC=12,AD平分∠BAC,则AD等于()A.6B.7C.8D.95.在△ABC中,AB=AC=5,BC=6,若点P在边AC上移动,则BP的最小值是()A.5B.6C.4D.4.86.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于()A.1.2米B.1.5米C.2.0米D.2.5米7.如图,一根长25m的梯子,斜立在一竖直的墙上,这时梯足距离底端7m.如果梯子的顶端下滑4m,那么梯足将滑动()A.7m B.8m C.9m D.10m8.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是()A.6cm B.8cm C.10cm D.12cm9.以下列各组数为边长,能构成直角三角形的是()A.3,4,5B.4,5,6C.1,2,3D.32,42,52 10.现有四块正方形纸片,面积分别是4,6,8,10,从中选取三块按如图的方式组成图案,若要使所围成的三角形是直角三角形,则要选取的三块纸片的面积分别是()A.4,6,8B.4,6,10C.4,8,10D.6,8,10二.填空题(共7小题,满分28分)11.直角三角形的两直角边长分别为6和8,则斜边中线的长是.12.直角三角形中,两边长为3,4,则第三边长的平方为.13.一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是cm.14.如图,每个小正方形的边长都相等,A,B,C是小正方形的顶点,则∠ABC的度数为.15.观察右面几组勾股数,①3,4,5;②5,12,13;③7,24,25;④9,40,41;并寻找规律,请你写出有以上规律的第⑤组勾股数:,第n组勾股数是.16.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为.17.在Rt△ABC中,∠C=90°,若AB﹣AC=2,BC=8,则AB的长是.三.解答题(共6小题,满分52分)18.如图是单位长度为1的正方形网格.(1)在图1中画出一条长度的平方为10的线段AB;(2)在图2中画出一个以格点为顶点,面积为5的正方形.。
第一章勾股定理 单元测试 2024-2025学年北师大版八年级数学上册

第一章勾股定理单元测试一、单选题1.平面直角坐标系中,点P (2,0)平移后对应的点为Q (5,4),则平移的距离为()A .3B .4C .5D .72.如图,在网格中的小正方形边长为1,ABC 和BCD 的顶点都在网格格点上,则ABC 和BCD 的面积之比为()A .1:2B .2:3C .3:2D .3:43.将一根橡皮筋两端固定在点A ,B 处,拉展成线段AB ,拉动橡皮筋上的一点P ,当△APB 是顶角为120°的等腰三角形时,已知AB =6cm ,则橡皮筋被拉长了()A .2cmB .4cmC .()6cmD .(4cm -4.如图,在边长为1的正方形方格中,A ,B ,C ,D 均为格点,构成图中三条线段AB ,BC ,CD .现在取出这三条线段AB ,BC ,CD 首尾相连拼三角形.下列判断正确的是()A .能拼成一个锐角三角形B .能拼成一个直角三角形C .能拼成一个钝角三角形D .不能拼成三角形5.如图,如果△ABC 与△DEF 都是正方形网格中的格点三角形(顶点在格点上),那么△DEF 与△ABC 的周长比为()A .4:1B .3:1C .2:1D 2:16.下列各组数不能组成直角三角形的一组数是()A .5,12,13B .2223,4,5C .7,24,25D .8,15,177.如图,矩形ABCD 中,AC 和BD 相交于点O ,3AD =,4AB =,点E 是CD 边上一点,过点E 作EH BD ⊥于点H ,EG AC ⊥于点G ,则EH EG +的值是()A .2.4B .2.5C .3D .48.如图,在7×7的正方形网格中,每个小正方形的边长为1,画一条线段50A ,B 在小正方形的顶点上,设AB 与网格线相交所成的锐角为α,则不同角度的α有()A .1种B .2种C .3种D .4种9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE AF =,AC 与EF 相交于点G .下列结论:①AC 垂直平分EF ;②当AEB AEF ∠=∠时,45EAF ∠=︒;③当15DAF ∠=︒时,AEF 为等边三角形:④当C =2−2B 时,BE DF EF +=.其中正确的结论有()个A .1B .2C .3D .410.在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD 可以进行如下操作:①把△ABF 翻折,点B 落在C 边上的点E 处,折痕为AF ,点F 在BC 边上;②把△ADH 翻折,点D 落在AE 边上的点G 处,折痕为AH ,点H 在CD 边上,若AD =6,CD =10,则EH EF =()A .32B .53C .43D .54二、填空题11.如图,一高层住宅发生火灾,消防车立即赶到距大厦8米处(车尾AE 到大厦墙面CD ),升起云梯到火灾窗口B .已知云梯AB 长17米,云梯底部距地面的高 1.5AE =米,则发生火灾的住户窗口距离地面多高度BD 是.12.在Rt △ABC 中,90C ∠=︒,10AB =,则2222AB AC BC ++=.13.如图所示,等腰三角形ABC 的底边为8cm ,腰长为5cm ,一动点P (与B 、C 不重合)在底边上从B 向C 以1cm/s 的速度移动,当P 运动秒时,△ACP 是直角三角形14.已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE 等于.15.在矩形ABCD 中,AB =4,AD =9,点E 在BC 上,CE =4,点F 是AD 上的一个动点,连接BF ,若将四边形ABEF 沿EF 折叠,点A 、B 分别落在点A ′、B '处,则当点B 恰好落在矩形ABCD 的一边上时,AF 的长为.三、解答题16.如图,在四边形ABCD 中,90B ∠=︒,AC 为对角线,8AB =,6BC =,215CD =,10AD =.(1)求AC 的长;(2)求ACD 的面积.17.某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离了欲到达点B ,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度(两岸可近似看做平行).18.如图,在四边形ABCD 中,CD =AD =2,∠D =90°,AB =5.BC =3.(1)求∠C 的度数;(2)求四边形ABCD 的面积.19.如图所示,有一张长方形纸片ABCD ,8AB =,6AD =.现折叠该纸片使得AD 边与对角线DB 重合,折痕为DG ,点A 落在F 处,(1)DF =____________,BF =____________;(2)求AG 的长.20.如图,射线AM AN ⊥于点A 、点C 、B 在AM 、AN 上,D 为线段AC 的中点,且DE BC ⊥于点E .(1)若10BC =,直接写出22AC AB +的值;(2)若8AC =,ABC 的周长为24,求ABC 的面积;(3)若6AB =,C 点在射线AM 上移动,问此过程中,22BE CE -的值是否为定值?若是,请求出这个定值;若不是,请求出它的取值范围.21.如图,在平面直角坐标系中,O 为坐标原点,ABC 的边BC 在x 轴上,A C 、两点的坐标分别为0,、s 0,−5,0,且−32+3−12=0,点P 从B 出发以每秒2个单位的速度沿射线BO 匀速运动,设点P 运动时间为t 秒.(1)求A C 、两点的坐标;(2)连接PA ,当POA 的面积是2,求t 的值?(3)当P 在线段BO 上运动时,是否存在一点P ,使PAC 是等腰三角形?若存在,请直接写出满足条件的所有P 点的坐标.。
(完整版)北师大版八年级上册数学第一章《勾股定理》单元测试卷(含答案),推荐文档

7 7第一章《勾股定理》单元测试卷班别:姓名:一、选择题(本题共10 小题,每小题3 分,满分30 分)1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A.4 B.8 C.10 D.122.已知a=3,b=4,若a,b,c 能组成直角三角形,则c=()A.5B.C.5 或D.5 或63.如图中字母A 所代表的正方形的面积为()A.4 B.8 C.16 D.644.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形5.直角三角形的一直角边长是7cm,另一直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm6.适合下列条件的△ABC 中,直角三角形的个数为()①a= ,b=,c= ②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2 个B.3 个C.4 个D.5 个7.在△ABC 中,若a=n2﹣1,b=2n,c=n2+1,则△ABC 是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形3 8. 直角三角形斜边的平方等于两条直角边乘积的2 倍,这个三角形有一个锐角是 ( ) A .15°B .30°C .45°D .60°9. 已知,如图长方形 ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点 D 重合,折痕为 EF ,则△ABE 的面积为( ) A .3cm 2B .4cm 2C .6cm 2 D.12cm 210. 已知,如图,一轮船以 16 海里/时的速度从港口 A 出发向东北方向航行,另一轮船以 12 海里/时的速度同时从港 口 A 出发向东南方向航行,离开港口 2 小时后,则两船相距( ) A .25 海里B .30 海里C .35 海里D . 40 海里二、填空题(本题共 8 小题,每小题 3 分,满分 24 分)11. 一个三角形三边长度之比为 1∶2∶ ,则这个三角形的最大角为度.12. 如图,等腰△ABC 的底边 BC 为 16,底边上的高 AD 为 6,则腰长 AB 的长为. 13.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点 C 偏离欲到达点 B200m ,结果他在水中实际游了 520m ,求该河流的宽度为m .14.小华和小红都从同一点O 出发,小华向北走了9 米到A 点,小红向东走到B 点时,当两人相距为15 米,则小红向东走了米.15.一个三角形三边满足(a +b)2 -c2 = 2ab ,则这个三角形是三角形.16.木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,这个桌面(填”合格”或”不合格”).17.直角三角形一直角边为12cm,斜边长为13cm,则它的面积为cm2.18.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是.三、解答题(共46 分)19.在RtΔABC 中,∠A CB=90°,AB=5,AC=3,CD⊥AB 于D,求CD 的长.CA BD21.(7 分)如图,在△ABC 中,AD⊥BC 于D,AB=3,BD=2,DC=1,求AC 的值.22.(8 分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?小河北牧童A东B 小屋23.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.(1)A 城是否受到这次台风的影响?为什么?(2)若 A 城受到这次台风影响,那么 A 城遭受这次台风影响有多长时间?《勾股定理》单元测试卷答案一、选择题(共10 小题,每小题3 分,满分30 分)1.C.2.C.3.D.4.C.5.D.6.A.7.D.8.C.9.C.10.D.二、填空题(共8 小题,每小题3 分,满分24 分)11.900 .12.10 .13.480 m.14.12 米.15.直角.16.合格.17.30 cm2.18.25 .三、解答题(共46 分)19.略20.解:∵∠ACB=90°,AB=5,AC=3,∴BC2 = AB2 -AC2=42,∴BC=4,∵CD⊥AB,1 1 12∴AB·CD= AC·BC,∴5CD=12,∴CD=.2 2 5.21.解:∵AD⊥BC 于D,∴∠ADB=∠ADC=90°∵AB=3,BD=2∴AD2=AB2﹣BD2=5∵DC=1,∴AC2=AD2+DC2=5+1=6.∴AC=22.解:设矩形的长是a,宽是b,根据题意,得:,(2)+(1)×2,得(a+b)2=196,即a+b=14,所以矩形的周长是14×2=28m.23.如图,作出A 点关于MN 的对称点A′,则A′A=8 km,连接A′B 交MN 于点P,则A′B 就是最短路线.在Rt△A′DB 中,A′D=15 km,BD=8 km由勾股定理得A′B2= A′D 2+BD2=289∴A′D =17kmA′M P NAD B24.解:(1)由A 点向BF 作垂线,垂足为C,在Rt△ABC 中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A 城要受台风影响;(2)设BF 上点D,DA=200 千米,则还有一点G,“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
第一章 勾股定理单元测试题(含答案)

第一章 勾股定理单元测试题一、认真填一填 —— 要相信自己.1.如图1,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________.S S S 321图1 图22.如果梯子的底端离建筑物5m ,那么13m 的消防梯可达建筑物的高度为 3.在△ABC 中,∠C =900, ∠A ,∠B ,∠C 所对的边分别为a ,b ,c . (1)若c =10,a ﹕b =3﹕4,则a =____,b =_____. (2)若a =b ,c 2=m ,则a 2=______. (3)若c =61,a =60,则b =______.4.将直角三角形的各边扩大相同的倍数,则得到的三角形一定是_______三角形(填“锐角”“直角”或“钝角”).5.在Rt △ABC 中,AC =8,在△ABE 中,DE 为AB 边上的高,DE =12,S △ABE =60,则BC 长为_______.6.小明把一根70cm 长的木棒放到一个长、宽、高分别为30cm 、40cm 、50cm 的木箱中,他能放进去吗?答: .(填“能”、或“不能”)7.如图2,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为8.如图,有一个直角三角形纸片,两直角边AC =6cm ,BC =8cm 现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上, 且与AE 重合,则CD 的长为.E DA9.观察下列表格:请你结合该表格及相关知识,求出b 、c 的值.即b = ,c =10.如图所示,将长方形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 上F 点处,已知CE =3厘米,AB =8厘米,则图中阴影部分的面积为_____平方厘米.二、细心选一选 —— 要认真考虑.11. 一个三角形的三边长分别为3,4,5,则这个三角形一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .以上答案都不对12. 满足下列条件的△ABC ,不是直角三角形的是( )A .222b c a =- B .a ∶b ∶c=3∶4∶5 C .∠C=∠A -∠B D .∠A ∶∠B ∶∠C=12∶13∶15 13.下面说法正确的是( ) A .在Rt △ABC 中,a 2+b 2=c 2B .在Rt △ABC 中,a =3,b =4,那么c =5 C .直角三角形两直角边都是5,那么斜边长为10D .直角三角形中,斜边最长14.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( ) A.1倍 B. 2倍 C. 3倍 D. 4倍15.有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为( )A .2,4,8B .4,8,10C .6,8,10D .8,10,12 16. 如图所示,在△ABC 中,三边a,b,c 的大小关系是( )A.a <b <cB. c <a <bC. c <b <aD. b <a <c17.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 3318.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)A B C D三、精心做一做 —— 要注意审题(共47分)19.一种盛饮料的圆柱形杯,测得内部底面半径为2.5cm ,高为12cm ,吸管放进杯里(如图所示),杯口外面至少要露出4.6cm ,问吸管要做多长?20.如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段.请在图中画出2AB =2、2CD =5、2EF =13这样的线段,并选择其中的一个说明这样画的道理.21.在一棵树的10米高处有两只猴子,其中一只爬下树直向离树20米的池塘,而另一只爬到树顶后直扑池塘,如果两只猴子经过的距离相等,问这棵树有多高?22.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km /h .如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?观测点23.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?24.我国明代有一位杰出的数学家程大位在所著的《直至算法统宗》里由一道“荡秋千”的问题:“平地秋千未起,踏板一尺立地,送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉,良工高士素好奇,算出索长有几?”参考答案1.169 ;2.12米;3.(1).6,8; (2).2m; (3).11; 4. 直角;5. 6;6.能;7. 49;8. CD =3cm . 提示:由题可知CD =DE ,AC =AE ,设CD =x cm ,在Rt △BDE 中,有42+ x 2= 8-x .2,解得x =3. 9. 85,86;10.30;11.B ; 12.D ; 13. D ; 14.B ; 15.C ; 16.D ; 17.D ; 18.C ; 19. 解:设吸管长x cm ,由勾股定理得:(x -4.6)2=122+(2.5×2)2,解得x =17.6,即吸管要做17.6cm 长. 20.画图略,结合勾股定理说明.21.分析 为了求解问题,将这个实际问题转化为数学问题,于是,根据题意画出图形,将问题转化到在直角三角形中来,从而可以运用勾股定理构建方程求解. 解 如图1,D 为树顶,AB =10m,C 为池塘,AC =20 m ,设BD 的长是x m ,则树高(x +10)m.因为AC +AB =BD +DC ,所以DC =20+10-x ,在△ACD 中,∠A =90°,所以AC 2+AD 2=DC 2.故202+(x +10)2=(30-x )2,解得x =5.所以x +10=15,即树高15米.说明 勾股定理的本身就是数形结合的体现,求解时它又与方程紧密相联.22.在Rt △ABC 中:BC 2=225030 =1600,∴BC =40,小汽车速度=40÷2=20米/秒=72千米/时>70千米/时. ∴这辆小汽车超速了23.解:如图,甲从上午8:00到上午10:00一共走了2小时,走了12千米,即OA =12.乙从上午9:00到上午10:00一共走了1小时,图1B走了5千米,即OB =5.在Rt △OAB 中,AB 2=122十52=169,∴AB =13, 因此,上午10:00时,甲、乙两人相距13千米.∵15>13, ∴甲、乙两人还能保持联系.答:上午10:00甲、乙两人相距13千米,两人还能保持联系. 24.分析 诗的意思告诉我们:当秋千静止在地上时,秋千的踏板离地的距离为一尺,将秋千的踏板往前推两步,这里的每一步合五尺,秋千的踏板与人一样高,这个人的身高为五尺,当然这是秋千的绳索是呈直线状态,要求这个秋千的绳索有多长?要解决这个古诗中的问题,我们可以先画出图形,再运用勾股定理求解.解 如图1,不妨设图中的OA 为秋千的绳索,CD 为地平面,BC 为身高5尺的人,AE 为两步,即相当于10尺的距离,A 处有一块踏板,EC 为踏板离地的距离,它等于一尺.设OA =x ,即OB =OA =x ,F A =BE =BC -EC =5-1=4尺,BF =EA =10尺.在Rt △OBF 中,由勾股定理,得OB 2=OF 2+BF 2,即x 2=(x -4)2+102, 解这个方程,得x =14.5(尺) 所以这个秋千的绳索长度为14.5尺.图2F OD ECB A。
北师大版八年级上册数学第一单元《勾股定理》测试卷(含答案)

北师大版八年级上册数学第一单元《勾股定理》测试卷(含答案)一、选择题(每题4分,共40分)1. 下列说法中,正确的是()A. 在任意三角形中,最长边的平方等于另外两边平方和B. 在直角三角形中,最长边的平方等于另外两边平方和C. 在直角三角形中,最长边的平方小于另外两边平方和D. 在直角三角形中,最长边的平方大于另外两边平方和答案:B2. 已知直角三角形两直角边长分别为6cm和8cm,那么它的斜边长是()A. 10cmB. 14cmC. 12cmD. 16cm答案:A3. 在直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB 的长度是()A. 5B. 6C. 7D. 8答案:A4. 下列三角形中,能构成直角三角形的是()A. 3, 4, 5B. 5, 6, 7C. 8, 9, 10D. 10, 11, 12答案:A5. 一个三角形的三边长分别是3cm、4cm和5cm,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B6. 下列关于勾股定理的说法,错误的是()A. 勾股定理的适用范围是直角三角形B. 勾股定理可以用来求直角三角形的斜边长C. 勾股定理可以用来判断一个三角形是否为直角三角形D. 勾股定理只适用于直角三角形的直角边答案:D7. 如果一个三角形的两边长分别为5cm和12cm,那么第三边的长度可能是()A. 13cmB. 14cmC. 15cmD. 16cm答案:A8. 在直角三角形中,如果最长边的长是10cm,那么另外两边长的可能取值是()A. 6cm和8cmB. 5cm和12cmC. 3cm和4cmD. 2cm和3cm答案:B9. 已知直角三角形的斜边长为10cm,其中一条直角边长为6cm,那么另一条直角边长为()A. 4cmB. 8cmC. 10cmD. 12cm答案:B10. 下列图形中,不能用勾股定理求解的是()A. 正方形B. 矩形C. 等腰三角形D. 直角三角形答案:C二、填空题(每题4分,共40分)11. 在直角三角形ABC中,∠C=90°,AC=5,BC=12,则AB=__________。
第一章 勾股定理 章节测试2022-2023学年北师大版八年级数学上册

北师大版八上勾股定理章节测试一、选择题(共11小题)1. 一个直角三角形的三边长分别为3,4,x,则x2为( )A. 5B. 25C. 7D. 7或252. 如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑多少米?( )A. 0.4B. 0.6C. 0.7D. 0.83. 如图所示,正方体的棱长为1,一只蜘蛛从正方体的一个顶点A爬行到另一个顶点B,则蜘蛛爬行的最短距离的平方是( )A. 2B. 3C. 4D. 54. 【例4】下列结论中,错误的有( )①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90∘;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形.A. 0个B. 1个C. 2个D. 3个5. 如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于( )A. 3cmB. 4cmC. 5cmD. 6cm6. 如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的Bʹ.则这根芦苇的长度是( )A. 10尺B. 11尺C. 12尺D. 13尺7. 如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )A. 16cmB. 18cmC. 20cmD. 24cm8. 硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是( )A. 正面向上B. 正面不向上C. 正面或反面向上D. 正面和反面都不向上9. 张瑞同学制作了四块全等的直角三角形纸板,准备复习功课用,六岁的弟弟看到纸板随手做拼图游戏,结果七拼八凑地拼出了如图所示的图形.张瑞热爱思考,借助这个图形设计了一道数学题:如图是由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长为( )A. a+bB. a−bC. √a2+b22D. √a2−b2210. 如图 所示,矩形纸片 ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿EF 对折,使得点 C 与点 A重合,则 AF 的长为 ( )A. 258 cmB. 254 cmC. 252 cmD. 8 cm11. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为 0.7 米,顶端距离地面 2.4 米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面 2 米,则小巷的宽度为 ( )A. 2.2 米B. 2.3 米C. 2.4 米D. 2.5 米二、填空题(共10小题)12. 如图所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则 AE = .13. 如图,有一块直角三角形纸片 ABC ,两直角边 AC =6,BC =8,现将直角边 AC 沿直线 AD 折叠,使它落在斜边 AB 上,点 C 与点 E 重合,则 CD 长为 .14. 如图,在一个长为 2 米,宽为 1 米的纸板上有一长方体木块,它的长和纸板宽 AD 平行且大于AD ,木块的正面是边长为 0.2 米的正方形,一只蚂蚁从 A 处爬行到 C 处需要走的最短路程是 米.15. 已知三角形的三边长分别为AB=2cm,BC=2√3cm,CA=4cm,则此三角形面积是.16. 如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动米.(假设绳子是直的)17. 如图,在Rt△ABC中,∠ABC=90∘,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点Bʹ处,则BE的长为 .18. 小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为.19. 如图,在△ABC中,∠ABC=90∘,分别以BC,AB,AC为边向外作正方形,面积分别记为S1,S2,S3,若S2=4,S3=6,则S1=.20. 阅读下列题目的解题过程:已知a,b,c为△ABC的三边,且满足a2c2−b2c2=a4−b4,试判断△ABC的形状.解:∵a2c2−b2c2=a4−b4,(A)∴c2(a2−b2)=(a2+b2)(a2−b2),(B)∴c2=a2+b2,(C)∴△ABC是直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为;(3)本题正确的结论为 .21. 我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽.问绳索长是多少?示意图如下图所示,设绳索AC的长为x尺,木柱AB的长用含x的代数式表示为尺,根据题意,可列方程为.三、解答题(共7小题)22. 如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,求CD的长.23. 如图,有一只小鸟在一棵高4m的小树的树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树梢上发出友好的叫声,该小鸟立刻以4m/s的速度飞向大树树梢,那么这只小鸟至少经过几秒才能到达大树和伙伴在一起?24. 列方程解下列应用题.如图,∠ABC=90∘,AB=12厘米,点P从A点开始沿AB边向B点移动,P的速度为2厘米/秒.点Q同时从点B开始沿BC边向C移动,Q的速度为3厘米/秒.几秒后,两点相距10厘米?25. 如图所示,若OA=3,OB=4,AB=5,OC=5,OD=12,CD=13,则∠BOC+∠AOD的度数是多少?26. 如图,在正方形网格中,每个小正方形的边长均为1,以格点为线段的端点,按下列要求仅用无刻度的直尺作图(保留作图痕迹,不写作法与证明).(1)在图1中画一条线段AB,使AB=√17,并标出AB的中点M;(2)在图2中画一条线段CD,使CD=2√13,并标出CD的中点N.27. 如图,在长方形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EBʹF,连接BʹD,求BʹD的最小值.28. 如图,某学校(A点)到公路(直线D)的距离为300m,到公交站(D点)的距离为500m,现要在公路边上建一个商店(C点),使之到学校A及到车站D的距离相等,求商店C与车站D之间的距离.答案1. D2. D【解析】∵AB=2.5米,AC=0.7米,∴BC=√AB2−AC2=2.4(米),∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC−0.4=2米,∴DC=√DE2−EC2=1.5米.∴梯子的底部向外滑出AD=1.5−0.7=0.8(米).3. D【解析】将正方体的前面、上面展开放在同一平面上,连接AB,如图所示,爬行的最短路径为线段AB.由勾股定理得,AB2=(1+1)2+12=5,故选D.4. C【解析】①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5或√7,错误;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠C=90∘,错误;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,正确;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形,正确;故选:C.5. A【解析】在Rt△ABC中,由勾股定理可知:AB=√BC2+AC2=√82+62=10,由折叠的性质可知:DC=DE,AC=AE=6,∠DEA=∠C=90∘,∴BE=AB−AE=10−6=4,∠DEB=90∘,设DC=x,则BD=8−x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8−x)2,解得:x=3,∴CD=3.6. D 【解析】设芦苇长AB=ABʹ=x尺,则水深AC=(x−1)尺,因为边长为10尺的正方形,所以BʹC=5尺.在Rt△ABʹC中,52+(x−1)2=x2,解之得x=13,即水深12尺,芦苇长13尺.故选:D.7. C 【解析】如图展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE⊥CD于E,则SE=BC=12×24=12cm,EF=18−1−1=16cm,在Rt△FES中,由勾股定理得:SF=√SE2+EF2=√122+162=20(cm),答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是20cm.8. C【解析】A.正面向上的可能性为12;B.正面不向上的可能性为12;C.正面或反面向上的可能性为1;D.正面和反面都不向上的可能性为0.9. C【解析】设CD=x,则DE=a−x,∵HG=b,∴AH=CD=AG−HG=DE−HG=a−x−b=x,∴x=a−b2,∴BC=DE=a−a−b2=a+b2,∴BD2=BC2+CD2=(a+b2)2+(a−b2)2=a2+b22,∴BD=√a2+b22.10. B【解析】设AF=x cm,则DF=(8−x)cm .∵矩形纸片ABCD中,AB=6,BC=8,现将其沿EF对折,使得点C与点A重合,∴DF=DʹF.在Rt△ADʹF中,∵AF2=ADʹ2+DʹF2,∴x2=62+(8−x)2 .解得x=25.411. A 【解析】如图,在Rt△ACB中.∵∠ACB=90∘,BC=0.7米,AC=2.4米,AB2=AC2+BC2,∴AB2=0.72+2.42=6.25.在Rt△AʹBD中,∵∠AʹBD=90∘,AʹD=2米,BD2+AʹD2=AʹB2,∴BD2+22=6.25.∴BD2=2.25.∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.即小巷的宽度为2.2米,故答案选A.12. 2【解析】∵AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,∴AC=√AB2+BC2=√12+12=√2;AD=√AC2+CD2=√(√2)2+12=√3;AE=√AD2+DE2=√(√3)2+12=2.13. 314. 2.6【解析】如图,将木块看成是由纸片折成的,将其拉平成一个长方形,连接AC,AB=2+0.2×2=2.4米,BC=1米,∴AC2=2.42+12=6.76=2.62,∴AC=2.6米,∴妈蚁从A处爬行到C处需要走的最短路程为2.6米.15. 2√3cm216. 9【解析】在Rt△ABC中:∵∠CAB=90∘,BC=17米,AC=8米,∴AB=√BC2−AC2=√172−82=15(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17−1×7=10(米),∴AD=√CD2−AC2=√102−82=6(米),∴BD=AB−AD=15−6=9(米),答:船向岸边移动了9米.17. 3218. 2米【解析】若假设竹竿长x米,则水深(x−0.5)米,由题意得,x2=1.5x+(x−0.5)2,解之得,x=2.5.所以水深2.5−0.5=2米.19. 2【解析】∵△ABC中,∠ABC=90∘,∴AB2+BC2=AC2,∴BC2=AC2−AB2.∵BC2=S1,AB2=S2=4,AC2=S3=6,∴S1=S3−S2=6−4=2.20. C,没有考虑a=b的情况,△ABC是等腰三角形或直角三角形21. x−3,(x−3)2+82=x2【解析】x−3;由题意可知AB⊥BC,由勾股定理可得(x−3)2+82=x2.22. 由题意得DB=AD;设CD=xcm,则AD=DB=(8−x)cm,∵∠C=90∘,∴在Rt△ACD中,根据勾股定理得:AD2−CD2=AC2,即(8−x)2−x2=36,解得x=7;4cm.即CD=7423. 这只小鸟至少经过5s才能到达大树和伙伴在一起.秒或2秒24. 221325. 在△AOB中,OA=3,OB=4,AB=5,所以OA2+OB2=AB2,所以△AOB是直角三角形,且∠AOB=90∘,在△COD中,OC=5,OD=12,CD=13,所以OC2+OD2=CD2,所以△COD是直角三角形,且∠COD=90∘,所以∠BOC+∠AOD=∠AOB+∠COD=90∘+90∘=180∘.26. (1)如图1,AB=√17,点M为线段AB的中点.(2)如图2,CD=2√13,点N为线段CD的中点.27. 如图,当∠BEF=∠DEF,点Bʹ在DE上时,BʹD的值最小.根据折叠的性质,得△EBF≌△EBʹF,所以EBʹ⊥FBʹ,EBʹ=EB .因为E是AB边的中点,AB=4,所以AE=EBʹ=2 .因为AD=6,所以DE=√62+22=2√10,所以BʹD=2√10−2 .28. 过点A作AB⊥l于点B,AD=500,AB=300,∴BD=400,设CD=AC=x,则BC=400−x,在Rt△ABC中,x2=(400−x)2+3002,x=312.5,∴CD=312.5m.。
勾股定理单元测试卷(含答案)

勾股定理单元测试卷一、选择题(每题2分,共10分)1. 勾股定理适用于哪种三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 任意三角形2. 勾股定理中的两个直角边的平方和等于斜边的平方,斜边被称为:A. 勾B. 股C. 斜边D. 高3. 在直角三角形中,若直角边的长度分别为3和4,则斜边的长度是:A. 5B. 6C. 7D. 84. 勾股定理的发现者是谁?A. 毕达哥拉斯B. 欧几里得C. 阿基米德D. 哥白尼A. a² + b² = c²B. c² = a² + b²C. a² b² = c²D. c² a² = b²二、填空题(每题2分,共10分)6. 勾股定理的公式是:__________。
7. 在直角三角形中,若直角边的长度分别为5和12,则斜边的长度是__________。
8. 勾股定理在中国被称为__________。
9. 勾股定理的发现时间大约在公元前__________年。
10. 勾股定理的发现者毕达哥拉斯是__________国人。
三、解答题(每题5分,共20分)11. 已知直角三角形的两个直角边长度分别为8和15,求斜边的长度。
12. 在直角三角形中,若斜边的长度为17,且一个直角边的长度为8,求另一个直角边的长度。
13. 勾股定理的证明方法有很多种,请简述其中一种证明方法。
14. 请举例说明勾股定理在实际生活中的应用。
答案部分一、选择题答案1. B2. C3. A4. A5. C二、填空题答案6. a² + b² = c²7. 138. 勾三股四弦五9. 50010. 希腊三、解答题答案11. 斜边长度为17。
12. 另一个直角边的长度为15。
13. 勾股定理的证明方法有很多种,其中一种是通过面积证明。
将直角三角形分为两个小直角三角形和一个矩形,分别计算它们的面积,然后通过面积关系推导出勾股定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 勾股定理单元试卷(时间100分钟 满分100分)一、选择题:(每小题4分,共计20分)1.如图1,在山坡上种树,沿山坡走了10米,高度上升了6米,如果要求树的株距(相邻两棵树之间的水平距离)是4米,那么,斜坡上相邻两棵树之间的坡面距离应是( )A.10米B.6米C.5米D.4米 .图12.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A.12米B.13 米C.14米D.15米.3.如图2,是一块长、宽、高分别是4cm ,2cm 和1cm 的长方体木块.一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是()A. 5cm B . 5.4cm C. 6.1cm D. 7cm .4.一个木工师傅测量了一个等腰三角形木版的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组A. 13,12,12B. 12,12,8C. 13,10,12D. 5,8,4.5.如图3, 一个高1.5米,宽3.6米的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A. 3.8米B. 3.9米C. 4米D. 4.4米二、填空题(每小题4分,共计32分)6.小明要把一根长为70cm 的长的木棒放到一个长、宽、高分别为50cm 、40cm 、30cm 的木箱中,他能放进去吗?_______.7.李明从家出发向正北方向走了1200米,接着向正东方向走到离家2000米远的地方,这时,李明向正东方向走了图2图3______米.8.如图5,小明将一张长为20cm,宽为15cm的长方形纸剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为_______.图5 图6 图79.王师傅在操场上安装一副单杠,要求单杠与地面平行,杠与两撑脚垂直,如图6所示,撑脚长AB、DC为3m,两撑脚间的距离BC为4m,则AC=____m就符合要求.10.如图7,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动_____米.11.如图8,是一长方形公园,如果某人从景点A走到景点C,则至少要走_____米.图8 图9 图10 12.在一棵树上的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘A处,另一只猴子爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树______米.13.如图10是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A、B 是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是______米.三、解答题(本题共计48分)14.(本题满分5分)如图,某人欲垂直横渡一条河,由于水流的影响,他实际上岸地点C 偏离了想要达到的B点140米,(即BC=140米),其结果是他在水中实际游了500米(即AC=500米),求该河AB处的宽度.DBA15.(本题满分5分)我们古代数学中有这样一道数学题:有一棵枯树直立在地上,树高2丈,粗3尺,有一根藤条从树根处缠绕而上,缠绕7周到达树顶,(如图)请问这根藤条有多长?(注:枯树可以看成圆柱;树粗3尺,指的是:圆柱底面周长为3尺,1丈=10尺).16.(本题满分6分)如图,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm,在无风的天气里,彩旗自然下垂,如图. 求彩旗下垂时最低处离地面的最小高度h.彩旗完全展平时的尺寸如左图的长方形(单位:cm).17.(本题满分6分)如图,一个牧童在小河的南4km小河的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?18.(本题满分7分)如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?19. (本题满分6分)如图所示,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道,现有一辆卡车装满家具后,高4米,宽2.8米,请问这辆送家具的卡车能否通过这个通道.20.(本题满分6分)图1、图2中的每个小正方形的边长都是1,在图1中画出一个面积是3的直角三角形;在图2中画出一个面积是5的四边形.21. (本题满分7分)如图所示,某人到岛上去探宝,从A 处登陆后先往东走4km ,又往北走1.5km ,遇到障碍后又往西走2km ,再转向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏.问登陆点A 与宝藏埋藏点B之间的距离是多少?图1 图2答案:一、选择题:(每小题4分,共计20分)1.解析:坡面距离就是斜坡的长. 沿山坡走了10米,高度上升了6米,则其水平距离为8(米);设斜坡上相邻两棵树之间的坡面距离是x 米,则由题意知1084x =,所以x=5.答案:C .2.解析:13米长的梯子可以达到建筑物的高度可设为x 米,因梯子的底端离建筑物5米,由勾股定理得:x 2=132-52,x=12米.答案:A .3.解析:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=22(24)137++=;(2) 展开前面上面由勾股定理得AB2=22(14)229++=;(3)展开左面上面由勾股定理得AB2=22(21)425++=;所以最短路径的长为5cm .答案:A .4.解析:等腰三角形的高把等腰三角形分成两个直角三角形, 腰为斜边,高和底边长一半为直角边,因此由三角形三边关系及勾股定理可知A. 132≠122+62, B. 122≠82+62 ,C.132=122+52 ,D.52≠42+42.答案:C .5.解析:如图,此题可运用勾股定理解决,设这条木板的长度为x 米,由勾股定理得:x 2=1.52+3.62,解得x=3.9.答案: B .二、填空题(每小题4分,共计32分)6.解析:在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大.因此可设放入长方体盒子中的最大长度是x ㎝,根据题意,得x 2 =502+40 2 +302=5000.702 =4900,因为4900<5000,所以能放进去.答案:能.7.解析:如图4,把实际问题转化为数学模型,由题意可知AB=1200,AC=2000,由勾股定理得:BC 2=AC2-AB2= 20002-12002=16002 ,所以BC=1600.李明向正东方向走了1600米.答案:1600.8.解析:延长AB 、DC 构成直角三角形,运用勾股定理得BC 2=(15-3)2+(20-4)2=122+162=400,所以BC=20.答案:20cm . 图5 图6 图79.解析:由题意可知AB 、DC 为3m ,BC 为4m ,由勾股定理得:AC 2=AB 2+BC 2=32+42=25=52,所以AC=5.答案:5.10.解析:由题意可知梯子的长是不变的,由云梯长10米 ,梯子顶端离地面6米,可由勾股定理求得梯子的底部距墙8米.当梯子顶端离地面8米时, 梯子的底部距墙为6米,则梯子的底部在水平面方向要向左滑动8-6=2(米).答案:2.11.解析:依据两点之间线段最短,确定最短路线为长方形公园的对角线长,可设长方形公园的对角线长为x 米,由勾股定理得:x 2=1202+3502,解得x=370.答案:370.图8 图9 图10 12.解析:如图9,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.设树的高度为x 米,因两只猴子所经过的距离相等都为30米.由勾股定理得:x 2+202=[30-(x-10)]2,解得x=15.答案:15.13.解析:三级台阶平面展开图为长方形,长为2,宽为(0.2+0.3)×3则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B 点最短路程为x ,由勾股定理得:x 2=22+[(0.2+0.3)×3]2=2.52 ,x =2.5.答案:2.5.三、解答题(本题共计48分)14.解析:如图,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.答案:在Rt △ABC 中,AB 2+BC 2=AC 2,所以AB 2+1402=5002,解得AB=480.答:该河AB 处的宽度为480米.15.解析:本题是一道古代数学题,由于树可以近似看作圆柱,藤条绕树缠绕,我们可以按图的方法,转化为平面图形来解决.如图13,线段AB 的长就是古藤的长.答案:如图13,在Rt △ABC 中,由勾股定理得AB 2=BC 2+AC 2.因为BC=20,AC=3×7=21,所以AB 2=202+212=841.所以AB=29.所以这根藤条有29尺.答:这根藤条有29尺.16.解析:如图14,彩旗下垂时最低处离地面的最小高度h也就是旗杆的高度减去彩旗的对角线的长,彩旗的对角线长为150,所以h=320-150=170cm.DB A答案:彩旗下垂时最低处离地面的最小高度h 为170cm..17.解析:找最短路程,只需要找到A 点关于河岸的对称点和点B 的距离就可以,借助勾股定理可以求出来.答案:如图,作出A 点关于MN 的对称点A′,连接A′B交MN 于点P ,则A′B 就是最短路线. 在Rt △A′DB 中,由勾股定理求得A′B=17km .18.解析:本题关键是能将红莲移动后的图画出,红莲被吹至一边,花朵刚好齐及水面即AC 为红莲的长.答案:设水深为h 尺.如图,Rt △ABC 中,AB=h ,AC=h+3,BC=6,由勾股定理得:AC 2=AB 2+BC 2,即(h+3)2=h 2+62.∴h 2+6h+9=h 2+36,解得:h=4.5.答:水深4.5尺.19. 解析:如图,卡车能否通过,关键是车高4米与AC 的比较,BC 为2.6米,只需求AB ,在直角三角形OAB 中,半径OA 为2米,车宽的一半为DC = OB =1.4米,运用勾股定理求出AB 即可.答案:过直径的中点O ,作直径的垂线交下底边于点D ,如图所示,在Rt △ABO 中,由题意知OA=2,DC = OB =1.4,所以2222 1.4 2.04AB =-=.因为4-2.6=1.4,21.4 1.96=,2.04>1.96,所以卡车可以通过.答:卡车可以通过,但要小心.A′D CB A O20. 解析:①只须画直角边为2和3的直角三角形即可.这时直角三角形的面积为:1232⨯⨯=3;②画面积为5的四边形,我们可画边长的平方为5的正方形即可.答案:如图1和图 2.21. 解析:本题需要把实际问题转化为数学模型,构造直角三角形,利用勾股定理完成.答案:如图,过点B 作BC ⊥AD 于C ,则AC=2.5,BC=6,由勾股定理求得AB=6.5(km) .所以登陆点A 与宝藏埋藏点B 之间的距离是6.5km.图2图1。