分式方程重点题型好题

合集下载

分式方程重难点题型

分式方程重难点题型

分式方程例1、当x =3时,分式b x a x 352-+的值为0,而当x =2时,分式无意义,则求ab 的值是多少?例2、不论x 取何值,分式m x x +-212总有意义,求m 的取值范围。

例3、(1)已知0132=+-x x ,求① 221x x +的值。

② 求441x x +的值(2)已知31=+x x ,求1242++x x x 的值。

例4、已知21)2)(1(43-+-=---x B x A x x x 是恒等式,求A 和B 的值。

练习:1、已知21)2)(1(73-+-=---y B y A y y y ,求A ,B 的值。

例5、已知2,3==xy xy ,求代数式y x x y +的值。

例6、计算1814121111842+-+-+-+--x x x x x例7、试证明代数式12211222+-÷-+-x x x x x 的值与x 无关,写出证明过程。

例8、计算)2009)(2007(2)5)(3(2)3)(1(2+++++++++x x x x x x例9、设实数y x ,满足0256822=++++y x y x ,求y x x y xy x y x 24442222+-++-的值。

例10、若分式方程2x 3x 3-x 2+-=1-x A —2-x B 有无数个解,则A 为______B 为______例11、若已知方程x+x1=a+a 1的解为x=a 或x=a 1,则方程x+5+5x 1+=25的解为_____例12、已知关于x 的方程3-x x -2=3-x m 有一个正数解,求m 的取值范围。

例13、甲乙二人分别从A 、B 两地同时出发相向而行,两个相遇在离A 地10km 处。

相遇后,两人速度不变继续前进,分别到达B 、A 之后,立即返回,又相遇在离B 地3km 处。

求A 、B 两地之间的距离。

一、选择题。

1、下列代数式中,是分式的是( )A 、2x B 、π21-x C 、x 21 D 、y x xy 221+ 2、使分式有意义的x 的取值范围是( )A 、2≠xB 、2=xC 、0=xD 、2-≠x 3、下列各式成立的是( )A 、22a b a b =B 、ca cb a b ++= C 、222)(b a b a b a b a +-=+- D 、2222y x y x y x y x -+=-+ 4、计算:xy y y x x 222-+-,结果为( ) A 、1 B 、-1 C 、y x +2 D 、y x +5、几名同学包租一两面包车去游玩,面包车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费,若设实际参加游玩的同学共有x 人,则所列方程为( )A 、32180180=+-x x B 、31802180=-+xx C 、32180180=--x x D 、31802180=--x x 二、填空题。

分式方程(知识点+典型例题)完美打印版

分式方程(知识点+典型例题)完美打印版

考点4 分式方程的特殊解问题【例7】若关于x 的方程2222=-++-xm x x 的解为正数,求m 的取值范围?【例8】已知关于x 的分式方程21a x ++=1的解是非正数,则a 的取值范围是( ) A .a≤-1B .a≤-1且a≠-2C .a≤1且a≠-2D .a≤1【例9】如图,点A ,B 在数轴上,它们所对应的数分别是3-和xx--21,且点A ,B 到原点的距离相等,求x 的值.【课堂练习】 1、分式方程0131-x 2=+-x 的解为( )[来源Com] A .x=3 B .x=﹣5 C .x=5 D .无解2、关于x 的分式方程=1的解为正数,则字母a 的取值范围为( )A. a≥﹣1B. a >﹣1C. a≤﹣1D. a <﹣1 3、若分式方程)2)(1(11+-=--x x m x x 有增根,则m 的值为( ) A 、0和3 B 、1 C 、1和-2 D 、3 4、关于x 的分式方程1mx +=-1的解是负数,则m 的取值范围是( ) A .m >-1 B .m >-1且m≠0 C .m≥-1D .m≥-1且m≠05、方程201x xx +=+的根是 。

6、分式方程2111x x x +--=3的解是 。

-3xx --21 B .A .7、若关于x 的方程15102x mx x-=--无解,则m= 。

8、已知关于x 的分式方程2122=--x a x 的解为非负数,求a 得取值范围。

9、的值求有增根若分式方程m x x m x x ,)2)(1(11+-=--【课后作业】1、解分式方程x x -2=2+3x -2,去分母后的结果是( )A .x =2+3B .x =2(x -2)+3C .x(x -2)=2+3(x -2)D .x =3(x -2)+2 2、若分式的值为0,则x 的值是( )A. x=3B. x=0C. x=﹣3D. x=﹣43、若3x 与61x -互为相反数,则x 的值为( ) A.13 B.-13C.1D.-1 4、若方程32x x --=2mx-无解,则m=——————.5、已知x =2y +33y -2,用x 的代数式表示y ,则y =____.6、解方程:(1)x x 332=-; (2)11322x x x -=--- (3)2240x-11x -=-。

分式方程的解精选题33道

分式方程的解精选题33道

分式方程的解精选题33道一.选择题(共13小题)1.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.52.关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0B.a≠0C.a≠5D.a≠5且a≠0 3.若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0B.1C.4D.64.对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=75.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10B.12C.14D.166.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠2 7.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.38.关于x的分式方程=1的解为负数,则a的取值范围是()A.a>1B.a<1C.a<1且a≠﹣2D.a>1且a≠29.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3B.﹣2C.1D.210.若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10B.﹣12C.﹣16D.﹣1811.关于x的方程﹣1=的解为正数,则k的取值范围是()A.k>﹣4B.k<4C.k>﹣4且k≠4D.k<4且k≠﹣4 12.若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程+=1有正整数解,则所有满足条件的整数a的值之积是()A.7B.﹣14C.28D.﹣5613.已知关于x的分式方程+2=﹣的解为非负数,则正整数m的所有个数为()A.3B.4C.5D.6二.填空题(共12小题)14.若关于x的方程=+1无解,则a的值是.15.若关于x的方程+=无解,则m的值为.16.已知关于x的方程=3的解是正数,则m的取值范围是.17.若关于x的分式方程=2a无解,则a的值为.18.若关于x的分式方程+=3的解为正实数,则实数m的取值范围是.19.若关于x的分式方程+3=无解,则实数m=.20.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为.21.关于x的分式方程﹣=3的解为非负数,则a的取值范围为.22.若关于x的分式方程无解,则a=.23.已知关于x的分式方程﹣2=有正数解,则k的取值范围为.24.关于x的分式方程﹣=0无解,则m=.25.关于x的分式方程+=1的解为非正数,则k的取值范围是.三.解答题(共8小题)26.已知关于x的分式方程+=(1)已知m=4,求方程的解;(2)若该分式方程无解,试求m的值.27.关于x的分式方程﹣2m=无解,求m的值.28.如果关于x的方程无解,求a的值.29.阅读:对于两个不等的非零实数a、b,若分式的值为零,则x=a或x=b.又因为==x+﹣(a+b),所以关于x的方程x+=a+b 有两个解,分别为x1=a,x2=b.应用上面的结论解答下列问题:(1)方程x+=q的两个解分别为x1=﹣1、x2=4,则p=,q=;(2)方程x+=4的两个解中较大的一个为;(3)关于x的方程2x+=2n的两个解分别为x1、x2(x1<x2),求的值.30.若关于x的分式方程无解,求m的值.31.阅读:对于两个不等的非零实数a、b,若分式的值为零,则x=a或x=b.又因为,所以关于x的方程x+=a+b有两个解,分别为x1=a,x2=b.应用上面的结论解答下列问题:(1)方程x+=q的两个解分别为x1=﹣2、x2=3,则p=,q=;(2)方程x+=8的两个解中较大的一个为;(3)关于x的方程2x+=2n+2的两个解分别为x1、x2(x1<x2).求的值.32.已知关于x的方程无解,求m的值.33.若关于x的方程﹣=无解,求实数m的值.分式方程的解精选题33道参考答案与试题解析一.选择题(共13小题)1.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.5【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选:A.【点评】此题考查了分式方程的解,分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.2.关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0B.a≠0C.a≠5D.a≠5且a≠0【分析】先解关于x的分式方程,求得x的值,然后再依据“关于x的分式方程=有解”,即x≠0且x≠2建立不等式即可求a的取值范围.【解答】解:=,去分母得:5(x﹣2)=ax,去括号得:5x﹣10=ax,移项,合并同类项得:(5﹣a)x=10,∵关于x的分式方程=有解,∴5﹣a≠0,x≠0且x≠2,即a≠5,系数化为1得:x=,∴≠0且≠2,即a≠5,a≠0,综上所述:关于x的分式方程=有解,则字母a的取值范围是a≠5,a≠0,故选:D.【点评】此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式.另外,解答本题时,容易漏掉5﹣a≠0,这应引起同学们的足够重视.3.若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0B.1C.4D.6【分析】先解关于x的一元一次不等式组,再根据其解集是x≤a,得a小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a的值,再求和即可.【解答】解:由不等式组得:∵解集是x≤a,∴a<5;由关于y的分式方程﹣=1得2y﹣a+y﹣4=y﹣1∴y=,∵有非负整数解,∴≥0,∴﹣3≤a<5,a=﹣1(舍,此时分式方程为增根),a=﹣3,a=1,a=3,(a=0,﹣2,2或4时,y 不是整数),它们的和为1.故选:B.【点评】本题综合考查了含参一元一次不等式,含参分式方程得问题,需要考虑的因素较多,属于易错题.4.对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=7【分析】所求方程利用题中的新定义化简,求出解即可.【解答】解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.【点评】此题考查了解分式方程,弄清题中的新定义是解本题的关键.5.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10B.12C.14D.16【分析】根据分式方程的解为正数即可得出a<6且a≠2,根据不等式组的解集为y<﹣2,即可得出a≥﹣2,找出﹣2≤a<6且a≠2中所有的整数,将其相加即可得出结论.【解答】解:分式方程+=4的解为x=且x≠1,∵关于x的分式方程+=4的解为正数,∴>0且≠1,∴a<6且a≠2.,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6且a≠2.∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,(﹣2)+(﹣1)+0+1+3+4+5=10.故选:A.【点评】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为y<﹣2,找出﹣2≤a<6且a≠2是解题的关键.6.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠2【分析】直接解方程得出分式的分母为零,再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解,正确得出分母不为零是解题关键.7.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.3【分析】分别解分式方程和不等式组,从而得出a的范围,从而得整数a的取值,进而得所有满足条件的整数a的值之积.【解答】解:将分式方程去分母得:a(x﹣1)+(x+1)(x﹣1)=(x+a)(x+1)解得:x=﹣2a﹣1∵解为负数∴﹣2a﹣1<0∴a>﹣∵当x=1时,a=﹣1;x=﹣1时,a=0,此时分式的分母为0,∴a>﹣,且a≠0;将不等式组整理得:∵不等式组无解∴a≤2∴a的取值范围为:﹣<a≤2,且a≠0∴满足条件的整数a的值为:1,2∴所有满足条件的整数a的值之积是2.故选:C.【点评】本题考查了含参数分式方程和含参数一元一次不等式组的解的问题,注意分式方程取增根的情况及明确不等式组解集的取法,是解题的关键.8.关于x的分式方程=1的解为负数,则a的取值范围是()A.a>1B.a<1C.a<1且a≠﹣2D.a>1且a≠2【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a的不等式,求出不等式的解集即可确定出a的范围.【解答】解:分式方程去分母得:x+1=2x+a,即x=1﹣a,根据分式方程解为负数,得到1﹣a<0,且1﹣a≠﹣1,解得:a>1且a≠2.故选:D.【点评】此题考查了分式方程的解,注意在任何时候都要考虑分母不为0.9.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3B.﹣2C.1D.2【分析】表示出不等式组的解集,由不等式有且只有4个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【解答】解:,不等式组整理得:,由不等式组有且只有四个整数解,得到0<≤1,解得:﹣2<a≤2,即整数a=﹣1,0,1,2,=2,分式方程去分母得:y+a﹣2a=2(y﹣1),解得:y=2﹣a,由分式方程的解为非负数以及分式有意义的条件,得到a为﹣1,0,2,之和为1.故选:C.【点评】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10.若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10B.﹣12C.﹣16D.﹣18【分析】根据不等式的解集,可得a的范围,根据方程的解,可得a的值,根据有理数的加法,可得答案.【解答】解:,解①得x≥﹣3,解②得x≤,不等式组的解集是﹣3≤x≤.∵仅有三个整数解,∴﹣1≤<0∴﹣8≤a<﹣3,+=13y﹣a﹣12=y﹣2.∴y=∵y≠2,∴a≠﹣6,又y=有整数解,∴a=﹣8或﹣4,所有满足条件的整数a的值之和是(﹣8)+(﹣4)=﹣12,故选:B.【点评】本题考查了分式方程的解,利用不等式的解集及方程的解得出a的值是解题关键.11.关于x的方程﹣1=的解为正数,则k的取值范围是()A.k>﹣4B.k<4C.k>﹣4且k≠4D.k<4且k≠﹣4【分析】分式方程去分母转化为整式方程,求出整式的方程的解得到x的值,根据分式方程解是正数,即可确定出k的范围.【解答】解:分式方程去分母得:k﹣(2x﹣4)=2x,解得:x=,根据题意得:>0,且≠2,解得:k>﹣4,且k≠4.故选:C.【点评】此题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.12.若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程+=1有正整数解,则所有满足条件的整数a的值之积是()A.7B.﹣14C.28D.﹣56【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a的值,求出之和即可.【解答】解:不等式组整理得:,由解集为x≤a,得到a≤7,分式方程去分母得:y﹣a+3y﹣4=y﹣2,即3y=a+2,解得:y=,由y为正整数解,且y≠2得到a=1,71×7=7,故选:A.【点评】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.13.已知关于x的分式方程+2=﹣的解为非负数,则正整数m的所有个数为()A.3B.4C.5D.6【分析】根据解分式方程,可得分式方程的解,根据分式方程的解为非负数,可得不等式,解不等式,可得答案.【解答】解:去分母,得:m+2(x﹣1)=3,移项、合并,得:x=,∵分式方程的解为非负数,∴5﹣m≥0且≠1,解得:m≤5且m≠3,∴正整数解有1,2,4,5共4个,故选:B.【点评】本题考查了分式方程的解,先求出分式方程的解,再求出不等式的解.二.填空题(共12小题)14.若关于x的方程=+1无解,则a的值是2或1.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.15.若关于x的方程+=无解,则m的值为﹣1或5或﹣.【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【解答】解:去分母得:x+4+m(x﹣4)=m+3,可得:(m+1)x=5m﹣1,当m+1=0时,一元一次方程无解,此时m=﹣1,当m+1≠0时,则x==±4,解得:m=5或﹣,综上所述:m=﹣1或5或﹣,故答案为:﹣1或5或﹣.【点评】此题主要考查了分式方程的解,正确分类讨论是解题关键.16.已知关于x的方程=3的解是正数,则m的取值范围是m>﹣6且m≠﹣4.【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式组求出m 的取值范围.【解答】解:解关于x的方程得x=m+6,∵x﹣2≠0,解得x≠2,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式组的综合题目,解关于x的方程是关键,解关于m的不等式组是本题的一个难点.17.若关于x的分式方程=2a无解,则a的值为1或.【分析】直接解分式方程,再利用当1﹣2a=0时,当1﹣2a≠0时,分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解,正确分类讨论是解题关键.18.若关于x的分式方程+=3的解为正实数,则实数m的取值范围是m<6且m ≠2.【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【解答】解:+=3,方程两边同乘(x﹣2)得,x+m﹣2m=3x﹣6,解得,x=,∵≠2,∴m≠2,由题意得,>0,解得,m<6,故答案为:m<6且m≠2.【点评】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.19.若关于x的分式方程+3=无解,则实数m=3或7.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:7+3(x﹣1)=mx,整理,得(m﹣3)x=4,当整式方程无解时,m﹣3=0,m=3;当整式方程的解为分式方程的增根时,x=1,∴m﹣3=4,m=7,∴m的值为3或7.故答案为3或7.【点评】本题考查了分式方程无解的条件,是需要识记的内容.20.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为1.【分析】解不等式组,得到不等式组的解集,根据整数解的个数判断a的取值范围,解分式方程,用含有a的式子表示y,根据解的非负性求出a的取值范围,确定符合条件的整数a,相加即可.【解答】解:,解①得,x<5;解②得,∴不等式组的解集为;∵不等式有且只有四个整数解,∴,解得,﹣2<a≤2;解分式方程得,y=2﹣a(a≠1);∵方程的解为非负数,∴2﹣a≥0即a≤2且a≠1综上可知,﹣2<a≤2且a≠1,∵a是整数,∴a=﹣1,0,2;∴﹣1+0+2=1,故答案为:1.【点评】本题考查了解一元一次不等式组,分式方程,本题易错,易忽视分式方程有意义的条件.21.关于x的分式方程﹣=3的解为非负数,则a的取值范围为a≤4且a≠3.【分析】根据解分式方程的方法和方程﹣=3的解为非负数,可以求得a的取值范围.【解答】解:﹣=3,方程两边同乘以x﹣1,得2x﹣a+1=3(x﹣1),去括号,得2x﹣a+1=3x﹣3,移项及合并同类项,得x=4﹣a,∵关于x的分式方程﹣=3的解为非负数,x﹣1≠0,∴,解得,a≤4且a≠3,故答案为:a≤4且a≠3.【点评】本题考查分式方程的解、解一元一次不等式组,解答本题的关键是明确解分式方程的方法.22.若关于x的分式方程无解,则a=1或﹣2.【分析】分式方程无解,即化成整式方程时无解,或者求得的x能令最简公分母为0,据此进行解答.【解答】解:方程两边都乘x(x﹣1)得,x(x﹣a)﹣3(x﹣1)=x(x﹣1),整理得,(a+2)x=3,当整式方程无解时,a+2=0即a=﹣2,当分式方程无解时:①x=0时,a无解,②x=1时,a=1,所以a=1或﹣2时,原方程无解.故答案为:1或﹣2.【点评】分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.23.已知关于x的分式方程﹣2=有正数解,则k的取值范围为k<6且k≠3.【分析】根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.【解答】解;﹣2=,方程两边都乘以(x﹣3),得x=2(x﹣3)+k,解得x=6﹣k≠3,关于x的方程﹣2=有正数解,∴x=6﹣k>0,k<6,且k≠3,∴k的取值范围是k<6且k≠3.故答案为:k<6且k≠3.【点评】本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k的范围是解此题的关键.24.关于x的分式方程﹣=0无解,则m=0或﹣4.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:m﹣(x﹣2)=0,解得:x=2+m,∴当x=2时分母为0,方程无解,即2+m=2,∴m=0时方程无解.当x=﹣2时分母为0,方程无解,即2+m=﹣2,∴m=﹣4时方程无解.综上所述,m的值是0或﹣4.故答案为:0或﹣4.【点评】本题考查了分式方程无解的条件,是需要识记的内容.25.关于x的分式方程+=1的解为非正数,则k的取值范围是k≥1且k≠3.【分析】分式方程去分母转化为整式方程,由分式方程的解为非正数,确定出k的范围即可.【解答】解:去分母得:x+k+2x=x+1,解得:x=,由分式方程的解为非正数,得到≤0,且≠﹣1,解得:k≥1且k≠3,故答案为:k≥1且k≠3【点评】此题考查了分式方程的解,始终注意分母不为0的条件.三.解答题(共8小题)26.已知关于x的分式方程+=(1)已知m=4,求方程的解;(2)若该分式方程无解,试求m的值.【分析】(1)分式方程去分母转化为整式方程,将m=2代入计算即可求出x的值;(2)分式方程去分母转化为整式方程,由分式方程有增根,将x=1或x=﹣2代入计算,即可求出m的值.【解答】解:分式方程去分母得:2(x+2)+mx=x﹣1,整理得:(m+1)x=﹣5.(1)当m=4时,(4+1)x=﹣5,解得:x=﹣1经检验:x=﹣1是原方程的解.(2)∵分式方程无解,∴m+1=0或(x+2)(x﹣1)=0,当m+1=0时,m=﹣1;当(x+2)(x﹣1)=0时,x=﹣2或x=1.当x=﹣2时m=;当x=1是m=﹣6,∴m=﹣1或﹣6或时该分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.27.关于x的分式方程﹣2m=无解,求m的值.【分析】先应用解分式分式方程的解法求解,得到关于x的代数式,根据分式方程无解可得关于m的方程,解方程求得m的值.【解答】解:给分式方程两边同时乘以x﹣3,得,x﹣2m(x﹣3)=m,(2m﹣1)x=5m,①2m﹣1=0,则m=;②2m≠1,解得x=,由方程增根为x=3,则=3,解得m=3,综上,m=或3.【点评】此题考查了分式方程的解,弄清分式方程无解的条件是解本题的关键.28.如果关于x的方程无解,求a的值.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:(x﹣1)(x+1)﹣x(x+2)=ax+2,即(a+2)x+3=0∵关于x的方程无解,∴x=1或x=﹣2,∴当x=1时,﹣3=a+2,即a=﹣5,当x=﹣2时,3=﹣2a+2,即a=﹣,另当a=﹣2时,方程变为3=0,不成立,所以a=﹣2时,方程也无解∴a=﹣5或﹣2或﹣时方程无解.【点评】本题考查了分式方程的解.在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.29.阅读:对于两个不等的非零实数a、b,若分式的值为零,则x=a或x=b.又因为==x+﹣(a+b),所以关于x的方程x+=a+b 有两个解,分别为x1=a,x2=b.应用上面的结论解答下列问题:(1)方程x+=q的两个解分别为x1=﹣1、x2=4,则p=﹣4,q=3;(2)方程x+=4的两个解中较大的一个为3;(3)关于x的方程2x+=2n的两个解分别为x1、x2(x1<x2),求的值.【分析】(1)根据材料可得:p=﹣1×4=﹣4,q=﹣1+4=3,计算出结果;(2)设方程x+=4的两个解为a,b,同理得ab=3,a+b=4,解出可得结论;(3)将原方程变形后变为:2x+1+=2n+1,未知数变为整体2x+1,根据材料中的结论可得:x1=,x2=,代入所求式子可得结论.【解答】解:(1)∵方程x+=q的两个解分别为x1=﹣1、x2=4,∴p=﹣1×4=﹣4,q=﹣1+4=3,故答案为:﹣4,3;(2)设方程x+=4的两个解为a,b,则ab=3,a+b=4,∴a=1,b=3或a=3,b=1,∴两个解中较大的一个为3;故答案为:3;(3)∵2x+=2n,∴2x+1+=2n+1,2x+1+=(n+2)+(n﹣1),∴2x+1=n+2或2x+1=n﹣1,x=或,∵x1<x2,∴x1=,x2=,∴===1.【点评】此题考查了分式方程的解,弄清题中的规律是解本题的关键.30.若关于x的分式方程无解,求m的值.【分析】分式方程去分母转化为整式方程,求出整式方程的解,由分式方程无解求出x 的值,代入整式方程的解求出m的值即可.【解答】解:解分式方程得,x=,∵上述分式方程无解,∴x2﹣1=0,即x=1或x=﹣1,∴=1或=﹣1,解得m=2或m=﹣4.【点评】此题考查了分式方程的解,弄清分式方程无解的条件是解本题的关键.31.阅读:对于两个不等的非零实数a、b,若分式的值为零,则x=a或x=b.又因为,所以关于x的方程x+=a+b有两个解,分别为x1=a,x2=b.应用上面的结论解答下列问题:(1)方程x+=q的两个解分别为x1=﹣2、x2=3,则p=﹣6,q=1;(2)方程x+=8的两个解中较大的一个为7;(3)关于x的方程2x+=2n+2的两个解分别为x1、x2(x1<x2).求的值.【分析】(1)由已知可得p=(﹣2)×3=﹣6,q=(﹣2)+3=1;(2)由题意可得ab=7,a+b=8;(3)已知式子化为,即可求得,,再将所求的根代入即可.【解答】解:(1)由已知可得p=(﹣2)×3=﹣6,q=(﹣2)+3=1,故答案为﹣6,1;(2)∵ab=7,a+b=8,∴a=1,b=7,故答案为7;(3)∵,∴,;∴2x﹣1=n+3或2x﹣1=n﹣2,∴或,又∵x1<x2,∴,,∴.【点评】本题考查分式方程的解;理解题意,能够将所求分式方程的解转化为一元一次方程的解是解题的关键.32.已知关于x的方程无解,求m的值.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:去分母,整理得(m+3)x=4m+8,①由于原方程无解,故有以下两种情况:(1)方程①无实数根,即m+3=0,而4m+8≠0,此时m=﹣3.(2)方程①的根x=是增根,则=3,解得m=1.因此,m的值为﹣3或1.【点评】本题考查了分式方程无解的条件,是需要识记的内容.33.若关于x的方程﹣=无解,求实数m的值.【分析】方程去分母转化为整式方程,求出x的表达式,根据分式方程无解可得x=0或x=﹣1或x的表达式中分母为0,再代入x的表达式中即可求出m的值.【解答】解:方程两边同时乘以x(x+1),得:2mx﹣(m+1)=x+1,当2m﹣1=0时,方程也无解,解得:m=,当2m﹣1≠0时,解得:x=,∵方程无解,∴x(x+1)=0,∴x=0或x=﹣1,当x=0时,,解得:m=﹣2,当x=﹣1时,,解得:m=,综上,m的值为﹣2或﹣或.【点评】本题考查分式方程的解,熟练掌握分式方程的解的特点,并能分情况进行讨论是解题的关键.。

中考数学分式方程专题训练100题(含参考答案)

中考数学分式方程专题训练100题(含参考答案)
A. B. C. D.
30.养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾.”你认为池塘主的做法()
A.有道理,池中大概有1200尾鱼B.无道理
C.有道理,池中大概有7200尾鱼D.有道理,池中大概有1280尾鱼
45.某市计划对道路进行维护.已知甲工程队每天维护道路的长度比乙工程队每天维护道路的长度多50%,甲工程队单独维护30千米道路的时间比乙工程队单独维护24千米道路的时间少用1天.
(1)求甲、乙两工程队每天维护道路的长度是多少千米?
(2)若某市计划对200千米的道路进行维护,每天需付给甲工程队的费用为25万元,每天需付给乙工程队的费用为15万元,考虑到要不超过26天完成整个工程,因工程的需要,两队均需参与,该市安排乙工程队先单独完成一部分,剩下的部分两个工程队再合作完成.问乙工程队先单独做多少天,该市需付的整个工程费用最低?整个工程费用最低是多少万元?
A.甲、丁B.乙、丙C.甲、乙D.甲、乙、丙
37.若关于x的一元一次不等式组 有解,且关于y的分式方程 = 的解是正整数,则所有满足条件的整数a的值之和是()
A.﹣14B.﹣15C.﹣16D.﹣17
38.已知关于x的方程 有增根,则a的值为( )
A.4B.5C.6D.﹣5
39.若关于x的分式方程 +1= 有整数解,且关于y的不等式组 恰有2个整数解,则所有满足条件的整数a的值之积是( )
34.美是一种感觉,当人体下半身长与身高的比值越接近黄金分割比时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高L的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为().

专题09分式方程(2大考点4种题型)(原卷版)

专题09分式方程(2大考点4种题型)(原卷版)

专题09分式方程(2大考点+4种题型)思维导图核心考点与题型分类聚焦考点一:分式方程及其解法考点二:分式方程应用题题型一:分式方程的解法题型二:根据分式方程解的情况求值题型三:分式方程无解问题题型四:分式方程的实际应用考点一:分式方程及其解法1、分式方程的概念分母中含有未知数的方程叫做分式方程.2、解分式方程的方法通过去分母把分式方程转化为整式方程,再求解.3、增根的概念分式方程在化整式方程求解过程中,整式方程的解如果使得分式方程中的分母为0,那么这个解就是方程的增根.4、解分式方程的一般步骤(1)方程两边都乘以最简公分母,去分母,化成整式方程;(2)解这个整式方程,求出整式方程的根;(3)检验.有两种方法:①将求得的整式方程的根代入最简公分母,如果最简公分母等于0,则这个根为增根,方程无解;如果最简公分母不等于0,则这个根为原方程的根,从而解出原方程的解;②直接代入原方程中,看其是否成立.如果成立,则这个根为原方程的根,从而解出原方程的解;如果不成立,则这个根为增根,方程无解.5、分式方程组的概念由两个或两个以上的分式方程构成的方程组叫做分式方程组.6、解分式方程组的方法找出分式方程组中相同的分式进行换元,将分式方程组转化为整式方程组,解方程组,然后进行检验.考点二:分式方程应用题列方程(组)解应用题时,如何找“相等关系”(1)利用题目中的关键语句寻找相等关系;(2)利用公式、定理寻找相等关系;(3)从生活、生产实际经验中寻找相等关系.题型一:分式方程的解法题型二:根据分式方程解的情况求值题型三:分式方程无解问题值.题型四:分式方程的实际应用【例4】.(2022下·上海·八年级上海市田林第三中学校考期中)5G的速度很快,比4G速度每秒多95MB,一部1000MB的电影,5G比4G要快190秒,求5G的速度.【变式1】.(2022下·上海闵行·八年级上海市民办文绮中学校考阶段练习)若A、B两地相距30千米,甲、乙两人分别从A、B两地相向而行,且甲比乙早出发2小时.如果乙比甲每小时多行2千米,那么两人恰好在AB中点相遇.求甲、乙两人的速度各是每小时多少千米?【变式2】.(2022下·上海普陀·八年级校考期中)一项工程,如果甲、乙两队单独完成,甲队比乙队多用5天,如果甲、乙两队合作,6天可以完成.求两队单独完成此项工程各需多少天?【变式3】.(2023下·上海静安·八年级统考期末)某公司先从甲地用9000元购买了一批商品,后发现乙地同一商品每件比甲地便宜,因此又用12000元从乙地补购了一批同样的商品.公司按每件200元售完这两批商品后,共赚了11000元.(1)设该公司从甲地购进x件商品,请用含字母x的代数式表示从乙地购进的商品件数是______;(2)如果乙地同一商品每件比甲地便宜30元,求该公司分别从甲乙两地购进这种商品各多少件.A.1-B.3C.1-或3D.无法确定22.(2023下·上海黄浦·八年级校考阶段练习)甲乙两人各加工30个零件,甲比乙少用1小时完成任务;乙改进操作方法,使生产效率提高了一倍,结果乙完成30个零件的时间比甲完成24个零件所用的时间少1小时.问甲乙两人原来每小时各加工多少个零件.23.(2022下·上海·八年级期末)学校到学习基地的公路距离为15千米,一部分人骑自行车先走,40分钟后,其余的人乘坐汽车出发,结果他们同时到达,如果汽车的平均速度与自行车的平均速度的比是3:1,问:汽车与自行车的平均速度分别是多少?24.为庆祝“六一”活动,镇活动中心需要600个环保纸袋,原计划由初二(1)班全体同学制作完成、在实际制作时,又有初二(2)班10名同学自愿加入参与制作,这样,实际参加制作的同学人均制作的数量比原计划少5个,那么初二(1)班共有多少名同学?25.(2021下·上海·八年级上海市西南模范中学校考期中)学校开展“书香校园”活动,购买了一批图书.已知购买科普类图书花费了10000元,购买文学类图书花费了9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量比购买文学类图书数量少100本,科普类图书平均每本的价格是多少元?26.(2022下·上海宝山·八年级校考阶段练习)如图反映了甲、乙两名自行车爱好者同时骑车从A 地到B 地进行训练时行驶路程y (千米)和行驶时间x (小时)之间关系的部分图像,根据图像提供的信息,解答下列问题:(1)求乙的行驶路程y 和行驶时间x ()13x ≤≤之间的函数解析式;(2)如果甲的速度一直保持不变,乙在骑行3小时之后又以第1小时的速度骑行,结果两人同时到达B 地,求A 、B 两地之间的距离.。

分式方程经典题(附答案)

分式方程经典题(附答案)

分式方程经典习题一、选择题:1.以下是方程121x =--xx 去分母的结果,其中正确的是A . x-2(x-1)=1B .x 2-2x-2=1C .x 2-2x-2=x 2-xD .x 2-2x+2=x 2-x 2.在下列方程中,关于x 的分式方程的个数有 .①0432221=+-x x ②. 4=a x , ③4=x a ④. 1392=+-x x ⑤621=+x⑥.211=-+-a x a x A.2个 B.3个 C.4个 D.5个3.分式5m 2+的值为1时,m 的值是 .A .2B .-2C .-3D .34.不解下列方程,判断下列哪个数是方程32133112--++=+x x x x 的解 . A .x=1 B .x=-1 C .x=3 D .x=-36.若分式x 2-12(x+1) 的值等于0,则x 的值为 .A 、1B 、±1C 、12D 、-18.关于x 的方程4532=-+x a ax 的根为x=2,则a 应取值 . A.1 B. 3 C.-2 D.-37.赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 .A 、1421140140=-+x x B 、 1421280280=++x x C 、1211010=++x x D 、1421140140=++x x 8.关于x 的方程2354ax a x +=-的根为x =2,则a 应取值 . A.1 B.3 C.-2 D.-39.在正数范围内定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则x ☆23)1(=+x 的解为 .A .32=xB .1=xC .32-=x 或1 D .32=x 或1-10.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 .A . 32180180=+-x xB . 31802180=-+x xC . 32180180=--x xD . 31802180=--xx11.李老师在黑板上出示了如下题目:“已知方程012=++kx x ,试添加一个条件,使方程的解是x=-1”后,小颖的回答是:“添加k=0的条件”;小亮的回答是:“添加k=2的条件”,则你认为 .A 、只有小颖的回答正确B 、小亮、小颖的回答都正确C 、只有小亮的回答正确D 、小亮、小颖的回答都不正确12.某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才使挖掘出来的土能及时运走,且不窝工,解决此问题,可设派x 人挖土,其它人运土,列方程:① 3x -72=x ②372x x =- ③x-3x=72 ④372=-xx上述所列方程,正确的有 .A .1个B .2个C .3个D .4个二、 填空题: 13.若分式11--x x 的值为0,则x 的值等于14.若分式方程xmx x -=--2524无解,那么m 的值应为 15.某项工程限期完成,甲单独做提前1天完成,乙单独做延期2天完工,现两人合作1天后,余下的工程由乙队单独做,恰好按期完工,求该工程限期 天. 16.阅读材料:方程1111123x x x x -=-+--的解为1x =, 方程1111134x x x x -=----的解为x=2, 方程11111245x x x x -=-----的解为3x =,… 请写出能反映上述方程一般规律的方程,并直 接写出这个方程的解是 . 三、 解答题:17.解方程 )2)(1(311+-=--x x x x18.先化简代数式1121112-÷⎪⎭⎫⎝⎛+-+-+x x x x x x ,然后选取一个使你喜欢的x 的值代入求值.19.若方程122-=-+x ax 的解是正数,求a 的取值范围。

专题12 分式与分式方程重难点题型分类(解析版)—八年级数学上册重难点题型分类高分必刷题(人教版)

专题12 分式与分式方程重难点题型分类(解析版)—八年级数学上册重难点题型分类高分必刷题(人教版)

专题12分式与分式方程重难点题型分类-高分必刷题(解析版)专题简介:本份资料包含《分式与分式方程》这一章在各次月考、期末中除应用题和压轴题之外的全部主流题型,所选题目源自各名校月考、期末试题中的典型考题,具体包含十一类题型:分式的定义、分式有意义、分式值为0、分式的性质、整体代入法求分式值、最简分式、分式的先化简后求值、整数指数幂计算、解分式方程、含参分式方程中参数的取值范围、分式方程的增根与无解问题。

本专题资料适合于培训机构的老师给学生作复习培训时使用或者学生月考、期末考前刷题时使用。

题型一分式的定义1.(2022·永州)在1x ,13,12x +,21x +,2x x+中分式的个数有()A .2个B .3个C .4个D .5个【详解】解:1x ,21x +,2x x+的分母中含有字母,都是分式,共有3个.故选:B .2.(2022·岳阳)下列代数式①x ,②2a b +,③π,④m n -中,分式有()A .1个B .2个C .3个D .4个【详解】解:①和④分母中含有字母,是分式;②③分母中不含有字母,不是分式,故选:B .3.(2022·永州)有如下式子13+;②31x +;③22x y π-;④2()xyx y +,其中是分式的有()A .①③B .②③C .③④D .②④【详解】解:①13x +,是整式,不是分式,不符合题意;②31x +,是分式,符合题意;③22x y π-,是整式,不符合题意;④2()xyx y +,是分式,符合题意.所以②④是分式故选:D .题型二分式有意义(分母不为0)4.(2021·衡阳)要使分式21x x --有意义,则x 的取值范围是()A .1x =B .2x =C .1x ≠D .2x ≠【详解】解:要使分式21x x --有意义,必须x -1≠0,解得:x ≠1,故选:C .5.(2019·长沙)分式3||1xx -有意义,则x 的取值范围是()A .1x >B .1x <C .11x -<<D .1x ≠±【详解】∵31xx +-有意义,∴||10x -≠,解得:1x ≠±,故选:D .6.(2018·1xx -x 的取值范围是__________【详解】解:由题意得,x≥0且x-1≠0,解得0x ≥且1x ≠,故填:0x ≥且1x ≠.7.(2022··12xx -有意义,那么x 的取值范围是______.【详解】解:根据题意得:1020x x -≥⎧⎨+≠⎩解得1x ≤且2x ≠-,故答案为:1x ≤且2x ≠-.题型三分式值为0(分子=0且分母≠0)8.(2022·洪江)若分式||326x x -+的值为零,则x 的值是()A .3B .﹣3C .±3D .4【详解】解:∵分式||326x x -+的值为零,∴30x -=,且260x +≠,解得3x =.故选:A .9.(博才)如果分式22x --的值为0,那么x 的值为()A .2x =B .0x =C .0x =或2x =D .以上答案都不对【解答】解:由题意,知x(x-2)=0且x -2≠0.解得x =0.故选:B .10.(2022·长沙)若分式242x x -+的值为0,则x =______.【详解】由题意得240x -=,20x +≠,2x ∴=±,2x ≠-,2x ∴=,即当2x =时,分式的值是0.故答案为:2.11.(青竹湖)若分式293x x -+的值为0,则x 的值为____________。

专题15.3分式方程-重难点题型(教师版含解析)2022年八年级数学上册举一反三系列(人教版)

专题15.3分式方程-重难点题型(教师版含解析)2022年八年级数学上册举一反三系列(人教版)

专题15.3分式方程-重难点题型【人教版】【知识点1分式方程】(1)分式方程:分母中含有未知数的方程(2)分式方程的解法思路:去分母(乘分母最小公倍数)将分式方程先转化为整式方程,再按照整式方程的技巧求解方程。

(3)分式方程解方程的步骤:①利用等式的性质去分母,将分式方程转换为整式方程②解整式方程③验根--检验整式方程解得的根是否符合分式方程④作答【题型1解分式方程(基本法)】【例1】(2021春•碑林区校级月考)解方程:(1)32−13K1=56K2;(2)K1−3(K1)(r2)=1.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3(3x﹣1)﹣2=5,去括号得:9x﹣3﹣2=5,移项合并得:9x=10,解得:x=109,检验:把x=109代入得:2(3x﹣1)≠0,∴x=109是分式方程的解;(2)去分母得:x(x+2)﹣3=(x﹣1)(x+2),整理得:x2+2x﹣3=x2+x﹣2,解得:x=1,检验:把x=1代入得:(x﹣1)(x+2)=0,∴x=1是增根,分式方程无解.【变式1-1】(2021•潍坊)若x<2,且1K2+|x﹣2|+x﹣1=0,则x=1.【分析】先去掉绝对值符号,整理后方程两边都乘以x﹣2,求出方程的解,再进行检验即可.【解答】解:1K2+|x﹣2|+x﹣1=0,∵x<2,∴方程为1K2+2﹣x+x﹣1=0,即1K2=−1,方程两边都乘以x﹣2,得1=﹣(x﹣2),解得:x=1,经检验x=1是原方程的解,故答案为:1.【变式1-2】(2021•宜都市一模)解方程:3+6K1−r52−=0.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3(x﹣1)+6x﹣(x+5)=0,去括号得:3x﹣3+6x﹣x﹣5=0,移项合并得:8x=8,解得:x=1,检验:把x=1代入得:x(x﹣1)=0,∴x=1是增根,分式方程无解.【变式1-3】(2021•北碚区校级开学)解分式方程:(1)3K5−1=2K1K5.(2)122−4−K1r2=6−K2.【分析】(1)方程两边同乘(x﹣5),将分式方程转化为整式方程,然后解方程,注意分式方程的结果要进行检验.(2)方程两边同乘(x﹣2)(x+2),将分式方程转化为整式方程,然后解方程,注意分式方程的结果要进行检验.【解答】解:(1)方程两边同乘(x﹣5),得3﹣x+5=2x﹣1,解得x=3,经检验,x=3是原方程的解;(2)方程两边同乘(x﹣5)(x+2),得12﹣(x﹣1)(x﹣2)=(6﹣x)(x+2),解得x=﹣2,经检验,x=﹣2是增根,原方程无解.【题型2解分式方程(新定义问题)】【例2】(2021春•宝安区期末)定义新运算:a#b=12−B,例如2#3=132−3×2=13,则方程x#2=1的解为x=32.【分析】根据新定义列出方程,解出这个方程即可.【解答】解:根据题意得,x#2=122−2=1,即22﹣2x﹣1=0,解得x=32,经检验,x3是原方程的解,故答案为:32.【变式2-1】(2021•怀化)定义a⊗b=2a+1,则方程3⊗x=4⊗2的解为()A.x=15B.x=25C.x=35D.x=45【分析】利用题中的新定义化简已知等式,求出解即可得到x的值.【解答】解:根据题中的新定义得:3⊗x=2×3+1,4⊗2=2×4+12,∵3⊗x=4⊗2,∴2×3+1=2×4+12,解得:x=25,经检验,x=25是分式方程的根.故选:B.>,如果5※x=2,那么x的值为【变式2-2】(2021春•甘孜州期末)定义运算“※”:a※b=<4或10.【分析】根据定义运算,分5>x或5<x两种情况列方程求解,注意分式方程的结果要进行检验.【解答】解:①当5>x时,25−=2,去分母,可得:2=2(5﹣x),解得:x=4,检验:当x=4时,5﹣x≠0,且符合题意,∴x=4是原方程的解;②当5<x时,K5=2,去分母,得:x=2(x﹣5),解得:x=10,检验:当x=10时,x﹣5≠0,且符合题意,∴x=10是原方程的解;综上,x的值为4或10,故答案为:4或10.【变式2-3】(2021秋•信都区校级月考)运符号“”,称为二阶行列式,规定它的运算法则为:=ad﹣bc,请你根据上述规定,求出下列等式中x=1.【分析】利用题中的新定义化简所求方程,求出解即可.【解答】解:根据题中的新定义化简所求方程得:2K1−11−=1,去分母得:2+1=x﹣1,解得:x=4,当x=4时,x﹣1=3≠0,∴x=4是分式方程的解,故x的值为4.【知识点2分式的运算技巧-裂项法】解题技巧:裂项相消法:【题型3裂项法解分式方程】【例3】观察下面的变形规律:11×2=11−12;12×3=12−13;13×4=13−14;…解答下面的问题:(1)若n为正整数,且写成上面式子的形式,请你猜想1or1)=1−1r1.(2)说明你猜想的正确性.(3)计算:11×2+12×3+13×4+⋯+12018×2019=20182019.(4)解关于n的分式方程11×2+12×3+13×4+⋯+1or1)=r7r9.【分析】(1)由题意可得1or1)=1−1r1;(2)利用通分即可证明等式成立;(3)原式=11111111,再计算即可求解;(4)方程可以化简为1−1r1=r7r9,再解分式方程即可求解.【解答】解:(1)1or1)=1−1r1,故答案为:1−1r1;(2)1−1r1=r1or1)−or1)=1or1),∴1or1)=1−1r1成立;(3)11×2+12×3+13×4+⋯+12018×2019=1−12+12−13+13−14+⋯+12018−12019=1−12019=20182019;(4)11×2+12×3+13×4+⋯+1or1)=1−12+12−13+13−14+⋯+1−1r1=1−1r1=r7r9=1−2r9,∴1r1=2r9,方程两边同时乘(n+1)(n+9),得n+9=2(n+1),去括号,得n+9=2n+2,解得n=7,经检验,n=7是方程的解,∴原方程的解为n=7.【变式3-1】(2020春•京口区校级月考)观察下列算式:16=12×3=12−13,112=13×4=13−14,120=14×5=14−15,……(1)由此可推断:142=16−17;(2)请用含字母m(m为正整数)的等式表示(1)中的一般规律1or1)=1−1r1;(3)仿照以上方法解方程:1(K1)(K2)+1oK1)=1.【分析】(1)观察已知等式得到所求即可;(2)归纳总结得到一般性规律,写出即可;(3)方程利用得出的规律变形,计算即可求出解.【解答】解:(1)根据题意得:142=16×7=16−17;(2)根据题意得:1or1)=1−1r1;(3)方程整理得:1K2−1K1+1K1−1=1,即1K2=2,去分母得:x=2x﹣4,解得:x=4,经检验x=4是分式方程的解.故答案为:(1)16−17;(2)1or1)=1−1r1【变式3-2】(2020秋•五华区期末)观察下列式:11×2=1−12,12×3=12−13,13×4=13−14.将以上三个等式两边分别相加的:11×2+12×3+13×4=1−12+12−13+13−14=34.(1)猜想并填空:1or1)=1−1r1;11×2+12×3+13×4+⋯148×49=4849.12+16+112+120+ 130+⋯+19900=99100.(2)化简:1or1)+1(r1)(r2)+1(r2)(r3)+⋯+1(r2019)(r2020).(3)探索并作答:①计算:12×4+14×6+16×8+⋯+12018×2020;②解分式方程:1111.【分析】(1)观察已知等式得到拆项的方法,计算即可;(2)原式利用拆项法变形,计算即可求出值;(3)①原式利用拆项法变形,计算即可求出值;②方程利用拆项法变形,计算即可求出解.【解答】解:(1)1or1)=1−1r1,11×2+12×3+13×4+⋯+148×49=1−12+12−13+13−14+⋯+148−149=1−149=4849;12+16+112+120+130+⋯+19900=11×2+12×3+13×4+14×5+15×6+⋯+199×100=1−12+12−13+⋯+199−1100=1−1100=99100;故答案为:1−1r1;4849;99100;(2)原式=1−1r1+1r1−1r2+1r2−1r3+⋯+1r2019−1r2020=1−1r2020=2020or2020);(3)①原式=12×(12−14+14−16+16−18+12018−12020)=12×(12−12020)=10094040;②方程整理得:1K2+1K3−1K2+1K4−1K3=1,即1K4=1,解得:x=5,经检验x=5是分式方程的解.【变式3-3】(2020秋•天心区校级月考)观察下列等式:11×2=1−12,12×3=12−13,13×4=13−14,将以上三个等式两边分别相加得:11×2+12×3+13×4=1−12+12−13+13−14=1−14=34,(1)猜想并写出:1or1)=1−1r1.(2)直接写出下列各式的计算结果:①11×2+12×3+13×4+⋯+12016×2017=20062007;②11×2+12×3+13×4+⋯+1or1)=r1.(3)若11×3+13×5+15×7+⋯+1(2K1)(2r1)的值为1735,求n的值.【分析】(1)根据已知等式猜想得到所求即可;(2)各式利用拆项法变形,计算即可求出值;(3)根据题意列出方程,利用拆项法变形,计算即可求出n的值.【解答】解:(1)猜想得:1or1)=1−1r1;(2)①原式=1−12+12−13+⋯+12016−12017=1−12017=20162017;②原式=1−12+12−13+⋯+1−1r1=1−1r1=r1;(3)根据题意得:11×3+13×5+15×7+⋯+1(2K1)(2r1)=1735,整理得:12(1−13+13−15+15−17+⋯+12K1−12r1)=1735,即1−12r1=3435,移项合并得:12r1=135,即2n+1=35,解得:n=17,经检验n=17是分式方程的解,则n的值为17.【知识点3换元法解分式方程】换元法:引进新的变量,把一个较复杂的关系转化为简单数量关系例解方程:另(x-y)=u,则原方程转换为:方程转换为了一个比较简洁的形式,再按照二元一次方程组的求法进行求解,以简化计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1 (分式概念)
(1)当x时,分式一L无意义;
1 x
2
(2)当x时,分式—9的值为零•
x 3
随堂练习1
1要使式子丄卫- 有意义,x的取值应为
x 3 x 4
2、当x时,分式—3的值为0。

x 3
3、使分式有意义的a的取值是()
a2 1
A、a M 1
B、a^± 1
C、a^—1D a 为任意实数
4、当x=—3时,下列分式中有意义的是()
A、x 3
B、x 3 C(x 3)( x 2) D (x 3)( x 2) 、x 3、x 3 (x 3)(x 2) (x 3)(x 2)
例2 (分式的约分)
.已知1丄3,求5x xy 5y
的值. x y x xy y
随堂练习2
1下列变形不正确的是()
3、化简求值:(1) 4x
f xy :y
其中 x=2, y=3. 2x 2y
2 3 2
(2)已知-=2,求X
2
xy 3
駡 的值.
y
x xy 6y
例3 (分式的乘除法)
2 2
使分式x y
2 竺卑的值等于5的a 的值是() a x a
y (x y)
1
1
A.5
B. — 5
C.1
D. — 1
5
5
随堂练习3
例4 (分式加减法)
x 2 1 x 2
2x 1
例4-1化简求值:当x=
时,求 x 1 —厂—的值.
例4-2
A. 2 a
a 2
a 2 1 x 1
x 1 1 6x 3 2x1
B.
2
(x 工 1)C. 2
= D.
a 2 x 1 x 2
1 x 2
2x 1
2
3y 6 y 2
2、若 2x= — y ,
则分式2xy
2的值为
x y
计算: (1)( xy — x 2)十 x

(2) xy
3^2

x 2x 4x
2
x 4x 4
X 2
2x 4 x 2
2 2
(1)上述计算过程中,从哪一步开始出现错误:
(2)从B 到C 是否正确;。

若不正确,错误的原因是
(3) 请你正确解答
随堂练习4
3计算:亠(1 □)=
x 1 x
例5 (分式的混合运算)
化简求值:(2+二 —)-(a ——
),其中a=2
a 1 a 1
1 a
随堂练习5
化简:(x+1—丄)宁
x 1 2x 2
例6 (解分式方程)
(1)丄2注⑵畔 口互」
x 3
3 x
x 4x2x2
随堂练习6解分式方程: 1、2
3
2、x 5
1
5
x 3
3 x 3 3 x 2
1 1 x (x 1)(x 1) x 1
x 3 3(x 1)
(x 1)(x 1) (x 1)(x 1)
x 3 3( x 1) 2x 6
1、分式
2 xy
的最简公分母是
2计算:
1
_2
x yz
2
2_ xy z
3 =
2 = -------------
xyz
x x 1
x 4 4 x
例7 (分式方程的增根)
随堂练习7
1关于x 的方程2a
— ?的根为x=1,则a 应取值()
a x 4
A.1
B.3
C. — 1
D. — 3
2.方程1 + (x x 1)2
=0有增根,则增根是()
1
A.1
B. — 1
C. ± 1
D.0
例8 (分式方程的应用)
例8-1沿河两地相距s 千米,船在静水中的速度为a 千米/时,水流速度为b 千米/时,此 船一次往返所需时间为()
例8-2赵强同学借了一本书,共280页,要在两周借期内读完•当他读了一半时,发现平均 每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半 时,平均每天读x 页,则下面所列方程中,正确的是()
、填空题
如果关于x 的方程& 1
T 有增根’则a
的值为
A.旦小时
a b
B.上乞小时
C.(--)小时
a b
a b
A.
140
叫14
B.型 竺=14
C.
x 21
x 21
140 x
迢=14
x 21
10 x 21
1.一汽车从甲地开往乙地,每小时行驶V i千米,t小时可到达,如果每小时多行驶V2
千米,那么可提前到达_________ 小时.
2.我国政府为解决老百姓看病问题,决定下调药品价格.某种药品在2001年涨价30% 后,2003年降价70%g a元,则这种药品在2001年涨价前的价格为 __________ 元.
3.(1)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?
(2) 一组学生乘汽车去旅游,预计共需车费120元.后来人数增加了 -,车费用仍不变,
4
这样每人可少摊3元,原来这组学生有多少人?
【精题精炼】
一、填空题
1、当x时,分式生二有意义;当x时,分式亘」的值等于零.
2x 1 1 x
3、若分式丄丄的值为负数,贝U x的取值范围是.
3x 2
4、已知x 2009、y 2010,贝U x y
5、如果-
b 2,则
a2ab b2
a2b2
2、
3a
bc
5b
2ac
的最简公分母是;化简:
x2 4
x 2
2 2
x y
4 4
x y
B 、3个
C 4个D
10、下列约分正确的是()
11、(易错题)下列各分式中,最简分式是()
A 2(b c) 2
B a b _ A
B 、
2 2
a 3(
b c) a 3 a b a
13、若把分式中的x 和y 都扩大3倍,那么分式的值()
2xy
A 、扩大3倍
B 、不变
C 、缩小3倍
D 缩小6倍 14、下列各式中,从左到右的变形正确的是()
x 3
7、 已知 (x 1)(x 3) -A —,整式A
x 1 x 3
B 的值分别为.
8、 (思维突破题)若x x 2
1
~2
x
、选择题 9、 F 列各
式:
4x x ,
3
x 2
x
,
竺其中是分式有()
x
2
2
2 A 34
2L^B_x
_^_c y_ 85 x y x y xy x 2 x r
D
y 2
y 2
x y
x 2
12、(更易错题)下列分式中,计算正确的

()
0 c 、 x
~~2
x xy
2xy 2
1
齐2
4x Z 1D
(a b)
x y
1
T 2
2
2xy x y y x
X y X y B X y X y C x y x y D x y x y x y x y x y x y x y x y
1 i 15、若 xy x y 0 ,则分式一 一() y x
A 丄
B y x
C 、1
D -1 xy
A 、正数
B 、非正数
C 负数
D 非负数
1
17、已知 x 0 , 一 x
1
5 11 A 丄 BC 、— D>一一
2x
6x
6x
18、(多转单约分求值)已知一 一 3,则
5x xy 5y
值为()
x y
x xy y
7 7
2 2
A
7
B
7
C 、 2D
-
2
2
7
7
三、计算题
2
2x 5y 10y a b
2 2
20

3y 2 6x 21x 2
ab
1 2x
21、1 x y x 2y
2 2
x y
x 2 4xy 4y 2
x 2 x 2 x 2
4
22、( ) — x 2 x 2 x 2
16、(讨论分析题)若x 满足
1,则x 应为()
b c be
c a ac
2x 3x
x 1 x(x 1)
25、先化简,再求值(丄丄),其中x 2, y 1.
x y y x xy y
四、解答题
26、小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学
书,每本科普书的价格比文学书的价格高出一半(即1.5倍),因此他们买的文学书比科普书多一本,每本科普和文学书的价格各是多少?
2
27、若x2 3x 1 0,求分式的值•(多转单约分求值终结版!!!)
x x 1。

相关文档
最新文档