导数与不等式证明(绝对精华)
导数的应用不等式的证明

导数与不等式1.利用导数证明不等式利用导数证明不等式,主要是构造函数,通过研究函数的性质达到证明的目的. 1.1 利用单调性证明不等式构造函数,利用函数的单调性证明不等式例1. ()(1)ln(1)f x x a x x =-++。
(Ⅰ)求()f x 的极值点;(Ⅱ)当1a =时,若方程()f x t =在1[,1]2-上有两个实数解,求实数t 的取值范围;(Ⅲ)证明:当0m n >>时,(1)(1)n m m n +<+。
例2、已知函数)()(R x xe x f x∈=-。
(1)求函数()f x 的单调区间和极值;(2)已知函数()y g x =的图象与函数()y f x =的图象关于直线1x =对称,证明当1x >时,()()f x g x >;(3)如果12x x ≠,且12()()f x f x =,证明122x x +>。
1.2通过求函数的最值证明不等式在对不等式的证明过程中,可以依此不等式的特点构造函数,进而求函数的最值,当该函数的最大值或最小值对不等式成立时,则不等式是永远是成立的,从而可将不等式的证明转化到求函数的最值上来 例3.已知2()ln ,() 3.f x x x g x x ax ==-+-(1)求函数()f x 在[,2)(0)t t t +>上的最小值; (2)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围; (3)证明:对一切(0,)x ∈+∞,都有12ln x x e ex->成立.例4、(2009辽宁卷文)设2()(1)xf x e ax x =++,且曲线y =f (x )在x =1处的切线与x 轴平行。
(1)求a 的值,并讨论f (x )的单调性;(2)证明:当[0,]f(cos )f(sin )22πθθθ∈-<时,1.3多元不等式的证明含有多元的不等式,可以通过对不等式的等价变形,通过换元法,转化为一个未知数的不等式,或可选取主元,把其中的一个未知数作为变量,其他未知数作为参数,再证明之. 例5、 已知函数()ln f x x =.若120x x >>,求证:122221212()()2f x f x xx x x x ->-+.例6、 (2013·陕西高考)已知函数f (x )=e x ,x ∈R .(1)求f (x )的反函数的图像上点(1,0)处的切线方程; (2)证明:曲线y =f (x )与曲线y =12x 2+x +1有唯一的公共点;(3)设a <b ,比较f ⎝⎛⎭⎫a +b 2与f (b )-f (a )b -a 的大小,并说明理由.1.4.与数列有关的不等式证明例8.已知函数f(x)=ln(x+1)-x2-x.(1)若关于x的方程f(x)=-52x+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;(2)证明:对任意的正整数n,不等式2+34+49+…+21nn+>ln(n+1)都成立.例9.已知函数f(x)=ln ax-x ax-(a≠0).(1)求函数f(x)的单调区间及最值;(2)求证:对于任意正整数n,均有1+111ln23nen n⋯≥+++!(e为自然对数的底数);(3)当a=1时,是否存在过点(1,-1)的直线与函数y=f(x)的图象相切?若存在,有多少条?若不存在,请说明理由.例10.已知函数f (x )=e x -kx 2,x ∈R.(1)若k =12,求证:当x ∈(0,+∞)时,f (x )>1; (2)若f (x )在区间(0,+∞)上单调递增,试求k 的取值范围; (3)求证:444422221111123n ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭<e 4(n ∈N *)..2.利用导数求解与不等式有关的恒成立问题或者有解、无解问题不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理.()f x a >:min max max ()()()f x af x a f x a⇔>⎧⎪⇔>⎨⎪⇔≤⎩恒成立有解无解例11.设函数()ln f x a x =,21()2g x x =.(1)记'()g x 为()g x 的导函数,若不等式'()2()(3)()f x g x a x g x +<+-在[1,]x e ∈上有解,求实数a 的取值范围;(2)若1a =,对任意的120x x >>,不等式121122[()()]()()m g x g x x f x x f x ->-恒成立.求m (m Z ∈,1m ≤)的值.例12、 (2013·辽宁高考)(1)证明:当x ∈[0,1]时,22x ≤sin x ≤x ;(2)若不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]恒成立,求实数a 的取值范围.3.利用导数解不等式通过构造函数,利用函数的单调性得到不等式的解集.例13.若)(x f 的定义域为R ,2)(>'x f 恒成立,2)1(=-f ,则42)(+>x x f 解集( )A .(1,1)-B .(1)-+∞, C .(,1)-∞- D .(,)-∞+∞ 例14.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x·f (x )>e x+1的解集为( ).A. {}|0x x >B. {}|0x x <C. {}|1,1x x x <->或D. {}|1,1x x x <-<或0<例15.已知定义在R 上的函数)(x f 满足1)2()4(=-=f f ,)(x f '为)(x f 的导函数,且导函数)(x f y '=的图象如右图所示.则不等式1)(<x f 的解集是( )A .)0,2(- B .)4,2(- C .)4,0( D .),4()2,(+∞--∞ 例16.设)(x f 是定义在R 上的奇函数,且0)2(=f ,当0>x 时,有2()()0xf x f x x '-<恒成立,则不等式2()0x f x >的解集是( )A. (-2,0) ∪(2,+∞)B. (-2,0) ∪(0,2)C. (-∞,-2)∪(2,+∞)D. (-∞,-2)∪(0,2)例17.已知函数y =f (x )(x ∈R)的图象如图所示,则不等式xf ′(x )<0的解集为________. 例18、设函数()x f y =在其图像上任意一点00(,)x y 处的切线方程为()()0020063x x x x y y --=-,且()30f =,则不等式解集导数与不等式1.利用导数证明不等式在初等数学中,我们学习过好多种证明不等式的方法,比如综合法、分析法、比较法、反证法、数学归纳法等,有些不等式,用初等方法是很难证明的,但是如果用导数却相对容易些,利用导数证明不等式,主要是构造函数,通过研究函数的性质达到证明的目的.1.2 利用单调性证明不等式构造函数,利用函数的单调性证明不等式 例1. ()(1)ln(1)f x x a x x =-++。
导数证明不等式的方法介绍

导数证明不等式的方法介绍导数证明不等式的方法介绍利用导数是可以证明很多定律的,比如不等式之类的。
下面就是店铺给大家整理的利用导数证明不等式内容,希望大家喜欢。
利用导数证明不等式方法11.当x>1时,证明不等式x>ln(x+1)设函数f(x)=x-ln(x+1)求导,f(x)'=1-1/(1+x)=x/(x+1)>0所以f(x)在(1,+无穷大)上为增函数f(x)>f(1)=1-ln2>o所以x>ln(x+12..证明:a-a^2>0 其中0F(a)=a-a^2F'(a)=1-2a当00;当1/2因此,F(a)min=F(1/2)=1/4>0即有当003.x>0,证明:不等式x-x^3/6先证明sinx因为当x=0时,sinx-x=0如果当函数sinx-x在x>0是减函数,那么它一定<在0点的值0,求导数有sinx-x的导数是cosx-1因为cosx-1≤0所以sinx-x是减函数,它在0点有最大值0,知sinx再证x-x³/6对于函数x-x³/6-sinx当x=0时,它的值为0对它求导数得1-x²/2-cosx如果它<0那么这个函数就是减函数,它在0点的值是最大值了。
利用导数证明不等式方法2要证x²/2+cosx-1>0 x>0再次用到函数关系,令x=0时,x²/2+cosx-1值为0再次对它求导数得x-sinx根据刚才证明的当x>0 sinxx²/2-cosx-1是减函数,在0点有最大值0x²/2-cosx-1<0 x>0所以x-x³/6-sinx是减函数,在0点有最大值0得x-x³/6利用函数导数单调性证明不等式X-X²>0,X∈(0,1)成立令f(x)=x-x² x∈[0,1]则f'(x)=1-2x当x∈[0,1/2]时,f'(x)>0,f(x)单调递增当x∈[1/2,1]时,f'(x)<0,f(x)单调递减故f(x)的最大值在x=1/2处取得,最小值在x=0或1处取得f(0)=0,f(1)=0故f(x)的最小值为零故当x∈(0,1)f(x)=x-x²>0。
导数与不等式的证明及函数零点、方程根的问题

05 总结与展望
导数与不等式证明及函数零点、方程根问题的总结
导数与不等式证明
导数是研究函数性质的重要工具,通过导数可以研究函数的单调性、极值和最值等。不等 式证明则是数学中常见的题型,利用导数可以证明不等式,如AM-GM不等式、CauchySchwarz不等式等。
函数零点问题
函数的零点是指满足$f(x)=0$的$x$值。研究函数的零点对于理解函数的性质和解决方程 的根的问题具有重要意义。通过导数可以研究函数的零点个数和位置,以及零点附近的函 数性质。
感谢您的观看
• 应用领域的拓展:导数与不等式证明及函数零点、方程根的问题不仅在数学领 域有广泛应用,在其他学科和工程领域也有着重要的应用价值。例如,在经济 学、物理学和社会科学等领域,这些问题都可能成为重要的研究课题。
• 与其他数学分支的交叉融合:随着数学各分支之间的交叉融合,导数与不等式 证明及函数零点、方程根的问题可能会与其他数学分支产生更多的交叉点。例 如,与概率论、统计学和复分析等领域的结合可能会产生新的研究方向和应用 场景。
导数在求解函数零点、方程根中的注意事项
注意定义域
在使用导数研究函数性质 时,需要注意函数的定义 域,确保导数在定义域内 连续。
考虑多解情况
在求解函数零点或方程根 时,需要注意多解情况, 全面考虑所有可能的解。
注意函数的奇偶性
在利用导数研究函数性质 时,需要注意函数的奇偶 性,以便更准确地判断函 数的性质。
不等式
不等式是表示两个数或两个量之 间大小关系的数学表达式。
导数与不等式的性质
01
导数大于零,函数在该区间内单 调递增;导数小于零,函数在该 区间内单调递减。
02
不等式的基本性质包括传递性、 加法性质、乘法性质等。
专题一 第5讲 导数与不等式的证明

可得h(x)在(0,1)上单调递减,在(1,+∞)上单调递增, 所以h(x)=x-1-ln x≥h(1)=0,即x-1≥ln x.
于是,当a≤1时,ex-a≥x-a+1≥x+a-1≥ln(x+a), 注意到以上三个不等号的取等条件分别为x=a,a=1,x+a=1,它 们无法同时取等, 所以当a≤1时,ex-a>ln(x+a),即f(x)>0.
12
当a=e时,f(x)=ln(e-x)-x+e,
要证 f(e-x)<ex+2xe,即证 ln x+x<ex+2xe,即证lnxx+1<exx+21e.
设
g(x)=lnx
x+1(x>0),则
1-ln g′(x)= x2
x ,
所以当0<x<e时,g′(x)>0,当x>e时,g′(x)<0,
所以g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,
当t∈(0,1)时,g′(t)<0,g(t)单调递减, 假设g(1)能取到, 则g(1)=0,故g(t)>g(1)=0; 当t∈(1,+∞)时,g′(t)>0,g(t)单调递增, 假设g(1)能取到,则g(1)=0,故g(t)>g(1)=0,
x+ln1-x 综上所述,g(x)= xln1-x <1 在 x∈(-∞,0)∪(0,1)上恒成立.
方法二 f(x)=ln ex=1-ln x. 欲证 f(x)<1+1x-x2ex,只需证1-elxn x+x2-1x<1,
因为x∈(0,1),所以1-ln x>0,ex>e0=1,
则只需证 1-ln x+x2-1x<1, 只需证 ln x-x2+1x>0, 令 t(x)=ln x-x2+1x,x∈(0,1),
导数与不等式证明

【解答】 原不等式等价于 ex-ex+1>elxnx(x>0). 令F(x)=ex-ex+1(x>0),F′(x)=ex-e.当x∈(0,1)时,F′(x)<0;当x∈(1,+ ∞)时,F′(x)>0,所以F(x)min=F(1)=e-e+1=1. 令 G(x)=elxnx(x>0),G′(x)=e1-x2lnx.当 x∈(0,e)时,G′(x)>0;当 x∈(e,+∞) 时,G′(x)<0,所以 G(x)max=G(e)=1.又两个等号不同时取得,所以 F(x)>G(x), 即 ex-ex+1>elxnx,故原不等式成立.
点击对应数字即可跳转到对应题目
1
配套精练
配套精练
1.(2023·泰安期末节选)求证:1+x ln x≥x.
【解答】 要证 1+x ln x≥x,即证 ln x+1x-1≥0.令 h(x)=ln x+1x-1,所以 h′(x)=1x -x12=x-x21,x>0,令 h′(x)>0,解得 x>1;令 h′(x)<0,解得 0<x<1,所以 h(x)在 (0,1)上单调递减,在(1,+∞)上单调递增,所以 h(x)≥h(1)=0,所以 ln x+1x-1≥0, 即 1+x ln x≥x.
研题型·通法悟道 举题说法
目标 3 参数放缩证明不等式
3 (2024·聊城期中)已知函数f(x)=ae2x+(a-2)ex-x. (1)讨论f(x)的单调性;
【解答】 f(x)的定义域为(-∞,+∞),f′(x)=2ae2x+(a-2)ex-1=(aex-1)(2ex+1). ①若a≤0,则f′(x)<0,所以f(x)在(-∞,+∞)上单调递减. ②若a>0,由f′(x)=0,得x=-lna.当x∈(-∞,-lna)时,f′(x)<0;当x∈(- lna,+∞)时,f′(x)>0,所以f(x)在(-∞,-lna)上单调递减,在(-lna,+∞)上单 调递增. 综上,当a≤0时,f(x)在(-∞,+∞)上单调递减;当a>0时,f(x)在(-∞,-lna)上 单调递减,在(-lna,+∞)上单调递增.
导数不等式证明方法总结

导数不等式证明方法总结
导数不等式证明方法是数学中的一个重要概念,它可以用于求解各种函数的最大值、最小值、单调性等问题。
下面就导数不等式证明方法进行一些总结。
首先,我们需要知道导数的概念。
导数是函数在某一点处的变化率,它可以用极限的形式表示。
如果函数f(x)在点x0处可导,则它的导数为f'(x0),它表示函数在点x0处的斜率。
其次,我们需要掌握导数的性质。
导数的性质包括:连续性、单调性、中值定理等。
其中,连续性表示函数在某一点处可导当且仅当函数在该点处连续。
单调性表示函数单调递增当且仅当导数非负;函数单调递减当且仅当导数非正。
中值定理则表示函数在一段区间内必定存在一个点,使得该点处的导数等于该区间的平均导数。
接着,我们需要学习导数不等式的一般形式。
导数不等式是指一种基于导数性质的数学不等式。
它通常具有以下形式:若函数f(x)在区间[a,b]上具有一阶导数,则对于任意x∈[a,b],都有f(x)≤f(a)+(x-a)f'(a),或者f(x)≥f(a)+(x-a)f'(a)。
最后,我们需要掌握导数不等式的具体应用。
导数不等式常用于求解各种复杂函数的最值问题。
例如,我们可以通过导数不等式证明函数在某一区间内的最大值或最小值,并找到达到最值的具体点。
综上所述,导数不等式证明方法是数学中一个非常重要的概念,它可以应用于各种函数的求解问题。
我们需要掌握导数的概念和性质,了解导数不等式的一般形式,并掌握导数不等式的具体应用。
第8集 导数与不等式的证明
第8集导数与不等式的证明
利用导数解不等式恒成立问题主要有以下两个命题维度:
(1)证明函数不等式;
(2)由不等式恒成立求参数的取值范围。
证明函数不等式,常常可以采用以下几种模式:
(1)移项作差,构造新函数,然后利用导数判断新函数的单调性,得到最值,转化为最值与零的大小关系。
(2)利用经典不等式进行放缩,利用不等式的传递性进行证明。
(3)改变不等式的结构,转化为两个函数,让其中一个函数的最小值大于零一个函数的最大值(或让一个函数的最大值小于另一个函数的最小值)。
一·套路
二·脑洞
法1,首先利用不等式的性质,消去参数;然后构造新函数,利用导数判断其单调性,得到最小值;最后由最小值大于零等于零,从而得到原函数大于等于零。
这种证明函数不等式的模式是常见的套路,因此务必掌握。
法2,通过经典不等式进行放缩,利用不等式的传递性证明,干脆利落。
值得说明的是,这两个不等式是高考导数压轴题命题的源泉,绝大多数压轴题均与此有关。
另外,这两个不等式在高考中不能直接使用,在使用前需要简单证明,其证明过程如下:
用一次函数去代替指数函数或对数函数,这就是切线不等式得名的原因,它是一种化曲为直、适度放缩的思想。
三·迁移。
导数与不等式证明
导数与不等式证明导数是微积分中的重要概念,它描述了函数在某一点的变化率。
而不等式是数学中常用的一种关系,用于比较两个数或表达变量之间的大小关系。
本文将探讨导数与不等式之间的关系,并通过具体的例子来证明与应用。
一、导数的定义与性质首先,我们回顾导数的定义:对于函数f(x),在点x处的导数可以表示为lim(h->0)(f(x+h)-f(x))/h。
简单来说,导数就是函数在某一点的斜率。
导数具有以下性质:1. 导数存在性:如果函数在某一点可导,则该点的导数存在。
2. 导数与函数图像:导数可以帮助我们理解函数图像的特性,如切线与曲线的关系、函数的增减性等。
3. 导数的计算:可以通过求导法则,例如常数法则、幂函数法则、链式法则等,来计算导数。
二、不等式的基本性质接下来,我们简要介绍不等式的基本性质。
不等式常见的有大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)等。
对于不等式的证明,通常有以下方法:1. 同向性:如果a>b,那么对于任意正数c,ac>bc。
这个性质可以用于不等式的乘法性质证明。
2. 等价性:如果两个不等式的左边和右边分别相等,则两个不等式等价。
这个性质可以用于不等式的代换和变形。
三、导数与不等式之间的关系导数在不等式的证明中具有重要作用。
通过对比函数在不同区间的导数值以及函数图像的特征,可以得出不等式的结论。
下面通过两个具体的例子来说明导数与不等式之间的关系。
例1:证明函数f(x)=x²在区间(0,∞)上是递增的。
解:首先计算f(x)=x²的导数:f'(x)=2x。
由于导数描述了函数的变化率,当导数大于0时,函数是递增的。
因此,我们需要证明2x>0在区间(0,∞)上成立。
由于x大于0,所以2x大于0,即导数大于0,因此函数f(x)=x²在区间(0,∞)上是递增的。
例2:证明函数f(x)=eˣ在任意区间上是递增的。
高考数学导数与不等式 导数方法证明不等式
探究点二 双变量不等式的证明
[思路点拨]首先求得导函数的解析式,然后结合导函数的符号即可确定函数的单调性;解: f'(x)=1-ln x-1=-ln x,x∈(0,+∞).当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
[总结反思]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,即若证明f(x)>g(x)在区间D上恒成立,则构造函数h(x)=f(x)-g(x),再根据函数h(x)的单调性,证明h(x)>0在区间D上恒成立.
课堂考点探究
课堂考点探究
变式题 [2021·云南师大附中模拟] 已知函数f(x)=aex+b,若f(x)的图像在点(0,f(0))处的切线方程为y=x+1.(1)求a,b的值;
课堂考点探究
例2 [2021·辽宁丹东二模] 已知函数f(x)=ln(ax)-x+a.(2)当0<a≤1时,证明:f(x)≤(x-1)ex-a-x+a.
导数与不等式恒成立方法归纳总结
导数与不等式恒成立方法归纳总结思路一:作差解恒成立构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.首先构造函数,利用导数研究函数的单调性,求出最值,进而得出相应含参不等式,从而求出参数的取值范围,也可以分离变量,构造函数,直接把问题转化为函数的最值问题.证明()()f x g x <,(),x a b ∈时,可以构造函数()()()F x f x g x =-,如果()0F x '<,则()F x 在(),a b 上是减函数,同时若()0F a ≤,由减函数的定义可知,当(),x a b ∈时,有()0F x <,即证明()()f x g x <.例、已知函数()()2112ln 2f x a x a ax x =--+,()'f x 为其导函数. (1) 设()()1g x f x x=+,求函数()g x 的单调区间; (2) 若0a >,设()()11,A x f x ,()()22,B x f x 为函数()f x 图象上不同的两点,且满足()()121f x f x +=,设线段AB 中点的横坐标为0,x 证明:01ax >.解:(1)略 (2)120121212x x ax x x a a+>⇔>⇔>- ()222121'0a f x a a x x x ⎛⎫=+-=-≥ ⎪⎝⎭,故()f x 在定义域()0,+∞上单调递增.只需证: ()122f x f x a ⎛⎫>-⎪⎝⎭,即证()2221f x f x a ⎛⎫->- ⎪⎝⎭注意到()()12111,,2f x f x f a ⎛⎫+==⎪⎝⎭ 不妨设1210x x a <<<. ()()()22221112ln 22ln 2F x f x f x a x a ax a x a axa a x xa⎛⎫⎛⎫=-+-=----+-- ⎪ ⎪⎝⎭⎝⎭-则()()()()322222241122'0222ax a a a F x x x ax ax x ax -=--+=-≤--- 1x a ∀≥,从而()F x 在1,a ⎡⎫+∞⎪⎢⎣⎭上单减,故()210F x F a ⎛⎫<= ⎪⎝⎭, 即得. 变式1、设函数. (I )时,求函数的极值点;(Ⅱ)当时,证明在上恒成立.解(Ⅱ)证明:当a=0时,f (x )=lnx+x+1令F (x )=xe x ﹣f (x )=xe x ﹣lnx ﹣x ﹣1,(x >0),则F′(x )=x+1x•(xe x ﹣1),令G (x )=xe x ﹣1, 则G′(x )=(x+1)e x >0,(x >0),∴函数G (x )在(0,+∞)递增,又G (0)=﹣1<0,G (1)=e ﹣1>0, ∴存在唯一c ∈(0,1)使得G (c )=0,且F (x )在(0,c )上单调递减,在(c ,+∞)上单调递增,故F (x )≥F (c )=c•e c ﹣lnc ﹣c ﹣1,由G (c )=0,得c•e c ﹣1=0,得lnc+c=0, ∴F (c )=0,∴F (x )≥F (c )=0,从而证得x e x ≥f (x ).变式2、设函数()()2ln 1f x x b x =++,其中0b ≠.当*n N ∈,且2n ≥时证明不等式:33311111111ln 111232321n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++++++>-⎪⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦解:当b=-1时, ()()2f x x ln x 1=-+,令()()()332h x x f x x x ln x 1=-=-++,则()()233x x 1h x x 1++'=+在[)0,∞+ 上恒正,所以, ()h x 在[)0,∞+上单调递增,当[)0,∞+时,恒有()()h x h 00=>,即当[)0,∞+时,()()3232x x ln x 10,ln x 1x x -++++>即>,对任意正整数n ,取1x n =得32111ln 1n nn ⎛⎫++ ⎪⎝⎭>,所以, 333111111ln 11123n 23n ⎡⎤⎛⎫⎛⎫⎛⎫++⋅⋅⋅++++⋅⋅⋅+⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦()21ln +12f x x ax x =++2a =-()f x 0a =()xxe f x ≥()0,+∞= 333111111ln 1ln 1ln 123n 23n ⎛⎫⎛⎫⎛⎫++++⋅⋅⋅+++++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= 333111111ln 1ln 1ln 12233n n⎛⎫⎛⎫⎛⎫++++++⋅⋅⋅+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()22211111123n 2334n n 1++⋅⋅⋅+++⋅⋅⋅+⨯⨯⨯+>> =11111111++=2334n n 12n 1--⋅⋅⋅+--++. 变式3、已知函数()21e 2x f x a x x =--(R a ∈).证明:当1x >时, 1e ln x x x x>-.解:令()1e ln xg x x x x=-+(1x >),则()10g =, ()2e 1e ln 1x xg x x x x =+--'. 令()()h x g x =',则()e e ln x xh x x x =+' 23e e 2x x x x x-++, 因为1x >,所以e ln 0xx >, e 0x x >, ()2e 10x x x ->, 320x>, 所以()0h x '>,即()()h x g x ='在1x >时单调递增,又()1e 20g ='->,所以1x >时, ()0g x '>,即函数()g x 在1x >时单调递增.所以1x >时, ()0g x >,即1x >时, 1e ln x x x x>-. 思路二:调整目标形式解恒成立观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明. 例.已知函数()()1ln ,1a x f x x a R x -=-∈+.设,m n 为正实数,且m n >,求证:ln ln 2m n m nm n -+<-. 解:要证,只需证,即证21ln .1m m n m n n ⎛⎫- ⎪⎝⎭>+只需证21ln 0.1m m n m n n⎛⎫- ⎪⎝⎭->+设()()21ln 1x h x x x -=-+,由(2)知()h x 在()1,+∞上是单调函数,又1mn>, 所以()10m h h n ⎛⎫>= ⎪⎝⎭,即21ln 01m m n m n n⎛⎫- ⎪⎝⎭->+成立,所以ln ln 2m n m n m n -+<-. 变式1、已知函数()()21x f x x x e =--.(1)若()f x 在区间(),5a a +有最大值,求整数a 的所有可能取值; (2)求证:当0x >时,()()323ln 247x f x x x x x e <-++-+. 解析:(1)f′(x )=(x 2+x -2)e x ,当x <-2时,f′(x )>0,f (x )单调递增, 当-2<x <1时,f′(x )<0,f (x )单调递减, 当x >1时,f′(x )>0,f (x )单调递增,由题知:a <-2<a +5,得:-7<a <-2, 则a =-6、-5、-4、-3,当a =-6、-5、-4,显然符合题意,若a =-3时,f (-2)=5e ―2,f (2)=e 2,f (-2)<f (2),不符合题意,舍去. 故整数a 的所有可能取值-6,―5,-4.(2)f (x )<-3ln x +x 3+(2x 2-4x )e x +7可变为(-x 2+3x -1)e x <-3ln x +x 3+7,令g (x )=(-x 2+3x -1)e x ,h (x )=-3ln x +x 3+7,g′(x )=(-x 2+x +2)e x , 0<x <2时,g ′(x )>0,g (x )单调递增, 当x >2时,g ′(x )<0,g (x )单调递减,g (x )的最大值为g (2)=e 2,h′(x )=()331x x-,当0<x <1时,h′(x )<0,h (x )单调递减,当x >1时,h′(x )>0,h (x )单调递增,h (x )的最小值为h (1)=8>e 2,g (x )的最大值小于h (x )的最小值,故恒有g (x )<h (x ),即f (x )<-3ln x +x 3+(2x 2-4x )e x +7.变式2、函数f (x )=21-lnx ax a-1x-2a 2R ++∈()()(Ⅰ)求f (x )的单调区间;(Ⅱ)若a >0,求证:f (x )≥3-2a. 解:由(Ⅰ)知()f x 在10a ⎛⎫ ⎪⎝⎭,上单调递减; ()f x 在1a⎛⎫+∞ ⎪⎝⎭,上单调递增, 则()min 11ln 12f x f a a a ⎛⎫==-- ⎪⎝⎭. 要证()f x ≥32a -,即证1ln 12a a --≥32a -,即证1ln 1a a +-≥0. 令()1ln 1a a a μ=+-,则()22111a a a a aμ'-=-=,由()0a μ'>解得1a >,由()0a μ'<解得01a <<, ∴()a μ在()01,上单调递减;()a μ在()1+∞,上单调递增;∴()()min 11ln1101a μμ==+-=,∴ 1ln 1a a +-≥0成立.从而()f x ≥32a-成立. 思路三:结论再造解恒成立利用导数证明不等式,解决导数压轴题,谨记两点: (1)利用常见结论,如:,()ln 1x x >+,等;(2)利用同题上一问结论或既得结论. 例、 已知函数()ln 1axf x x x =-+. (Ⅰ)若函数()f x 有极值,求实数a 的取值范围;(Ⅱ)()f x 有两个极值点(记为1x 和2x )时,求证:()()()1211x f x f x f x x x+⎡⎤+≥⋅-+⎣⎦. 解(Ⅱ)∵1x , 2x 是()f x 的两个极值点,故满足方程()0f x '=即1x , 2x 是()2210x a x +-+=的两个解,∴121x x =∵()()12121212ln ln 11ax ax f x f x x x x x +=-+-++ ()()12121212122ln 1a x x x x x x a x x x x ++=-=-+++ 而在()ln 1ax f x x x =-+中, ()1ln x a f x x x +⎡⎤-=⋅-⎣⎦ 欲证原不等式成立,只需证明()()11ln 1x x f x x f x x x x++⎡⎤⎡⎤⋅-≥⋅-+⎣⎦⎣⎦∵0x >,只需证明()()ln 1f x x f x x -≥-+成立 即证ln 10x x -+≤成立 令()ln 1g x x x =-+,则()111xg x x x-=-=' 当()0,1x ∈时, ()0g x '>,函数()g x 在()0,1上单调递增; 当()1,x ∈+∞时, ()0g x '<,函数()g x 在()1,+∞上单调递减; 因此()()max 10g x g ==,故()0g x ≤,即ln 10x x -+≤成立得证. 变式1、已知函数()ln .f x x kx k =-+(Ⅱ)证明:当1a ≤时,()()2 1.x x f x kx k e ax +-<-- (附: 322ln20.69,ln3 1.10, 4.48,7.39e e ≈≈≈≈) 解(Ⅱ)要证当1a ≤时, ()()1,xx f x kx k e ax +-<--即证当1a ≤时, 2ln 10x e ax x x --->,即证2ln 10x e x x x --->.由(Ⅰ)得,当1k =时, ()0f x ≤,即ln 1x x ≤-,又0x >,从而()ln 1x x x x ≤-, 故只需证2210x e x x -+->,当0x >时成立; 令()()2210xh x e x x x =-+-≥,则()41xh x e x ='-+,令()()F x h x =',则()4xF x e '=-,令()0F x '=,得2ln2x =.因为()F x '单调递增,所以当(]0,2ln2x ∈时, ()()()0,0,F x F x F x ≤'≤单调递减,即()h x '单调递减,当()2ln2,x ∈+∞时, ()()0,F x F x >''单调递增,即()h x '单调递增,且()()()2ln458ln20,020,2810h h h e =-==-'+'>',由零点存在定理,可知()()120,2ln2,2ln2,2x x ∃∈∃∈,使得()()120h x h x ''==, 故当10x x <<或2x x >时, ()()0,h x h x '>单调递增;当12x x x <<时, ()()0,h x h x '<单调递减,所以()h x 的最小值是()00h =或()2h x .由()20h x '=,2241xe x =-()()()222222221252221x h x e x x x x x =+-=-+-=---,因为()22ln2,2x ∈,所以()20h x >,故当0x >时,所以()0h x >,原不等式成立.思路四:函数单调或最值解恒成立不等式恒成立的转化策略一般有以下几种:①分离参数+函数最值;②直接化为最值+分类讨论;③缩小范围+证明不等式;④分离函数+数形结合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二轮专题 (十一) 导数与不等式证明
【学习目标】
1. 会利用导数证明不等式.
2. 掌握常用的证明方法.
【知识回顾】
一级排查:应知应会
1.利用导数证明不等式要考虑构造新的函数,利用新函数的单调性或最值解决不等式的证明问题.比如要证明对任意∈x [b a ,]都有)()(x g x f ≤,可设)()()(x g x f x h -=,只要利用导数说明)(x h 在[b a ,]上的最小值为0即可.
二级排查:知识积累
利用导数证明不等式,解题技巧总结如下:
(1)利用给定函数的某些性质(一般第一问先让解决出来),如函数的单调性、最值等,服务于第二问要证明的不等式.
(2)多用分析法思考.
(3)对于给出的不等式直接证明无法下手,可考虑对不等式进行必要的等价变形后,再去证明.例如采用两边取对数(指数),移项通分等等.要注意变形的方向:因为要利用函数的性质,力求变形后不等式一边需要出现函数关系式.
(4)常用方法还有隔离函数法,max min )()(x g x f ≥,放缩法(常与数列和基本不等式一起考查),换元法,主元法,消元法,数学归纳法等等,但无论何种方法,问题的精髓还是构造辅助函数,将不等式问题转化为利用导数研究函数的单调性和最值问题.
(5)建议有能力同学可以了解一下罗必塔法则和泰勒展开式,有许多题都是利用泰勒展开式放缩得来.
三极排查:易错易混
用导数证明数列时注意定义域.
【课堂探究】
一、作差(商)法
例1、证明下列不等式:
①1+≥x e x ②1ln -≤x x ③x x 1-
1ln ≥
④1x 1)-2(x ln +≥
x )1(≥x ⑤)2
,0(,2sin ππ∈>x x x
二、利用max min )()(x g x f ≥证明不等式
例2、已知函数.2
2)(),,(,ln )1(1)(e x e x g R b a x a b x ax x f +-=∈+-+-= (1)若函数2)(=x x f 在处取得极小值0,求b a ,的值;
(2)在(1)的条件下,求证:对任意的],[,221e e x x ∈,总有)()(21x g x f >.
变式:证明:对一切),0(+∞∈x ,都有ex e
x x 21ln ->
成立.
三、构造辅助函数或利用主元法 例3、已知n m ,为正整数,且,1n m <<求证:m n n m )1()1(+>+.
变式:设函数x x f ln )(=,22)(-=x x g (1≥x ).
(1)试判断)()()1()(2x g x f x x F -+=在定义域上的单调性;
(2)当b a <<0时,求证22)(2)()(b
a a
b a a f b f +->
-.
四、分析法证明不等式
例4、设1>a ,函数a e x x f x
-+=)1()(2.若曲线()y f x =在点P 处的切线与x 轴平行, 且在点(,)M m n 处的切线与直线OP 平行(O 是坐标原点),证明:123--
≤e a m .
变式:已知函数x x x f ln )(2=.
(Ⅰ)求函数)(x f 的单调区间;
(Ⅱ)证明:对任意的0>t ,存在唯一的s ,使)(s f t =.
(Ⅲ)设(Ⅱ)中所确定的s 关于t 的函数为)(t g s =,证明:当2e t >时,有21ln )(ln 52<<t t g .
五、隔离函数
例5、已知函数)ln()(m x e x f x +-=.
(Ⅰ)设0=x 是)(x f 的极值点,求m 并讨论)(x f 的单调性; (Ⅱ)当2≤m 时,证明:)(x f 0>.
变式:已知函数,,)(R x x nx x f n ∈-=其中*∈N n ,且2≥n .
(1)讨论)(x f 的单调性;
(2)设曲线)(x f y =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为)(x g y =,求证:对于任意的正实数x ,都有)()(x g x f ≤;
(3)若关于x 的方程)()(为实数a a x f =有两个正实数根21,x x ,求证:.2112+-<-n
a x x
六、与数列结合
例6、已知函数3ln )(--=ax x a x f )(R a ∈.
(1)求函数)(x f 的单调区间;
(2)求证:
)2(1ln 44ln .33ln .22ln ≥*∈<n N n n
n n ,
变式:(1)已知),0(+∞∈x ,求证:x
x x x 11ln 11<+<+; (2)求证:)2(1131211ln 1413121≥*∈-++++<<++++n N n n n n , .
【巩固训练】
1. 已知函数,ln 21)(2x x x f +=
求证:在区间),1(+∞上,函数)(x f 的图像在函数33
2)(x x g =的图像的下方.
2.已知函数()1ln 1x f x x +=-. (Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程;
(Ⅱ)求证:当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝
⎭; (Ⅲ)设实数k 使得()33x f x k x ⎛⎫>+ ⎪⎝
⎭对()01x ∈,恒成立,求k 的最大值.
3.已知210x x <<,求证:n
n n x x x x ⎪⎭⎫ ⎝⎛+>+222121.
4. 设函数)0()
1ln()(>+=x x x x f .
(1)判断)(x f 的单调性;
(2)证明:e n n
<+)11((e 为自然对数,
*N n ∈).
5.已知函数.)(x e x f x -=
(2)设不等式ax x f >)(的解集为P ,且P ⊆]2,0[,求实数a 的取值范围;
(3)设*∈N n ,证明:1321-<⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛e e n n n n n n
n n n .
6.已知)0()1ln()(2≤++=a ax x x f .
(1) 讨论)(x f 的单调性;
(2)证明:)(421
1+)(4311+)(411n + e <(e 为自然对数,
*N n ∈,2≥n ).
7. 已知函数x x x g x x x f ln )(,)1ln()(=-+=
(2)设b a <<0,证明 :2ln )()2
(2)()(0a b b a g b g a g -<+-+<.
8.设函数x be x ae x f x x 1
ln )(-+=,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.
9. 已知函数()ax e x f x -=(a 为常数)的图像与y 轴交于点A ,曲线()x f y =在点A 处的切线斜率为-1.
(Ⅰ)求a 的值及函数()x f 的极值;
(Ⅱ)证明:当0>x 时,x e x <2;
(Ⅲ)证明:对任意给定的正数c ,总存在0x ,使得当()∞+∈,
0x x ,恒有x ce x <2.
10.(选作)已知.1)1()(--=x e x x f
(1)证明:当0>x 时,0)(<x f ;
(2)数列}{n x 满足,1,111=-=+x e e x n n x x n 求证:}{n x 递减,且n n x 2
1
>.
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。