2013年高考辽宁省数学理真题

合集下载

2013年高考试题及答案辽宁卷理数

2013年高考试题及答案辽宁卷理数

掌门1对1教育 高考真题2013年普通高等学校招生全国统一考试(辽宁卷)数 学(供理科考生使用)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答第I 卷时,选出每小题答案后,用铅笔吧答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,在选涂其他答案标号。

写在本试卷上无效。

3. 回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将本试题和答题卡一并交回。

第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)复数的11Z i =-的模为 (A )12 (B 2 (C 2 (D )2 (2)已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤= ,则A .()01,B .(]02,C .()1,2D .(]12, (3)已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为(A )3455⎛⎫ ⎪⎝⎭,-(B )4355⎛⎫ ⎪⎝⎭,- (C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭, (4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列;3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p (5)某学校组织学生参加英语测试,成绩的频率分布直方图如图, 数据的分组一次为[)[)[)[)20,40,40,60,60,80,80,100. 若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50 (C )55 (D )60(6)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则 A .6π B .3π C .23π D .56π(7)使得()3nx n N n x x +⎛∈ ⎝的展开式中含有常数项的最小的为A .4B .5C .6D .7(8)执行如图所示的程序框图,若输入10,n S ==则输出的A .511 B .1011 C .3655 D .7255(9)已知点()()()30,0,0,,,.,O A b B a a OAB ∆若为直角三角形则必有A .3b a =B .31b a a=+C .()3310b a b a a ⎛⎫---= ⎪⎝⎭ D .3310b a b a a -+--=(10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,, ,AB AC ⊥112AA O =,则球的半径为A 317B .210C .132D .310(11)已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A ) 16 (B ) 16- (C ) 2216a a -- (D )2216a a +-(12)设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时, (A )有极大值,无极小值 (B )有极小值,无极大值 (C )既有极大值又有极小值 (D )既无极大值也无极小值第II 卷本卷包括必考题和选考题两部分。

2013年辽宁高考数学理试题(无答案)

2013年辽宁高考数学理试题(无答案)

2013年普通高等学校招生全国统一考试(辽宁卷)数 学(供理科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数的11Z i =-模为 (A )12 (B )22 (C )2 (D )2 (2)已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则A .()01,B .(]02,C .()1,2D .(]12, (3)已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为(A )3455⎛⎫ ⎪⎝⎭,- (B )4355⎛⎫ ⎪⎝⎭,- (C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭,(4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列; {}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p(5)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)[)20,40,40,60,60,80,820,100.若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50(C )55 (D )60(6)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B A b += ,a b B >∠=且则A .6πB .3π C .23π D .56π (7)使得()3n x n N n x x +⎛+∈ ⎪⎝⎭的展开式中含有常数项的最小的为 A .4 B .5 C .6 D .7(8)执行如图所示的程序框图,若输入10,n S ==则输出的A .511 B .1011 C .3655 D .7255(9)已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有A .3b a =B .31b a a =+C .()3310b a b a a ⎛⎫---= ⎪⎝⎭D .3310b a b a a-+--= (10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为A .317B .210C .132D .310 (11)已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则 A B -=(A )2216a a -- (B )2216a a +-(C )16- (D )16 (11)设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时, (A )有极大值,无极小值 (B )有极小值,无极大值(C )既有极大值又有极小值 (D )既无极大值也无极小值第II 卷本卷包括必考题和选考题两部分。

2013年辽宁高考理科数学卷(含答案解析)

2013年辽宁高考理科数学卷(含答案解析)

绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数1=i 1z -的模为( )A .12BCD .22.已知集合4=0log {1|}A x x <<,{|=}2B x x ≤,则=A B I( )A .(0,1)B .(0,2]C .(1,2)D .(1,2] 3.已知点(1,3)A ,1(4,)B -,则与向量AB u u u r同方向的单位向量为( )A .34(,)55-B .43(,)55-C .34(,)55-D .43(,)55-4.下面是关于公差0d >的等差数列{}n a 的四个命题: 1p :数列{}n a 是递增数列; 2p :数列{}n na 是递增数列; 3p :数列{}n an是递增数列; 4p :数列{3}n a nd +是递增数列. 其中的真命题为( )A .12p p ,B .34p p ,C .23p p ,D .14p p ,5.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是 ( )A .45B .50C .55D .606.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c .若sin cos sin cos =12a cb B C B A +,且a b >,则B ∠=( )A .π6B .π3C .2π3D .5π67.使(3()n n x ∈+N 的展开式中含有常数项的最小的n 为( )A .4B .5C .6D .78.执行如图所示的程序框图,若输入10n =,则输出S = ( )A .511 B .1011 C .3655 D .72559.已知点(0,0)O ,()0,A b ,3(),B a a .若OAB △为直角三角形,则必有 ( )A .3=b aB .31b a a=+C .331()()0b a b a a---=D .331||||0b a b a a-+--=10.已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上.若=3AB ,=4AC ,AB AC ⊥,112=AA ,则球O 的半径为( )AB.C .132D.11.已知函数22(()22)f x x a x a +-=+,22((2))28g x x a x a =---++.设1()H x =max ()(){}f x g x ,,2mi (){)(n (,)}H x f x g x =({},max p q 表示p ,q 中的较大值,min{},p q 表示p ,q 中的较小值).记1()H x 的最小值为A ,2()H x 的最大值为B ,则A B -=( )A .16B .16-C .2216a a --D .2216a a +-12.设函数()f x 满足2()2()e xx f x xf x x'+=,2(2)e 8f =,则0x >时,()f x( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值第Ⅱ卷--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.某几何体的三视图如图所示,则该几何体的体积是 . 14.已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和.若1a ,3a 是方程2540x x +=-的两个根,则6S = . 15.已知椭圆22221=()0x ya Cb a b :>>+的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若||=10AB ,||=6AF ,4os 5c ABF ∠=,则C的离心率=e .16.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)设向量a (3sin )=,sin x x ,b (,=cos s )in x x ,2[]π0,x ∈. (Ⅰ)若|a |=|b |,求x 的值;(Ⅱ)设函数()f x =a ·b ,求()f x 的最大值.18.(本小题满分12分)如图,AB 是圆的直径,P A 垂直圆所在的平面,C 是圆上的点. (Ⅰ)求证:平面PAC ⊥平面PBC ;(Ⅱ)若=2AB ,=1AC ,=1PA ,求二面角C PB A ——的余弦值.19.(本小题满分12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(Ⅰ)求张同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示张同学答对题的个数,求X 的分布列和数学期望.20.(本小题满分12分)如图,抛物线214C x y :=,222()0C x py p :-=>.点00(,)M x y 在抛物线2C 上,过M 作1C 的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当0=12x -时,切线MA 的斜率为12-.(Ⅰ)求p 的值;(Ⅱ)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ).21.(本小题满分12分)已知函数2()1e ()xf x x -=+,312cos 2()x g x ax x x +++=.当[0,1]x ∈时,(Ⅰ)求证:)1(11x f x x≤≤-+;(Ⅱ)若()()f x g x ≥恒成立,求实数a 的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 为O e 直径,直线CD 与O e 相切于E ,AD 垂直CD 于D ,BC 垂直CD 于C ,EF 垂直AB 于F ,连接AE ,BE .证明:(Ⅰ)=FEB CEB ∠∠; (Ⅱ)2=EF AD BC g .23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆1C ,直线2C 的极坐标方程分别为=4sin ρθ,πcos()=224ρθ-. (Ⅰ)求1C 与2C 交点的极坐标;(Ⅱ)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为33,12x t a b y t ⎧=+⎪⎨=+⎪⎩(t R ∈为参数),求a ,b 的值.24.(本小题满分10分)选修4—5:不等式选讲已知函数|(|)f x x a =-,其中1a >.(Ⅰ)当2a =时,求不等式()4||4f x x ≥--的解集; (Ⅱ)已知关于x 的不等式|()22()|2f x a f x ≤-+的解集为2|}1{x x ≤≤,求a 的值.2013年普通高等学校招生全国统一考试(辽宁卷)454422cos 2xx ⎫++⎪⎭x ⎫⎪⎭(2)设()(2)2()h x f x a f x =+-,则20()4202a x h x x a x a a x a -≤⎧⎪=-<<⎨⎪≥⎩,,,由|()|2h x ≤解得,它与12x ≤≤等价,然后求出a 的值【考点】绝对值不等式的解法,含参不等式的解法。

2013年辽宁省高考数学试卷(理科)及解析

2013年辽宁省高考数学试卷(理科)及解析

2013年辽宁省高考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、(5分)复数的模长为()A、B、C、D、22、(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A、(0,1)B、(0,2]C、(1,2)D、(1,2]3、(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A、B、C、D、4、(5分)下列关于公差d>0的等差数列{a n}的四个命题:p1:数列{a n}是递增数列;p2:数列{na n}是递增数列;p3:数列是递增数列;p4:数列{a n+3nd}是递增数列;其中真命题是()A、p1,p2B、p3,p4C、p2,p3D、p1,p45、(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100)、若低于60分的人数是15人,则该班的学生人数是()A、45B、50C、55D、606、(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c、asinBcosC+csinBcosA=b,且a>b,则∠B=()A、B、C、 D、7、(5分)使得(3x+)n(n∈N+)的展开式中含有常数项的最小的n为()A、4B、5C、6D、78、(5分)执行如图所示的程序框图,若输入n=10,则输出的S=()A、B、C、D、9、(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A、b=a3B、C、D、10、(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A、B、C、D、11、(5分)已知函数f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8、设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的较大值,min{p,q}表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A、16B、﹣16C、﹣16a2﹣2a﹣16D、16a2+2a﹣1612、(5分)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A、有极大值,无极小值B、有极小值,无极大值C、既有极大值又有极小值D、既无极大值也无极小值二、填空题:本大题共4小题,每小题5分.13、(5分)某几何体的三视图如图所示,则该几何体的体积是、14、(5分)已知等比数列{a n}是递增数列,S n是{a n}的前n项和、若a1,a3是方程x2﹣5x+4=0的两个根,则S6=、15、(5分)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=、16、(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为、三、解答题:解答应写出文字说明、证明过程或演算步骤.17、(12分)设向量,,、(1)若,求x的值;(2)设函数,求f(x)的最大值、18、(12分)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点、(Ⅰ)求证:平面PAC⊥平面PBC;(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C﹣PB﹣A的余弦值、19、(12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答、(Ⅰ)求张同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题、设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立、用X表示张同学答对题的个数,求X的分布列和数学期望、20、(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣、(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O)、21、(12分)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围、请考生在21、22、23题中任选一题作答,如果多做,则按所做的第一题计分。

2013年普通高等学校招生全国统一考试数学(辽宁卷)理

2013年普通高等学校招生全国统一考试数学(辽宁卷)理

2013年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013辽宁,理1)复数z=1i -1的模为( ). A.12 B.√22C.√2D.2答案:B解析:∵z=1i -1=-i -1(-i -1)(i -1)=-12−12i,∴|z|=√(-12)2+(-12)2=√22,故选B .2.(2013辽宁,理2)已知集合A={x|0<log 4x<1},B={x|x ≤2},则A ∩B=( ). A.(0,1) B.(0,2] C.(1,2) D.(1,2]答案:D解析:0<log 4x<1⇔log 41<log 4x<log 44⇔1<x<4,即A={x|1<x<4},∴A ∩B={x|1<x ≤2}.故选D .3.(2013辽宁,理3)已知点A (1,3),B (4,-1),则与向量AB ⃗⃗⃗⃗⃗ 同方向的单位向量为( ). A.(35,-45) B.(45,-35) C.(-35,45)D.(-45,35)答案:A解析:与AB ⃗⃗⃗⃗⃗ 同方向的单位向量为AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|=√3+(-4)=(35,-45),故选A .4.(2013辽宁,理4)下面是关于公差d>0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列; p 2:数列{na n }是递增数列; p 3:数列{an n }是递增数列; p 4:数列{a n +3nd }是递增数列. 其中的真命题为( ). A.p 1,p 2 B.p 3,p 4 C.p 2,p 3 D.p 1,p 4答案:D解析:如数列为{-2,-1,0,1,…},则1×a 1=2×a 2,故p 2是假命题;如数列为{1,2,3,…},则an n =1,故p 3是假命题.故选D .5.(2013辽宁,理5)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( ).A.45B.50C.55D.60答案:B解析:由频率分布直方图,低于60分的同学所占频率为(0.005+0.01)×20=0.3,故该班的学生人数为150.3=50.故选B .6.(2013辽宁,理6)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.若a sin B cos C+c sin B cos A=12b ,且a>b ,则∠B=( ). A.π6 B.π3C.2π3D.5π6答案:A解析:根据正弦定理:a sin B cos C+c sin B cos A=12b 等价于sin A cos C+sin C cos A=12,即sin(A+C )=12.又a>b ,∴∠A+∠C=5π6,∴∠B=π6.故选A .7.(2013辽宁,理7)使(3x x √x)n(n ∈N +)的展开式中含有常数项的最小的n 为( ). A.4 B.5C.6D.7答案:B 解析:(3x x x)n展开式中的第r+1项为C n r (3x)n-r x -32r=C n r 3n-r x n -52r,若展开式中含常数项,则存在n ∈N +,r ∈N ,使n-52r=0,故最小的n 值为5,故选B .8.(2013辽宁,理8)执行如图所示的程序框图,若输入n=10,则输出S=( ).A.511B.1011C.3655D.7255答案:A解析:当n=10时,由程序运行得到S=122-1+142-1+162-1+182-1+1102-1=(11×3+13×5+15×7+17×9+19×11) =12(11-13+13-15+15-17+17-19+19-111)=12×1011=511.故选A .9.(2013辽宁,理9)已知点O(0,0),A(0,b),B(a,a 3).若△OAB 为直角三角形,则必有( ). A.b=a 3B.b=a 3+1aC.(b-a 3)(b -a 3-1a )=0D.|b-a 3|+|b -a 3-1a |=0 答案:C解析:若B 为直角,则OB ⃗⃗⃗⃗⃗ ·AB⃗⃗⃗⃗⃗ =0, 即a 2+a 3(a 3-b)=0, 又a ≠0,故b=a 3+1a ;若A 为直角,则OA ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,即b(a 3-b)=0,得b=a 3; 若O 为直角,则不可能.故b-a 3=0或b-a 3-1a =0,故选C .10.(2013辽宁,理10)已知直三棱柱ABC-A 1B 1C 1的6个顶点都在球O 的球面上.若AB=3,AC=4,AB ⊥AC,AA 1=12,则球O 的半径为( ). A.3√172B.2√10C.132D.3√10答案:C解析:过C 点作AB 的平行线,过B 点作AC 的平行线,交点为D,同理过C 1作A 1B 1的平行线,过B 1作A 1C 1的平行线,交点为D 1,连接DD 1,则ABCD-A 1B 1C 1D 1恰好成为球的一个内接长方体,故球的半径r=√32+42+1222=132.故选C .11.(2013辽宁,理11)已知函数f(x)=x 2-2(a+2)x+a 2,g(x)=-x 2+2(a-2)x-a 2+8.设H 1(x)=max {f(x),g(x)},H 2(x )=min {f(x),g(x)}(max {p,q}表示p ,q 中的较大值,min {p,q}表示p,q 中的较小值).记H 1(x)的最小值为A,H 2(x)的最大值为B,则A-B=( ). A.16 B.-16 C.a 2-2a-16 D.a 2+2a-16答案:B解析:∵f(x)-g(x)=2x 2-4ax+2a 2-8=2[x-(a-2)][x-(a+2)],∴H 1(x)={f (x ),x ∈(-∞,a -2],g (x ),x ∈(a -2,a +2),f (x ),x ∈[a +2,+∞),H 2(x)={g (x ),x ∈(-∞,a -2],f (x ),x ∈(a -2,a +2),g (x ),x ∈[a +2,+∞),可求得H 1(x)的最小值A=f(a+2)=-4a-4,H 2(x)的最大值B=g(a-2)=-4a+12,∴A-B=-16.故选B .12.(2013辽宁,理12)设函数f(x)满足x 2f'(x)+2xf(x)=e x x ,f (2)=e 28,则x>0时,f (x )( ).A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值 答案:D解析:令F(x)=x 2f(x),则F'(x)=x 2f'(x)+2xf(x)=e x x, F(2)=4·f(2)=e 22. 由x 2f'(x)+2xf(x)=e xx , 得x 2f'(x)=e x x-2xf (x )=e x -2x 2f (x )x , ∴f'(x)=e x -2F (x )x 3. 令φ(x)=e x -2F(x), 则φ'(x)=e x -2F'(x)=e x -2exx=e x (x -2)x. ∴φ(x)在(0,2)上单调递减,在(2,+∞)上单调递增, ∴φ(x)的最小值为φ(2)=e 2-2F(2)=0. ∴φ(x)≥0. 又x>0,∴f'(x)≥0. ∴f(x)在(0,+∞)单调递增.∴f(x)既无极大值也无极小值.故选D .第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.(2013辽宁,理13)某几何体的三视图如图所示,则该几何体的体积是 .答案:16π-16解析:由三视图可知该几何体是一个底面半径为2的圆柱体,中间挖去一个底面棱长为2的正四棱柱,故体积为π·22·4-2×2×4=16π-16.14.(2013辽宁,理14)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x+4=0的两个根,则S 6= . 答案:63解析:因为x 2-5x+4=0的两根为1和4,又数列{a n }是递增数列,所以a 1=1,a 3=4,所以q=2. 所以S 6=1·(1-26)1-2=63.15.(2013辽宁,理15)已知椭圆C:x 2a 2+y 2b2=1(a>b>0)的左焦点为F,C 与过原点的直线相交于A,B 两点,连接AF,BF.若|AB|=10,|AF|=6,cos ∠ABF=45,则C 的离心率e= . 答案:57解析:如图所示.根据余弦定理|AF|2=|BF|2+|AB|2-2|AB|·|BF|cos ∠ABF,即|BF|2-16|BF|+64=0,得|BF|=8. 又|OF|2=|BF|2+|OB|2-2|OB|·|BF|cos ∠ABF,得|OF|=5.根据椭圆的对称性|AF|+|BF|=2a=14,得a=7. 又|OF|=c=5,故离心率e=57.16.(2013辽宁,理16)为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为 . 答案:10解析:设5个班级的人数分别为x 1,x 2,x 3,x 4,x 5,则x 1+x 2+x 3+x 4+x 55=7, (x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2+(x 5-7)25=4,即5个整数平方和为20,最大的数比7大不能超过3,否则方差超过4,故最大值为10,最小值为4. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013辽宁,理17)(本小题满分12分)设向量a =(√3sin x,sin x),b =(cos x,sin x),x ∈[0,π2]. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值. 解:(1)由|a |2=(√3sin x)2+(sin x)2=4sin 2x,|b |2=(cos x)2+(sin x)2=1, 及|a |=|b |,得4sin 2x=1. 又x ∈[0,π2],从而sin x=12, 所以x=π6.(2)f(x)=a ·b =√3sin x ·cos x+sin 2x =√32sin 2x-12cos 2x+12=sin (2x -π6)+12,当x=π3∈[0,π2]时,sin (2x -π6)取最大值1. 所以f(x)的最大值为32.18.(2013辽宁,理18)(本小题满分12分)如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (1)求证:平面PAC ⊥平面PBC;(2)若AB=2,AC=1,PA=1,求二面角C PB A 的余弦值. (1)证明:由AB 是圆的直径,得AC ⊥BC.由PA ⊥平面ABC,BC ⊂平面ABC,得PA ⊥BC. 又PA ∩AC=A,PA ⊂平面PAC,AC ⊂平面PAC, 所以BC ⊥平面PAC. 因为BC ⊂平面PBC. 所以平面PBC ⊥平面PAC.(2)解法一:过C 作CM ∥AP,则CM ⊥平面ABC.如图,以点C 为坐标原点,分别以直线CB,CA,CM 为x 轴,y 轴,z 轴建立空间直角坐标系. 因为AB=2,AC=1,所以BC=√3.因为PA=1,所以A(0,1,0),B(√3,0,0),P(0,1,1). 故CB⃗⃗⃗⃗⃗ =(√3,0,0),CP ⃗⃗⃗⃗ =(0,1,1). 设平面BCP 的法向量为n 1=(x ,y ,z ), 则{CB ⃗⃗⃗⃗⃗ ·n 1=0,CP ⃗⃗⃗⃗⃗ ·n 1=0,所以{√3x =0,y +z =0,不妨令y=1,则n 1=(0,1,-1). 因为AP⃗⃗⃗⃗⃗ =(0,0,1),AB ⃗⃗⃗⃗⃗ =(√3,-1,0). 设平面ABP 的法向量为n 2=(x ,y ,z ), 则{AP ⃗⃗⃗⃗⃗ ·n 2=0,AB ⃗⃗⃗⃗⃗ ·n 2=0,所以{z =0,√3x -y =0, 不妨令x=1,则n 2=(1,√3,0),于是cos <n 1,n 2>=√32√2=√64.所以由题意可知二面角C PB A 的余弦值为√64.解法二:过C 作CM ⊥AB 于M,因为PA ⊥平面ABC,CM ⊂平面ABC, 所以PA ⊥CM,故CM ⊥平面PAB. 过M 作MN ⊥PB 于N,连接NC, 由三垂线定理得CN ⊥PB.所以∠CNM 为二面角C PB A 的平面角.在Rt △ABC 中,由AB=2,AC=1,得BC=√3,CM=√32,BM=32,在Rt △PAB 中,由AB=2,PA=1,得PB=√5. 因为Rt △BNM ∽Rt △BAP,所以MN 1=32√5,故MN=3√510.又在Rt △CNM 中,CN=√305,故cos ∠CNM=√64.所以二面角C PB A 的余弦值为√64.19.(2013辽宁,理19)(本小题满分12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(1)求张同学至少取到1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示张同学答对题的个数,求X 的分布列和数学期望.解:(1)设事件A=“张同学所取的3道题至少有1道乙类题”,则有A =“张同学所取的3道题都是甲类题”. 因为P(A )=C 63C 103=16,所以P(A)=1-P(A )=56.(2)X 所有的可能取值为0,1,2,3.P(X=0)=C 20·(35)0·(25)2·15=4125; P(X=1)=C 21·(35)1·(25)1·15+C 20(35)0·(25)2·45=28125;P(X=2)=C 22·(35)2·(25)0·15+C 21(35)1·(25)1·45=57125; P(X=3)=C 22·(35)2·(25)0·45=36125.所以X 的分布列为:X 0 1 2 3P 4125 28125 57125 36125所以E(X)=0×4125+1×28125+2×57125+3×36125=2.20.(2013辽宁,理20)(本小题满分12分)如图,抛物线C 1:x 2=4y,C 2:x 2=-2py(p>0).点M(x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A,B(M 为原点O 时,A,B 重合于O).当x 0=1-√2时,切线MA 的斜率为-12. (1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A,B 重合于O 时,中点为O).解:(1)因为抛物线C 1:x 2=4y 上任意一点(x,y)的切线斜率为y'=x 2,且切线MA 的斜率为-12,所以A 点坐标为(-1,14),故切线MA 的方程为y=-12(x+1)+14.因为点M(1-√2,y 0)在切线MA 及抛物线C 2上, 于是y 0=-12(2-√2)+14=-3-2√24,① y 0=-(1-√2)22p =-3-2√22p .②由①②得p=2.(2)设N(x,y),A (x 1,x 124),B (x 2,x 224),x 1≠x 2,由N 为线段AB 中点知x=x 1+x 22,③ y=x 12+x 228.④ 切线MA,MB 的方程为y=x12(x-x 1)+x 124,⑤y=x 22(x-x 2)+x 224.⑥由⑤⑥得MA,MB 的交点M(x 0,y 0)的坐标为 x 0=x 1+x 22,y 0=x 1x24. 因为点M(x 0,y 0)在C 2上,即x 02=-4y 0,所以x 1x 2=-x 12+x 226.⑦ 由③④⑦得 x 2=43y,x ≠0.当x 1=x 2时,A,B 重合于原点O,AB 中点N 为O,坐标满足x 2=43y. 因此AB 中点N 的轨迹方程为x 2=43y.21.(2013辽宁,理21)(本小题满分12分)已知函数f(x)=(1+x)e -2x ,g(x)=ax+x 32+1+2x cos x.当x ∈[0,1]时, (1)求证:1-x ≤f(x)≤11+x ;(2)若f(x)≥g(x)恒成立,求实数a 的取值范围.(1)证明:要证x ∈[0,1]时,(1+x)e -2x ≥1-x,只需证明(1+x)e -x ≥(1-x)e x .记h(x)=(1+x)e -x -(1-x)e x , 则h'(x)=x(e x -e -x ), 当x ∈(0,1)时,h'(x)>0, 因此h(x)在[0,1]上是增函数, 故h(x)≥h(0)=0. 所以f(x)≥1-x,x ∈[0,1]. 要证x ∈[0,1]时,(1+x)e -2x ≤11+x , 只需证明e x ≥x+1.记K(x)=e x -x-1,则K'(x)=e x -1,当x ∈(0,1)时,K'(x)>0,因此K(x)在[0,1]上是增函数, 故K(x)≥K(0)=0. 所以f(x)≤11+x,x ∈[0,1]. 综上,1-x ≤f(x)≤11+x,x ∈[0,1]. (2)解法一:f(x)-g(x)=(1+x)e -2x -(ax +x 32+1+2xcosx)≥1-x-ax-1-x 32-2x cos x=-x(a+1+x 22+2cos x).设G(x)=x 22+2cos x,则G'(x)=x-2sin x. 记H(x)=x-2sin x,则H'(x)=1-2cos x,当x ∈(0,1)时,H'(x)<0,于是G'(x)在[0,1]上是减函数, 从而当x ∈(0,1)时,G'(x)<G'(0)=0,故G(x)在[0,1]上是减函数. 于是G(x)≤G(0)=2,从而a+1+G(x)≤a+3. 所以,当a ≤-3时,f(x)≥g(x)在[0,1]上恒成立.下面证明当a>-3时,f(x)≥g(x)在[0,1]上不恒成立.f(x)-g(x)≤11+x -1-ax-x 32-2x cos x=-x 1+x -ax-x 32-2x cos x =-x (11+x +a +x 22+2cosx),记I(x)=11+x +a+x 22+2cos x=11+x +a+G(x), 则I'(x)=-1(1+x )2+G'(x),当x ∈(0,1)时,I'(x)<0,故I(x)在[0,1]上是减函数, 于是I(x)在[0,1]上的值域为[a+1+2cos 1,a+3]. 因为当a>-3时,a+3>0, 所以存在x 0∈(0,1),使得I(x 0)>0,此时f(x 0)<g(x 0),即f(x)≥g(x)在[0,1]上不恒成立. 综上,实数a 的取值范围是(-∞,-3]. 解法二:先证当x ∈[0,1]时,1-12x 2≤cos x ≤1-14x 2.记F(x)=cos x-1+12x 2, 则F'(x)=-sin x+x.记G(x)=-sin x+x,则G'(x)=-cos x+1,当x ∈(0,1)时,G'(x)>0,于是G(x)在[0,1]上是增函数, 因此当x ∈(0,1)时,G(x)>G(0)=0, 从而F(x)在[0,1]上是增函数. 因此F(x)≥F(0)=0,所以当x ∈[0,1]时,1-12x 2≤cos x. 同理可证,当x ∈[0,1]时,cos x ≤1-14x 2.综上,当x ∈[0,1]时,1-12x 2≤cos x ≤1-14x 2. 因为当x ∈[0,1]时, f(x)-g(x)=(1+x)e -2x -(ax +x 32+1+2xcosx)≥(1-x)-ax-x 32-1-2x (1-14x 2)=-(a+3)x.所以当a ≤-3时,f(x)≥g(x)在[0,1]上恒成立. 下面证明当a>-3时,f(x)≥g(x)在[0,1]上不恒成立. 因为f(x)-g(x)=(1+x)e -2x -(ax +x 32+1+2xcosx)≤11+x -1-ax-x 32-2x (1-12x 2)=x 21+x +x 32-(a+3)x ≤32x [x -23(a +3)],所以存在x 0∈(0,1)(例如x 0取a+33和12中的较小值)满足f(x 0)<g(x 0).即f(x)≥g(x)在[0,1]上不恒成立. 综上,实数a 的取值范围是(-∞,-3].请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分。

2013年普通高等学校招生全国统一考试(辽宁卷)数学试题 (理科) word解析版

2013年普通高等学校招生全国统一考试(辽宁卷)数学试题 (理科) word解析版

绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数 学(供理科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)复数的11Z i =-模为(A )12(B (C (D )21. 【答案】B【解析】由已知111,(1)(1)22i Z i i i -+==-----+所以||Z =(2)已知集合{}{}4|0log 1,|2A x x B x x AB =<<=≤=,则A .()01,B .(]02,C .()1,2D .(]12, 2. 【答案】D【解析】由集合A ,14x <<;所以(1,2]A B ⋂=(3)已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为(A )3455⎛⎫ ⎪⎝⎭,-(B )4355⎛⎫ ⎪⎝⎭,- (C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭, 3. 【答案】A【解析】(3,4)AB =-,所以||5AB =,这样同方向的单位向量是134(,)555AB =-(4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列; {}2:n p na 数列是递增数列;3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p 4.【答案】D【解析】设1(1)n a a n d dn m =+-=+,所以1P 正确;如果312n a n =-则满足已知,但2312n na n n =-并非递增所以2P 错;如果若1n a n =+,则满足已知,但11n a n n=+,是递减数列,所以3P 错;34n a nd dn m +=+,所以是递增数列,4P 正确(5)某学校组织学生参加英语测试,成绩的频率分布直方图如图, 数据的分组一次为[)[)[)[)20,40,40,60,60,80,820,100. 若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50 (C )55 (D )60 5.【答案】B【解析】第一、第二小组的频率分别是0.1、0.2,所以低于60分的频率是0.3,设班级人数为m ,则150.3m=,50m =。

2013年辽宁卷理科数学高考试卷(原卷 答案)

绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)理科数学本试卷共24题,共150分。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第I 卷(选择题)一、单选题 1.复数的11z i =−模为( )A .12B .2C D .22.已知集合{}{}4|0log 1,|2A x x B x x A B ,则=<<=≤⋂=A .()01,B .(]02, C .()1,2D .(]12, 3.已知点()()1,3,4,1,A B −则与AB 同方向的单位向量为( ) A .3455⎛⎫− ⎪⎝⎭, B .4355⎛⎫− ⎪⎝⎭,C .3455⎛⎫− ⎪⎝⎭,D .4355⎛⎫− ⎪⎝⎭,4.下面是关于公差0d >的等差数列{}n a 的四个命题{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列;3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列;其中的真命题为( ) A .12,p pB .34,p pC .23,p pD .14,p p5.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)20,40,40,60,60,80,[80,100].若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .6.在ABC ∆中,内角,,A B C 的对边分别为,,a b c .若1sin cos sin cos 2a B C c B Ab +=,且a b >,则B =( ) A .6π B .3π C .23π D .56π 7.使得()3nx n N+⎛+∈ ⎝的展开式中含有常数项的最小的n 为( )A .4B .5C .6D .78.执行如图所示的程序框图,若输入10,n S ==则输出的( )A .511 B .1011 C .3655 D .72559.已知点()()()30,0,0,,,.,O A b B a a ABC ∆若为直角三角形则必有A .3b a =B .31b a a=+C .()3310b ab a a ⎛⎫−−−= ⎪⎝⎭D .3310b a b a a−+−−= 10.已知直三棱柱1116.34ABC A B C O AB AC −==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为( )A B .C .132D .11.已知函数()()()()222222,228.f x x a x a g x x a x a =−++=−+−−+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B −=( )A .16B .16−C .2216a a −−D .2216a a +−12.设函数()f x 满足()()()222,2,8x e ex f x xf x f x +=='则0x >时,()f x ( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值第II 卷(非选择题)二、填空题13.某几何体的三视图如图所示,则该几何体的体积是_______.14.已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若1a ,3a 是方程2540x x −+=的两个根,则6S =__________.15.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,4,.10,6,,5AF BF AB AF cos ABF C e ==∠==连接若则的离心率 .16.为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为 .三、解答题 17.设向量()()3sin ,sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值;(II )设函数()()·,.f x a b f x =求的最大值18.如图,.AB PA C 是圆的直径,垂直圆所在的平面,是圆上的点 (I )求证PAC PBC ⊥平面平面;(II )2.AB AC PA C PB A ===−−若,1,1,求证:二面角的余弦值19.现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答. (I )求张同学至少取到1道乙类题的概率;(II )已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示张同学答对题的个数,求X 的分布列和数学期望.20.如图,抛物线()()2212002:4,:20.,C x y C x py p M x y C ==−>点在抛物线上,1M C 过作()0,,.1A B M O A B O x =的切线,切点为为原点时,重合于当1.2MA 切线的斜率为-(I )求p 的值;(II )2M C AB N 当在上运动时,求线段中点的轨迹方程(),,.A B O O 重合于时中点为21.已知函数()()()[]321,12.0,12xx f x x e g x ax xcosx x −=+=+++∈当时,(I )求证()11;1x f x x−≤≤+ (II )若()()f x g x ≥恒成立,a 求实数的取值范围.22.如图,AB 为直径,直线CD 与相切于E 。

2013年辽宁高考理科数学卷

绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数1=i 1z -的模为( )A .12BCD .22.已知集合4=0log {1|}A x x <<,{|=}2B x x ≤,则=A B ( )A .(0,1)B .(0,2]C .(1,2)D .(1,2] 3.已知点(1,3)A ,1(4,)B -,则与向量AB 同方向的单位向量为( )A .34(,)55-B .43(,)55-C .34(,)55-D .43(,)55-4.下面是关于公差0d >的等差数列{}n a 的四个命题: 1p :数列{}n a 是递增数列; 2p :数列{}n na 是递增数列; 3p :数列{}n an是递增数列; 4p :数列{3}n a nd +是递增数列. 其中的真命题为( )A .12p p ,B .34p p ,C .23p p ,D .14p p ,5.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是()A .45B .50C .55D .606.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c .若sin cos sin cos =12a cb B C B A +,且a b >,则B ∠=( )A .π6B .π3C .2π3D .5π67.使(3()n n x +∈+N 的展开式中含有常数项的最小的n 为( )A .4B .5C .6D .78.执行如图所示的程序框图,若输入10n =,则输出S = ( )A .511 B .1011 C .3655 D .72559.已知点(0,0)O ,()0,A b ,3(),B a a .若OAB △为直角三角形,则必有 ( )A .3=b aB .31b a a=+C .331()()0b a b a a---=D .331||||0b a b a a-+--=10.已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上.若=3AB ,=4AC ,AB AC ⊥,112=AA ,则球O 的半径为( ) AB.C .132D.11.已知函数22(()22)f x x a x a +-=+,22((2))28g x x a x a =---++.设1()H x =max ()(){}f x g x ,,2mi (){)(n (,)}H x f x g x =({},max p q 表示p ,q 中的较大值,min{},p q 表示p ,q 中的较小值).记1()H x 的最小值为A ,2()H x 的最大值为B ,则A B -=( )A .16B .16-C .2216a a --D .2216a a +-12.设函数()f x 满足2()2()e x x f x xf x x'+=,2(2)e 8f =,则0x >时,()f x( )--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.某几何体的三视图如图所示,则该几何体的体积是 . 14.已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和.若1a ,3a 是方程2540x x +=-的两个根,则6S = .15.已知椭圆22221=()0x y a C ba b :>>+的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若||=10AB ,||=6AF ,4os 5c ABF ∠=,则C的离心率=e .16.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)设向量a )=,sin x x ,b (,=cos s )in x x ,2[]π0,x ∈. (Ⅰ)若|a |=|b |,求x 的值;(Ⅱ)设函数()f x =a ·b ,求()f x 的最大值.18.(本小题满分12分)如图,AB 是圆的直径,P A 垂直圆所在的平面,C 是圆上的点. (Ⅰ)求证:平面PAC ⊥平面PBC ;(Ⅱ)若=2AB ,=1AC ,=1PA ,求二面角C PB A ——的余弦值.19.(本小题满分12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答. (Ⅰ)求张同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示张同学答对题的个数,求X 的分布列和数学期望.20.(本小题满分12分)如图,抛物线214C x y :=,222()0C x py p :-=>.点00(,)M x y 在抛物线2C 上,过M 作1C 的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当0=1x ,切线MA 的斜率为12-.(Ⅰ)求p 的值;(Ⅱ)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ). 21.(本小题满分12分)已知函数2()1e ()xf x x -=+,312cos 2()x g x ax x x +++=.当[0,1]x ∈时, (Ⅰ)求证:)1(11x f x x≤≤-+;(Ⅱ)若()()f x g x ≥恒成立,求实数a 的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 为O 直径,直线CD 与O 相切于E ,AD 垂直CD 于D ,BC 垂直CD 于C ,EF 垂直AB 于F ,连接AE ,BE .证明: (Ⅰ)=FEB CEB ∠∠; (Ⅱ)2=EF AD BC .23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆1C ,直线2C 的极坐标方程分别为=4sin ρθ,πcos(4ρθ- (Ⅰ)求1C 与2C 交点的极坐标;(Ⅱ)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为33,12x t a b y t ⎧=+⎪⎨=+⎪⎩(t R ∈为参数),求a ,b 的值.24.(本小题满分10分)选修4—5:不等式选讲 已知函数|(|)f x x a =-,其中1a >.(Ⅰ)当2a =时,求不等式()4||4f x x ≥--的解集;(Ⅱ)已知关于x 的不等式|()22()|2f x a f x ≤-+的解集为2|}1{x x ≤≤,求a 的值.。

2013年辽宁高考数学理科试卷(带详解)

2013年普通高等学校招生全国统一考试(卷)数 学(理)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合 题目要求的. 1.复数的1i 1z =-模为 ( ) A.12B.22C.2D.2【测量目标】复数代数形式的四则运算.【考查方式】直接给出复数,利用2i 1=-对复数进行化简,然后再求模.【难易程度】容易 【参考答案】B【试题解析】111112i,i i 12222z z ==--∴=--=-. 2.已知集合{}4|0log 1A x x =<<,{}|2B x x =,则 A B = ( )A .()01,B .(]02,C .()1,2D .(]12, 【测量目标】集合的基本运算.【考查方式】考查了对数不等式及交集运算. 【难易程度】容易 【参考答案】D 【试题解析】{}{}4|0log 1|14A x x x x =<<=<<,{}|2B x x =,{}{}{}14212A B x x x x x x ∴=<<=<.3.已知点()1,3A ,()4,1B -,则与向量AB 同方向的单位向量为 ( )A.3455⎛⎫ ⎪⎝⎭,-B.4355⎛⎫ ⎪⎝⎭,-C.3455⎛⎫- ⎪⎝⎭,D.4355⎛⎫- ⎪⎝⎭,【测量目标】向量的基本概念.【考查方式】给出两点坐标及方向,求同方向的单位向量. 【难易程度】容易 【参考答案】A【试题解析】()3,4AB =-,则与其同方向的单位向量34(,)55ABAB==-e . 4.下面是关于公差0d >的等差数列()n a 的四个命题:1p :数列{}n a 是递增数列; 2p :数列{}n na 是递增数列;3p :数列n a n ⎧⎫⎨⎬⎩⎭是递增数列; 4p :数列{}3n a nd +是递增数列;其中的真命题为 ( )A.12,p pB.34,p pC.23,p pD.14,p p【测量目标】等差数列的性质.【考查方式】给出d >0的等差数列,求数列的增减性. 【难易程度】中等 【参考答案】D【试题解析】根据等差数列的性质判定.0d >,∴1n n a a +>,∴1p 是真命题, (步骤1)1n n +>,但是n a 的符号不知道,∴2p 是假命题. (步骤2)同理3p 是假命题.13(1)340n n a n d a nd d +++--=>,∴4p 是真命题. (步骤3)5.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[)[)20,40,40,60, [)[)60,80,80,100,若低于60分的人数是15人,则该班的学生人数是 ( ) A.45 B.50 C.55 D.60第5题图【测量目标】频率分布直方图.【考查方式】给出频率分布直方图及某一频数,求总体频数. 【难易程度】容易 【参考答案】B【试题解析】根据频率分布直方图的特点可知,低于60分的频率是00050012003...+⨯=(),所以该班的学生人数是15500.3=. 6.在ABC △上,角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且,a b >则B ∠= ( )A .π6B .π3C .2π3D .5π6【测量目标】正弦定理,两角和的正弦,诱导公式.【考查方式】给出三角形各边长及角和边长的公式,求角. 【难易程度】中等 【参考答案】A【试题解析】根据正弦定理与和角公式求解.由正弦定理可得sin sin cos A B C +1sin sin cos sin 2C B A B =, (步骤1)又sin 0B ≠,∴ sin cos A C +1sin cos 2C A =,∴1sin sin 2(A C )B +==.(步骤2)a b >,∴π6B ∠=. (步骤3) 7.使得()3nx n x x +⎛+∈ ⎪⎝⎭N 的展开式中含有常数项的最小的n 为 ( )A .4B .5C .6D .7【测量目标】二项式定理.【考查方式】考查了二项展开式的通项公式. 【难易程度】中等 【参考答案】B【试题解析】根据二项展开式的通项公式求解.()521=C 3C 3rn r n rr r n r r nn T x x x x ---+= ⎪⎝⎭,当1r T +是 常数项时,502n r -=,当2r =,5n =时成立. 8.执行如图所示的程序框图,若输入10n =,则输出的S = ( )A .511B .1011C .3655D .7255第8题图【测量目标】循环结构的程序框图.【考查方式】给出输入值10n =,求输出值S . 【难易程度】中等 【参考答案】A 【试题解析】13S =,410i =<, 21123415S ∴=+=-,610i =<,(步骤1)22135617S ∴=+=-, 8<10i =,23147819S ∴=+=-,1010i ==,2415910111S ∴=+=-,1210i =>,输出S . (步骤2)9.已知点()()()30,0,0,,,.O A b B a a 若OAB △为直角三角形,则必有 ( )A .3b a =B .31b a a=+ C .()3310b ab a a ⎛⎫---= ⎪⎝⎭ D .3310b a b a a-+--= 【测量目标】直线的倾斜角与斜率.【考查方式】给出三点坐标,由三角形l 的边的性质,求出,a b 之间的关系.【难易程度】中等 【参考答案】C【试题解析】根据直角三角形的直角的位置求解.若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意;(步骤1)若π2A ∠=,则30b a =≠,若π2B ∠=,根据斜率关系可知 321a b a a -=-,3()1a a b ∴-=-,即310b a a--=.以上两种情况皆有可能,故只有C 满足条件.(步骤2)10.已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )A.2 B ..132D .【测量目标】立体几何的综合问题.【考查方式】给出三条棱长及两棱垂直关系,求三棱柱外接球的半径. 【难易程度】较难 【参考答案】C【试题解析】根据球的接三棱柱的性质求解.直三棱柱中13412AB ,AC ,AA ,===AB AC ⊥,∴5BC =,且BC 为过底面ABC 是截面圆的直径,取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面11BCC B ,矩形11BCC B 的对角线长即为球直径,∴213R =,即132R =.11.已知函数()()2222f x x a x a =-++,()()22228g x x a x a =-+--+.设1()H x ()(){}max ,f x g x =,()()(){}2min ,H x f x g x =,{}max ,p q 表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 的最小值为A ,()2H x 的最小值为B ,则A B -=( )A.2216a a --B.2216a a +- C.16- D.16【测量目标】二次函数的图象与性质.【考查方式】给出两函数解析式,设出较大值、较小值、最大值、最小值,求最值. 【难易程度】较难 【参考答案】C【试题解析】根据二次函数图象的特征解决.由()()f x g x =,得2()4x a -= , (步骤1)∴当2x a =-和2x a =+时,两函数值相等.()f x 图象为开口向上的抛物线,()g x 图象为开口向下的抛物线,两图象在2x a =-和2x a =+处相交,则1()H x =()(2),()(22),()(2),f x x ag x a x a f x x a -⎧⎪-<<+⎨⎪+⎩2()(2),()()(22),()(2),g x x a H x f x a x a g x x a -⎧⎪=-<<+⎨⎪+⎩ (步骤2)∴1min ()(2)44A H x f a a ==+=--,2max ()(2)412B H x g a a ==-=-+,∴16.A B -=-(步骤3)12.设函数()f x 满足()()2e 2x xf x xf x x '+=,()2e 28f =,则0x >时,()f x ( )A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值【测量目标】利用导数求函数的极值.【考查方式】通过构造函数,将问题转化,考查转化能力.通过导数判断函数单调性,考查知识的 灵活应用能力. 【难易程度】较难 【参考答案】D【试题解析】由题意知2'33e 2()e 2()()x x f x x f x f x x x x-=-=.(步骤1) 令2()e 2()x g x x f x =-,则()222e 2()e 2()4()e 2()2()e e 1x xxxx g x x f x xf x x f x xf x x x ⎛⎫'''=--=-+=-=- ⎪⎝⎭.(步骤2)由()0g x '=得2x =,当2x =时,222mine ()e 2208g x =-⨯⨯=,即()0g x ,则当0x >时,3()()0g x f x x'=,(步骤3) 故()f x 在()0,+∞上单调递增,既无极大值也无极小值.(步骤4) 二、填空题:本大题共4小题,每小题5分.13.某几何体的三视图如图所示,则该几何体的体积是 .第13题图【测量目标】由三视图求几何体的体积.【考查方式】给出三视图,求体积. 【难易程度】容易 【参考答案】16π16-【试题分析】由三视图可知该几何体是一个圆柱部挖去一个正四棱柱,圆柱底面圆半径为2,高为 4,故体积为16π;正四棱柱底面边长为2,高为4,故体积为16,故题中几何体的体积为16π16.- 14.已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S = .【测量目标】等比数列及其性质,等比数列的前n 项和.【考查方式】给出方程,已知等比数列为递增数列,先求等比数列中两项值,即方程的两根,再由数 列为递增数列求出数列的前n 项和. 【难易程度】中等 【参考答案】63 【试题分析】13,a a 是方程2540x x -+=的两个根,且数列{}n a 是递增的等比数列,∴131,4,2,a a q ===661263.12S -==-15.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F 椭圆C 与过原点的直线相交于,A B 两点,连接,AF BF ,若410,6,cos 5AB AF ABF ==∠=,则C 的离心率e = . 【测量目标】余弦定理,椭圆的简单几何性质.【考查方式】画图表示椭圆及直线位置,通过数量关系确定三角形形状以及椭圆系数,考查数形结合的能力.【难易程度】中等 【参考答案】57【试题解析】根据椭圆的定义及性质和余弦定理求解.设椭圆的右焦点为1F ,直线过原点,16AF BF ∴==,BO AO =.(步骤1)在ABF △中,设BF x =,由余弦定理得24361002105x x =+-⨯⨯,(步骤2) 解得8x =,即8BF =.90BFA ∴∠=,ABF ∴△是直角三角形,(步骤3)26814a ∴=+=,即7a =.(步骤4)又在Rt ABF △中,BO AO =,152OF AB ∴==,即5c =,(步骤5) 57e ∴=.(步骤6) 16.为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组 的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的 最大值为 .【测量目标】用样本数字特征估计总体数字特征.【考查方式】给出样本平均数、样本方差样本组数,求样本数据中的最大值. 【难易程度】较难 【参考答案】10【试题解析】设5个班级中参加的人数分别为12345,,,,,x x x x x 则由题意知2222212345123457,(7)(7)(7)(7)(7)20,5x x x x x x x x x x ++++=-+-+-+-+-=五个整数的平方和为20,则必为0119920++++=,由73x -=可得10x =或4x =,由71x -=可得8x =或6x =,由上可知参加的人数分别为4,6,7,8,10,故样本数据中的最大值为10.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. (本小题满分12分)设向量)()π,sin ,cos ,sin ,0,.2x x x x x ⎡⎤==∈⎢⎥⎣⎦a b(I )若=a b 求x 的值; (Ⅱ)设函数()f x =a b ,求()f x 的最大值.【测量目标】平面向量的基本概念、向量的数量积运算、两角和与差的正弦和三角函数的最值. 【考查方式】给出两向量坐标,两向量模的关系,函数与向量的关系,求x 的值,函数的最大值. 【难易程度】容易 【试题解析】(Ⅰ)2222222(3sin )sin 4sin ,cos sin 1,x x x x x =+==+=a b ,=a b∴24sin 1.x = (步骤1)又x ∈π0,2⎡⎤⎢⎥⎣⎦,∴1sin ,2x =∴π6x =. (步骤2)(Ⅱ)()3sin f x x ==a b 2311π1cos sin sin 2cos 2sin(2),2262x x x x x +=-+=-+ ∴当π3x =∈π0,2⎡⎤⎢⎥⎣⎦时,πsin(2)6x -取最大值1. (步骤3) ∴()f x 的最大值为32. (步骤4)18.(本小题满分12分)如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I )求证:平面PAC ⊥平面PBC ;(II )若2AB AC PA ===,1,1,求证:二面角C PB A --的余弦值.第18题图【测量目标】面面垂直的判定,二面角,空间直角坐标系和空间向量及其运算.【考查方式】面面垂直的判定及二面角的平面角的确定考查定理的灵活应用能力,空间直角坐标系的建立考查空间想象能力及运算求解能力. 【难易程度】中等【试题解析】(Ⅰ)由AB 是圆的直径,得AC BC ⊥,(步骤1) 由PA ⊥平面ABC ,BC ⊂平面ABC ,得PA BC ⊥,又PA AC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,BC ∴⊥平面PAC BC ⊂平面PBC ∴平面PBC ⊥平面PAC .(步骤2)(Ⅱ)解法一:如图(1),以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴,y 轴,z 轴建立空间直角坐标系. 在Rt ABC △中,2AB =,1AC =,3BC ∴=又1PA =,()0,1,0A ∴,)3,0,0B,()0,1,1P .(步骤3)故()3,0,0CB =,()0,1,1CP =.设平面BCP 的法向量为()1111,,x y z =n ,则110,0,CB CP ⎧•=⎪⎨•=⎪⎩n n 11130,0,x y z ⎧=⎪∴⎨+=⎪⎩不妨令11y =,则()10,1,1=-n .(步骤4)()0,0,1AP =,()3,1,0AB =-,设平面ABP 的法向量为()2222,,x y z =n ,则220,0,AP AB ⎧=⎪⎨=⎪⎩n n 2220,30,z x y =⎧⎪∴⎨-=⎪⎩(步骤5) 不妨令21x =,则()21,3,0=n . 于是1236cos ,422==n n . 由图(1)知二面角C —PB —A 为锐角,故二面角C —PB —A 的余弦值为64.(步骤6)第18题图(1)解法二:如图(2),过C 作CM AB ⊥于M ,PA ⊥平面ABC ,CM ⊂平面ABC ,PA CM ∴⊥.又PA AB A =,且PA ⊂平面PAB ,AB ⊂平面PAB ,CM ∴⊥平面PAB . 过M 作MN PB ⊥于N ,连接NC ,由三垂线定理得CN PB ⊥ CNM ∴∠为二面角C —PB —A 的平面角.(步骤3) 在Rt ABC △中,由2AB =,1AC =,得3BC =,32CM =,32BM =. 在Rt PAB △中,由2AB =,1PA =,得5PB =.Rt BNM △∽Rt BAP △,3215MN∴=,35MN ∴=.(步骤4) ∴在Rt CNM △中,30CN =,6cos CNM ∴∠=,∴二面角C —PB —A 的余弦值为6.(步骤5)第18题图(2)19.(本小题满分12分)现有10道题,其中6道甲类题,4道乙类题,同学从中任取3道题解答.(I )求同学至少取到1道乙类题的概率;(II )已知所取的3道题中有2道甲类题,1道乙类题.设同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示同学答对题的个数,求X 的分布列和数学期望.【测量目标】古典概型,互斥事件与对立事件的概率,离散型随机变量的分布列及期望.【考查方式】至少类问题反面求解考查转化化归能力,分布列及数学期望的求解考查运算求解能力. 【难易程度】中等【试题解析】 (1)设事件A =“同学所取的3道题至少有1道乙类题”,则有A = “同学所取的3道题都是甲类题”.()36310C 1C 6P A ==,()()516P A P A ∴=-=.(步骤1)(2)X 所有的可能取值为0,1,2,3.(步骤2)()020232140=C 555125P X ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭;(步骤3) ()11021022321324281C +C 555555125P X ⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(步骤4) ()2112122321324572C +C 555555125P X ⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(步骤5) ()222324363C 555125P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.(步骤6) X ∴的分布列为:X 0 12 3P4125 28125 5712536125(步骤7)()428573601232125125125125E X ∴⨯⨯⨯⨯==+++.(步骤8)20.(本小题满分12分)如图,抛物线()2212:4,:20C x y C x py p ==->,点()00,M x y 在抛物线2C 上,过M 作1C 的切线,切点为,A B (M 为原点O 时,,A B 重合于O ),012x =-,切线MA的斜率为12-.(I )求p 的值;(II )当M 在2C 上运动时,求线段AB 中点N 的轨迹方程.(),,.A B O O 重合于时中点为第20题图【测量目标】导数的几何意义,圆锥曲线的轨迹方程.【考查方式】给出两抛物线方程,利用导数的几何意义及坐标中点与直线的关系求解;利用椭圆与直 线的位置关系及待定系数法求解. 【难易程度】中等 【试题解析】(Ⅰ)抛物线21:4C x y =上任意一点(,)x y 的切线斜率为'2xy =,且切线MA 的斜率为12-,∴A 点坐标为(1-,14), (步骤1) ∴切线MA 的方程为11(1)24y x =-++. (步骤2).点M (01)y 在切线MA 及抛物线2C 上,∴0113(2244y -=--+=-①20(1322y p p-=-=-② (步骤3)由①②得2p =. (步骤4)(Ⅱ)设22121212(,),(,),(,),,44x x N x y A x B x x x ≠N 为线段AB 中点∴122x x x +=,③22128x x y +=.④ (步骤5) ∴切线MA,MB 的方程为2111()24x x y x x =-+,⑤2222()24x x y x x =-+.⑥ (步骤6)由⑤⑥得MA,MB 的交点M (00,)x y 的坐标为121200,.24x x x xx y +== (步骤7)点M (00,)x y 在2C 上,即200,4x y =-∴221212.6x x x x +=-⑦ (步骤8) 由③④⑦得24,0.3x y x =≠ (步骤9)当12x x =时,A,B 重合于原点O,AB 中点N 为O ,坐标满足24.3x y =∴AB 中点N 的轨迹方程为24.3x y = (步骤10)21.(本小题满分12分)已知函数()()21e xf x x -=+,()312cos 2x g x ax x x =+++.当[]0,1x ∈时, (I )求证:()111x f x x-+ ;(II )若()()f x g x 恒成立,数a 取值围.【测量目标】利用导数求函数的单调区间,不等式恒成立问题.【考查方式】第一问不等式的证明利用构造函数法,通过导数证明,考查简单的转化化归能力;第二问的两种解法都对转化化归能力进一步升级考查,解法一利用第一问的结论进行转化,解法二通过构造函数,两次利用导数转化. 【难易程度】较难【试题解析】(Ⅰ)证明:要证[]0,1x ∈时,()21e 1xx x -+-,只需证明()()1e 1e x x x x -+-.(步骤1) 记()()(1)e 1e xx h x x x -=--+,则()()e e x x h x x -'=-,(步骤2) 当()0,1x ∈时,()0h x '>,因此()h x 在[]0,1上是增函数,(步骤3) 故()()00h x h =.所以()[]10,1f x x x ∈-,.(步骤4) 要证[]0,1x ∈时,21(1)e 1xx x-++,只需证明e1x x +.(步骤5)记()e 1x K x x =--,则()e 1x K x '=-,(步骤6)当()0,1x ∈时,()0K x '>,因此()K x 在[]0,1上是增函数,(步骤7) 故()()00K x K =.所以()11f x x+,[]0,1x ∈.(步骤8) 综上,()111xf x x-+,[]0,1x ∈.(步骤9) (Ⅱ)解法一:()()32(1)e 12cos 2xx f x g x x ax x x -⎛⎫-=-+++ ⎪⎝⎭+3112cos 2x x ax x x -----2(12cos )2x x a x =-+++.(步骤10)设()22cos 2x G x x =+,则()2sin G x x x '=-.(步骤11) 记()2sin H x x x =-,则()12cos H x x '=-,(步骤12)当()0,1x ∈时,()0H x '<,于是()G x '在[]0,1上是减函数,(步骤13)从而当()0,1x ∈时,()()00G x G ''<=,故()G x 在[]0,1上是减函数.(步骤14) 于是()()02G x G =,从而()13a G x a +++.(步骤15)所以,当3a-时,()()f x g x 在[]0,1上恒成立.(步骤16) 下面证明当3a >-时,()()f x g x 在[]0,1上不恒成立.()()3112cos 12x f x g x ax x x x -----+ 32cos 12x x ax x x x -=---+ 212cos 12x x a x x ⎛⎫=-+++ ⎪+⎝⎭,(步骤17)记()2112cos ()121x I x a x a G x x x =+++=++++, 则()21()(1)I x G x x -''=++,(步骤18) 当()0,1x ∈时,()0I x '<,故()I x 在[]0,1上是减函数,(步骤19)于是()I x 在[]0,1上的值域为[12cos 13]a a ++,+.(步骤20)因为当3a >-时,3>0a +,()00,1x ∴∃∈,使得()00I x >,(步骤21) 此时()()00f x g x <,即()()f x g x 在[]0,1上不恒成立.(步骤22) 综上,实数a 的取值围是(],3-∞-.(步骤23) 解法二:先证当[]0,1x ∈时,22111cos 124x xx --.(步骤10)记()21cos 12F x x x =-+,则()sin F x x x '=-+.(步骤11)记()sin G x x x =-+,则()cos 1G x x '=-+,(步骤12) 当()0,1x ∈时,()0G x '>,于是()G x 在[]0,1上是增函数,(步骤13)因此当()0,1x ∈时,()()00G x G >=,从而()F x 在[]0,1上是增函数.(步骤14)因此()()00F x F =,所以当[]0,1x ∈时,211cos 2x x -.(步骤15)同理可证,当[]0,1x ∈时,21cos 14x x -.(步骤16)综上,当[]0,1x ∈时,22111cos 124x x x --.(步骤17)当[]0,1x ∈时,()()()321e 12cos 2xx f x g x x ax x x -⎛⎫-=+-+++ ⎪⎝⎭321(1)12124x x ax x x ⎛⎫------ ⎪⎝⎭()3a x =-+.(步骤18)所以当3a-时,()()f x g x 在[]0,1上恒成立.(步骤19) 下面证明当3a >-时,()()f x g x 在[]0,1上不恒成立.()()()321e 12cos 2xx f x g x x ax x x -⎛⎫-=+-+++ ⎪⎝⎭3211121122x ax x x x ⎛⎫----- ⎪+⎝⎭ 23(3)12x x a x x =+-++ 32(3)23x x a ⎡⎤-+⎢⎥⎣⎦,(步骤20) ()00,1x ∴∃∈ (例如0x 取33a +和12中的较小值)满足()()00f x g x <.(步骤21) 即()()f x g x 在[]0,1上不恒成立.(步骤22)综上,实数a 的取值围是(],3-∞-.(步骤23)请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 为半圆O 的直径,直线CD 与半圆O 相切于E ,AD 垂直CD 于D ,BC 垂直CD 于C ,EF 垂直AB 与F ,连接,AE BE .证明:(I )FEB CEB ∠=∠; (II )2.EF AD BC =⋅第22题图【测量目标】几何证明选讲.【考查方式】给出点、线、面之间的各种关系,根据圆中直线的垂直等角关系证明;根据圆中三角形 的全等和线段间的关系求解. 【难易程度】容易【试题解析】(Ⅰ)直线CD 与⊙O 相切,∴.CEB EAB ∠=∠ (步骤1)AB 为⊙O 的直径,∴AE EB ⊥,∴π2EAB EBF ∠+∠=; (步骤2) 又EF AB ⊥,∴π2FEB EBF ∠+∠=. (步骤3) ∴FEB EAB ∠=∠.∴.FEB CEB ∠=∠ (步骤4)(Ⅱ)BC CE ⊥,EF AB ⊥,,FEB CEB BE ∠=∠是公共边, ∴Rt BCE △≌Rt BFE △,∴BC BF =. (步骤5)类似可证Rt ADE △≌Rt AFE △,得AD AF =. (步骤6)又在Rt AEB △中,EF AB ⊥,∴2EF AF BF =,∴2EF AD BC =. (步骤7)23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为π4sin ,cos 2 2.4ρθρθ⎛⎫=-= ⎪⎝⎭(I )求1C 与2C 交点的极坐标;(II )设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为3312x t a b y t ⎧=+⎪⎨=+⎪⎩(t ∈R 为参数),求,a b 的值.【测量目标】极坐标与参数方程.【考查方式】给出各直线的极坐标方程或参数方程,联立1C 与2C 方程求交点;由参数方程的性质求 解.【难易程度】容易【试题解析】(Ⅰ)圆1C 的直角坐标方程为2224x y +-=(),直线2C 的直角坐标方程为40x y -+=. 解222440x y x y ⎧+-=⎨+-=⎩(),,得1104x y =⎧⎨=⎩,,2222x y =⎧⎨=⎩, (步骤1) ∴1C 与2C 交点的极坐标为ππ42224⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,. (步骤2) 注:极坐标系下点的表示不是唯一的.(Ⅱ)由(Ⅰ)可得,P 点与Q 点的直角坐标分别为()()0213,,,.∴直线PQ 的直角坐标方程为20x y -+=, (步骤3)由参数方程可得b aby x 22=-+1. (步骤4)∴12122b ab ⎧=⎪⎪⎨⎪-+=⎪⎩,,解得12a b =-⎧⎨=⎩,. (步骤5)24.(本小题满分10分)选修4—5:不等式选讲 已知函数()f x x a =-,其中1a >. (I )当=2a 时,求不等式()fx 4x a --的解集;(II )已知关于x 的不等式(2)2()f x a f x +-2的解集为{1xx}2,求a 的值.【测量目标】绝对值不等式的解法,含参不等式的解法.【考查方式】给出函数方程,求不等式的解集.再给出不等式的解集,求未知数a 的值. 【难易程度】中等【试题解析】(1)当2a =时,2624224264x x fx x x x x .-+⎧⎪+-=<<⎨⎪-⎩,,(),,, (步骤1) 当2x时,由4f x x -()4-得264x -+,解得1x ; (步骤2) 当24x <<时,44f x x --()无解; (步骤3) 当4x时,由44f x x --()得264x -,解得5x. (步骤4)∴44f x x --() 的解集为{1x x或}5x. (步骤5)(2)记22h x f x a f x =+-()()(),则204202a x h x x a x a a x a.-⎧⎪=-<<⎨⎪⎩,,(),,, (步骤6)由2h x (),解得1122a a x-+. (步骤7) 又2h x ()的解集为{}12x x ,∴112122a a -⎧=⎪⎪⎨+⎪=⎪⎩,, ∴3a =. (步骤8)。

2013年辽宁省高考数学试卷(理科)

2013年XX省高考数学试卷(理科)大题共12小题,每小题5分,共60分.在每小题给出的四个选一、选择题:本.的项中,只有一项是符合题目要求()1.(5分)复数的模长为A.B.C.D.22.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2]C.(1,2)D.(1,2]()为3.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量A.B.C.D.4.(5分)下列关于公差d>0的等差数列{a n}的四个命题:p1:数列{a n}是递增数列;p2:数列{na n}是递增数列;p3:数列是递增数列;p4:数列{a n+3nd}是递增数列;其中真命题是()A.p1,p2B.p3,p4C.p2,p3D.p1,p4如图,数据的5.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45B.50C.55D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=第1页(共21页)B=()b,且a>b,则∠A.B.C.D.n7.(5分)使得(3x+)(n∈N+)的展开式中含有常数项的最小的n为()A.4B.5C.6D.7n=10,则输出的S=()8.(5分)执行如图所示的程序框图,若输入A.B.C.D.3),若△OAB为直角三角形,9.(5分)已知点O(0,0),A(0,b),B(a,a则必有()A.b=a3B.C.D.A1B1C1的6个顶点都在球O的球面上,若AB=3,10.(5分)已知三棱柱ABC﹣AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣a2+8.设11.(5分)已知函数f(x)=x2)x﹣H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表H1(x)的最小值为示p,q中的较大值,min{p,q}表示p,q中的较小值),记A,H2(x)的最大值为B,则A﹣B=()2﹣2a﹣16C.﹣16a16D.16a2+2a﹣16A.16B.﹣x12.(5分)设函数f(x)满足2f(′x)+2xf(x)=,f(2)=,则x>0时,21页)第2页(共f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值二、填空题:本大题共4小题,每小题5分.13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.(5分)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.第3页(共21页)18.(12分)如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (Ⅰ)求证:平面PAC ⊥平面PBC ;(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C ﹣P B ﹣A 的余弦值.19.(12分)现有10道题,其中6道甲类题,4道乙类题,X 同学从中任取3 道题解答.(Ⅰ)求X 同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设X 同学答对甲类题的 概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X 表 示X 同学答对题的个数,求X 的分布列和数学期望. 20.(12分)如图,抛物线C 1:x2=4y ,C 2:x 2=﹣2py (p >0),点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ), 当x 0=1﹣时,切线MA 的斜率为﹣. (Ⅰ)求P 的值;(Ⅱ)当M 在C 2上运动时,求线段A B 中点N 的轨迹方程(A ,B 重合于O 时, 中点为O ).﹣2x 21.(12分)已知函数f (x )=(1+x )e ,g (x )=ax++1+2xcosx ,当x ∈[0, 1]时,第4页(共21页)(I)求证:;.(II)若f(x)≥g(x)恒成立,XX数a的取值X围请考生在21、22、23题中任选一题作答,如果多做,则按所做的第一题计分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(辽宁卷)
数 学(供理科考生使用)
第I 卷
一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)复数的1
1
Z i =
-模为
(A )
1
2
(B (C (D )2
(2)已知集合{}{}4|0log 1,|2A x x B x x A
B =<<=≤=,则
A .()01,
B .(]02,
C .()1,2
D .(]12, (3)已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为
(A )3
455⎛⎫ ⎪⎝⎭,-
(B )435
5⎛⎫ ⎪⎝⎭,- (C )3455⎛⎫- ⎪⎝⎭
, (D )4355⎛⎫
- ⎪⎝⎭
, (4)下面是关于公差0d >的等差数列()n a 的四个命题:
{}1:n p a 数列是递增数列; {}2:n p na 数列是递增数列;
3:n a p n ⎧⎫
⎨⎬⎩⎭
数列是递增数列;
{}4:3n p a nd +数列是递增数列; 其中的真命题为
(A )12,p p (B )34,p p (C )23,p p (D )14,p p (5)某学校组织学生参加英语测试,成绩的频率分布直方图如图, 数据的分组一次为[)[)[)[)20,40,40,60,60,80,820,100.
若低于60分的人数是15人,则该班的学生人数是
(A )45 (B )50 (C )55 (D )60
(6)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2
a B C c B A
b +=
,a b B >∠=且则
A .
6
π
B .
3
π
C .
23π D .56
π (7)使得()3n
x n N n
+⎛
∈ ⎝
的展开式中含有常数项的最小的为
A .4
B .5
C .6
D .7
(8)执行如图所示的程序框图,若输入10,n S ==则输出的 A .511 B .1011 C .3655 D .7255
(9)已知点()()()
30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有
A .3b a =
B .31
b a a
=+ C .(
)3310b a b a a ⎛⎫---
= ⎪⎝⎭ D .33
10b a b a a
-+--= (10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,
,AB AC ⊥112AA O =,则球的半径为
A . C .13
2
D .(11)已知函数()()()()2
2
2
2
22,228.f x x a x a g x x a x a =-++=-+--+设
()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大
值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则
A B -=
(A )2216a a -- (B )2216a a +- (C )16- (D )16
(11)设函数()()()()()2
2
2,2,0,8
x e e f x x f x xf x f x f x x '+==>满足则时,
(A )有极大值,无极小值 (B )有极小值,无极大值 (C )既有极大值又有极小值 (D )既无极大值也无极小值
第II 卷
本卷包括必考题和选考题两部分。

第13题-第22题为必考题,每个试题考生都必须作答。

第22题-第24题为选考题,考生根据要求作答。

二、填空题:本大题共4小题,每小题5分.
(13)某几何体的三视图如图所示,则该几何体的体积是 .
(14)已知等比数列{}{}13n n n a S a n a a 是递增数列,是的前项和.若,是方程
26540x x S -+==的两个根,则 .
(15)已知椭圆22
22:1(0)x y C a b a b
+=>>的左焦点为,F C 与过原点的直线相交于
,A B 两点,4
,.10,6,cos ABF ,5
AF BF AB AF C e ==∠=连接若则的离心率= .
(16)为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为 .
三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)
设向量)
(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤
=
=∈⎢⎥⎣⎦
(I )若.a b x =求的值;
(II )设函数()(),.f x a b f x =求的最大值 18.(本小题满分12分)
如图,.AB PA C 是圆的直径,垂直圆所在的平面,是圆上的点 (I )求证:PAC PBC ⊥平面平面;
(II )2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值
19.(本小题满分12分)
现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答. (I )求张同学至少取到1道乙类题的概率;
(II )已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是3
5
,答对每道乙类题的概率都是
4
5
,且各题答对与否相互独立.用X 表示张同学答对题的个数,求X 的分布列和数学期望.
20.(本小题满分12分)
如图,抛物线()()2
2
12002:4,:20.,C x y C x py p M x y C ==->点在抛物线上,
1M C 过作()0,,.1A B M O A B O x =的切线,切点为为原点时,重合于当1
-.2
MA 切线的斜率为
(I )P 求的值;
(II )2M C AB N 当在上运动时,求线段中点的轨迹方程
(),,.A B O O 重合于时中点为
21.(本小题满分12分)
已知函数()()
()[]3
21,12cos .0,12
e x
x f x x g x ax x x x -=+=+++∈当时,
(I )求证:()1
1-;1x f x x
≤≤
+ (II )若()()f x g x ≥恒成立,a 求实数的取值范围.
请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分。

作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑。

22.(本小题满分10分)选修4-1:几何证明选讲
如图,.AB O CD O E AD CD D 为
直径,直线与相切于垂直于于,BC 垂直于
,.CD C EF F AE BE 于,垂直于,连接证明:
(I );FEB CEB ∠=∠ (II )2.EF AD BC =
23.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐
标方程分别为4sin ,cos 4πρθρθ⎛

==-
= ⎪⎝

. (I )12C C 求与交点的极坐标;
(II )112.P C Q C C PQ 设为的圆心,为与交点连线的中点已知直线的参数方程为
()33,,.12
x t a t R a b b y t ⎧=+⎪∈⎨=+⎪⎩为参数求的值 24.(本小题满分10分)选修4-5:不等式选讲 已知函数(), 1.f x x a a =->其中
(I )()=244;a f x x ≥=-当时,求不等式的解集
(II )()(){}
{}222|12,x f x a f x x x +-≤≤≤已知关于的不等式的解集为
.a 求的值。

相关文档
最新文档