初一几何部分练习题
2024年数学七年级上册几何基础练习题(含答案)

2024年数学七年级上册几何基础练习题(含答案)试题部分一、选择题(每题2分,共20分)1. 下列哪个图形是一个正方形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形2. 下列哪个图形是一个矩形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形3. 下列哪个图形是一个菱形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形4. 下列哪个图形是一个正三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,三个角都是直角的三角形D. 三条边不等长,三个角都是锐角的三角形5. 下列哪个图形是一个等腰三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,两个角是直角的三角形D. 三条边不等长,两个角是锐角的三角形6. 下列哪个图形是一个等边三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,三个角都是直角的三角形D. 三条边不等长,三个角都是锐角的三角形7. 下列哪个图形是一个梯形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,两个角是直角的四边形D. 四条边不等长,两个角是锐角的四边形8. 下列哪个图形是一个平行四边形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形9. 下列哪个图形是一个圆形?A. 所有边都是直线的图形B. 所有边都是曲线的图形C. 所有边都是直角三角形的图形D. 所有边都是锐角三角形的图形10. 下列哪个图形是一个椭圆?A. 所有边都是直线的图形B. 所有边都是曲线的图形C. 所有边都是直角三角形的图形D. 所有边都是锐角三角形的图形二、判断题(每题2分,共10分)1. 正方形的对角线互相垂直且相等。
初一数学几何图形练习题及答案20题

初一数学几何图形练习题及答案20题1. 填空题:a. 正方形的对角线长度是________(1词)。
b. 两个互相垂直的角的和为________度(1词)。
2. 判断题(正确为T,错误为F):a. 直角三角形的两个直角边可以相等。
()b. 一个平行四边形的对角线相等。
()c. 所有的矩形都是正方形。
()d. 一个凸四边形的内角和为360度。
()3. 简答题:a. 请解释平行四边形的定义及性质。
(至少2句)b. 解释锐角、钝角和直角分别是什么角度范围。
(至少1句)4. 计算题:在下图中,ΔABC是个等边三角形,边长为4cm。
a. 请计算三角形ABC的周长。
(2词)b. 请计算三角形ABC的面积。
(2词)5. 应用题:桌子的形状为长方形,长为120cm,宽为80cm。
在桌子的边上画出一个同样形状的长方形,使得它的宽比原来的桌子短一半,长比原来的桌子长一半。
请计算这个新长方形的面积。
(2词)答案:1. a. 简答题b. 902. a. Fb. Tc. Fd. T3. a. 平行四边形是一个有四个边的四边形,且相对的两边是平行的。
其性质包括:对角线互相平分;相邻角互补;相对角相等。
b. 锐角是指小于90度的角;钝角是指大于90度小于180度的角;直角是指等于90度的角。
4. a. 12cmb. 4√3 cm²5. 1800 cm²通过以上20道初一数学几何图形练习题及答案的训练,可以帮助学生巩固和加深对于几何图形的理解和应用能力。
请同学们认真学习,并通过解答这些问题来提高自己的数学技能。
七下数学几何部分期末练习

北师大版七年级下册数学几何及概率部分练习题精选1.已知AB∥CD,分别探讨下列四个图形中∠APC和∠PAB、∠PCD的关系,并说明理由.2.如图所示的四幅图形,都满足AB∥CD,请在每幅图形中写出∠A、∠C,与∠AEC的数量关系(都指图中小于180°的角),并任选一个完成它的证明过程.3.已知直线AB∥CD,(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD和∠BED的数量关系是.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.4.如图,AC∥BD,AB∥CD,∠1=∠E,∠2=∠F,AE交CF于点O,试说明:AE⊥CF5.如图所示,△ABC中,AD⊥BC,AE平分∠BAC.(1)若∠B=30°,∠C=70°,求∠DAE的度数;(2)△ABC中,若∠B=α,∠C=β(α<β),请你根据(1)问的结果大胆猜想∠DAE与α,β间的等量关系,并说明理由6.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.7.如图,直线AB与CD相交于点O,OE⊥CD.(1)若∠BOD=28°,求∠AOE的度数.(2)若OF平分∠AOC,小明经探究发现,当∠BOD为锐角时,∠EOF的度数始终都是∠BOC度数的一半,请你判断他的发现是否正确,并说明理由8.情境观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.①写出图1中所有的全等三角形;②线段AF与线段CE的数量关系是.问题探究:如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.求证:AE=2CD.拓展延伸:如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC=∠BAC,DE⊥CE,垂足为E,DE与BC 交于点F.求证:DF=2CE.9. 如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.10.如图,在△ABC中,AB=AC,AD是BC边上的高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状,并证明你的结论11.如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D,过D点作DE⊥AB于E,若∠AFD=158°,求∠EDF的度数12.(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数13.已知:如图,在△ABC中,∠ABC=∠ACB,AD⊥BD,AE⊥CE,且AD=AE.求证:△AEC≌△ADB14.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由15.如图,在等边△ABC中,点D为AC上一点,CD=CE,∠ACE=60°.(1)求证:△BCD≌△ACE;(2)延长BD交AE于F,连接CF,若AF=CF,猜想线段BF、AF的数量关系,并证明你的猜想16.如图,AD是△ABC的中线,BE⊥AD于点E,CF⊥AD交AD的延长线于点F.求证:BE=CF17.如图,△ABC是等边三角形,D是AC上一点,BD=CE,∠1=∠2,试判断BC与AE的位置关系,并证明你的结论18.如图,已知∠MAN=120°,AC平分∠MAN,∠ABC+∠ADC=180°,求证:①DC=BC;②AD+AB=AC19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.20.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.21.已知:如图,△ABC和△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,点E在AB边上.(1)求证:△ACE≌△BCF;(2)若∠BFE=60°,求∠AEC的度数22.已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,①线段CD和BE的数量关系是;②请写出线段AD,BE,DE之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.23.已知:如图,AE=CF,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF.求证:AB∥CD.24.如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.求证:△ADC≌△BEA25.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠BAE=25°,求∠ACF的度数.26.在△ABC中,AB=AC,AD⊥BC于D,BE⊥AC于E,AE=BE.求证:(1)∠DAB=∠EBC;(2)AF=2CD.27.如图,AB∥ED,已知AC=BE,且点B、C、D三点共线,若∠E=∠ACB.求证:BC=DE.28.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.29.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF30.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.31.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.求证:△ACD≌△CBE.32.已知:如图,点A,D,C在同一直线上,AB∥EC,AC=CE,∠B=∠EDC.求证:BC=DE.33.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.34.如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AD=CF.35.阅读发现:(1)如图①,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,AB=BC=3,BD=BE=1,连结CD,AE.易证:△BCD≌△BAE.(不需要证明)提出问题:(2)在(1)的条件下,当BD∥AE时,延长CD交AE于点F,如图②,求AF的长.解决问题:(3)如图③,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,连结CD,AE.当∠BAE=45°时,点E到AB的距离EF的长为2,求线段CD的长为36.已知:如图,在△ABC中,∠ACB=90°,点D在BC上,且BD=AC,过点D作DE⊥AB于点E,过点B作CB的垂线,交DE的延长线于点F.求证:AB=DF.37.如图,已知∠ABC=90°,D是AB延长线上的点,AD=BC,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,求证:FD⊥CD.38.如图,请你在下列各图中,过点P画出射线AB或线段AB的垂线.39.如图(1),由三角形的内角和或外角和可知:∠ABC=∠A+∠C+∠O在图(2)中,直接利用上述的结论探究:①若AD、CD分别平分∠OAB,∠OCB,且∠O=80°∠B=120°,求∠ADC的度数②AD、CD分别平分∠OAB,∠OCB,猜想∠O,∠ABC,∠ADC之间的等量关系,并说明理由.40.已知:如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E41.如图,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,CE与BD相交于点M,BD交AC于点N.试猜想BD与CE有何关系?并证明你的猜想42.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且OB=OC.求证:AO平分∠BAC43.已知:如图,在△ABC中,AB=AC,∠BAC=90°,点D是BC的中点,点E,F 分别在AB,AC边上,连接DE,DF,∠EDF=90°,求证:BE=AF44.如图:△ABC和△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,点B,C,E在同一条直线上,连结DC.(1)请找出图中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.45.探究:(1)如图1,在ABC与ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,连结BD、CE.请写出图1中所有全等的三角形:(不添加字母).(2)如图2,已知△ABC,AB=AC,∠BAC=90°,l是过A点的直线,CN⊥l,BM⊥l,垂足为N、M.求证:△ABM≌△CAN.解决问题:(3)如图3,已知△ABC,AB=AC,∠BAC=90°,D在边BC上,DA=DE,∠ADE=90°,求证:AC⊥CE.46.已知:如图,EF⊥BC于点F,ED⊥AB于点D交BC于点M,BD=EF.求证:BM=EM47.如图,在△ABC的外部,分别以AB、AC为直角边,点A为直角顶点,作等腰直角△ABD和等腰直角△ACE,CD与BE交于点P.试证:(1)CD=BE;(2)∠BPC=90°48.如图(1),△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,AD⊥MN于点D,BE⊥MN于点E.(1)请说明:△ADC≌△CEB.(2)请你探索线段DE,AD,EB间的等量关系,并说明理由;(3)当直线MN绕点C旋转到图(2)的位置时,其它条件不变,线段DE,AD,EB又有怎样的等量关系(不必说理由).49.(1)如图①∵∠B+∠D+∠1=180°又∵∠1=∠A+∠2∠2=∠C+∠E∴∠A+∠C+∠E+∠B+∠D=180°(2)将图①变形成图②,∠A+∠DBE+∠C+∠D+∠E仍然为180°,请证明这个结论.(3)将图①变形成图③,则∠A+∠B+∠C+∠D+∠E还为180°,请继续证明这个结论.50.如图,在Rt△ABC中,∠ACB=90°,∠A=°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由51.如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F(1)若△CMN的周长为20cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数52.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上53.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论54.已知△ABC,∠ACB=90°,AC=4,MN垂直平分AB,且BM=2CM,求CM的长.55.作图题:(不写作法,但必须保留作图痕迹)如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库P应该建在什么位置吗?在所给的图形中画出你的设计方案.56.a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留痕迹57.△ABC中,DE,FG分别垂直平分边AB,AC,垂足分别为点D,G.(1)如图,①若∠B=30°,∠C=40°,求∠EAF的度数;②如果BC=10,求△EAF的周长;③若AE⊥AF,则∠BAC=°.(2)若∠BAC=n°,则∠EAF= °(用含n代数式表示)58.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E59.已知△ABC中∠BAC=120°,BC=26,AB、AC的垂直平分线分别交BC于E、F,与ABAC分别交于点D、G.求:(1)∠EAF的度数.(2)求△AEF的周长60.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B61.已知,如图,P是∠AOB平分线上的一点,PC⊥OA,PD⊥OB,垂足分别C、D,求证:OP是CD的垂直平分线.62如图,在△ABC中,E、F分别是AB、AC上的点,AD平分∠BAC,DE⊥AB,DF⊥AC,求证:AD垂直平分EF.63已知:如图,在△ABC中,AB=AC,∠A=60°,BD是中线,延长BC至点E,使CE=CD.求证:DB=DE64如图,已知l1,l2分别是△ABC的边AB、BC的垂直平分线,l1与l2相交于点O,试判断线段0A与OC的数量关系65如图,在△ABC中,∠BAC的平分线与BC的垂直平分线相交于点P,连接BP、CP.试问:∠ABP+∠ACP 的度数是定值吗?请证明你的结论66.图,已知在△ABC中,∠C=90°,AB的垂直平分线MN交BC于点D.(1)如果∠CAD=20°,求∠B的度数.(2)如果∠CAB=50°,求∠CAD的度数.(3)如果∠CAD:∠DAB=1:2,求∠CAB的度数67.如图,△ABC中,∠B=25°,∠C=40°,AB的垂直平分线DN交BC于D,AC的垂直平分线EF交BC于E,连接AD、AE.求△ADE各内角的度数68. 数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD 的长(请你直接写出结果).69.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.70.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N,(1)若△CMN的周长为21cm,求AB的长;(2)若∠MCN=50°,求∠ACB的度数.71.已知:如图,AB比AC长2cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长是14cm,求AB和AC的长.72.已知:如图,在△ABC中,∠BAC=120°,若PM、QN分别垂直平分AB、AC.(1)求∠PAQ的度数;(2)如果BC=10cm,求△APQ的周长.73.△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°.(1)如图①,当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)如图②,当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由.74.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PD=2,求PC的长.75.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.76.如图,AP,CP分别是△ABC外角∠MAC和∠NCA的平分线,它们交于点P.求证:BP为∠MBN的平分线77.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为49和40,求△EDF的面积为多少?78.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD 平分∠BAC ;(2)直接写出AB+AC 与AE 之间的等量关系.79.如图所示,已知∠B=∠C=90°,DM 平分∠ADC ,AM 平分∠DAB ,求证:M 是BC 的中点.80.已知:∠AOB=90°,OM 是∠AOB 的平分线,将三角板的直角顶点P 在射线OM 上滑动,两直角边分别与OA 、OB 交于C 、D ,PC 和PD 有怎样的数量关系,请说明理由.81.如图,在△ABC 中,∠ACB=3∠B ,∠1=∠2,CD ⊥AD 于D ,求证:AB-AC=2CD82.如图,在△ABC 中,已知AD 平分∠BAC ,过AD 上一点P 作EF ⊥AD ,交AB 于E 、交AC 于F ,交BC 延长线于M ,则有正确结论:∠M=21(∠ACB-∠B ).请说明理由 83.如图,AD ∥BC ,∠DAB 的平分线与∠CBA 的平分线交于点P ,过点P 的直线垂直于AD ,垂足为D ,交BC 于点C .试问:点P 是线段CD 的中点吗为什么84.如图,在△ABC 中,D 为BC 中点,DE ⊥BC 交∠BAC 的平分线AE 于E ,EF ⊥AB 于F ,EG ⊥AC 交AC 的延长线于G ,求证:BF=CG85.观察、猜想、探究:在△ABC 中,∠ACB=2∠B.(1)如图①,当∠C=90°,AD 为∠BAC 的角平分线时,求证:AB=AC+CD ;(2)如图②,当∠C≠90°,AD 为∠BAC 的角平分线时,线段AB 、AC 、CD 又有怎样的数量关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD 为△ABC 的外角平分线时,线段AB 、AC 、CD 又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.86.(1)如图1,在△ABC 中,∠ABC 的平分线BF 交AC 于F ,过点F 作DF ∥BC ,求证:BD=DF .(2)如图2,在△ABC 中,∠ABC 的平分线BF 与∠ACB 的平分线CF 相交于F ,过点F 作DE ∥BC ,交直线AB 于点D ,交直线AC 于点E .那么BD ,CE ,DE 之间存在什么关系?并证明这种关系.(3)如图3,在△ABC 中,∠ABC 的平分线BF 与∠ACB 的外角平分线CF 相交于F ,过点F 作DE ∥BC ,交直线AB 于点D ,交直线AC 于点E .那么BD ,CE ,DE 之间存在什么关系?请写出你的猜想.(不需证明)87.一个不透明的口袋里装有2个红球、1个黄球和若干个绿球(除颜色不同外其余都相同),若从中任1意摸出1个球是绿球的概率是4(1)求口袋中绿球的个数;(2)若第一次从口袋中任意摸出1个球,放回搅匀,第二次再摸出1个球,用列表或画树状图方法写出所有可能性,并求出刚好摸到一个红球和一个绿球的概率88.在一个不透明的布口袋里装着白、红、黑三种颜色的小球,它们除颜色之外没有任何其它区别,其中有白球3只、红球2只、黑球1只.袋中的球已经搅匀.(1)随机地从袋中取出1只球,求取出的球是黑球的概率;(2)若取出的第1只球是红球,将它放在桌上,然后从袋中余下的球中再随机地取出1只球,这时取出的球还是红球的概率是多少?89.在一个不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球12个,蓝球1个.若从中任意摸出一个球,它是蓝球的概率为4(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,求两次摸到球的颜色是红色与黄色这种组合(不考虑红、黄球顺序)的概率.90.将6个完全相同的小球分装在甲、乙两个不透明的口袋中,甲袋中有3个球,分别标有数字1、3、5;乙袋中有3个球,分别标有数字2、4、6,从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率;(2)摸出的两个球上数字之和为多少时的概率最大?。
(完整版)初中几何题练习

初中几何练习题一. 三角形1.三角形的有关概念 一、填空题:1、三角形的三边为1,a 1,9,则a 的取值范围是 。
2、已知三角形两边的长分别为1和2,如果第三边的长也是整数,那么第三边的长为 。
3、在△ABC 中,若∠C =2(∠A +∠B ),则∠C = 度。
4、如果△ABC 的一个外角等于1500,且∠B =∠C ,则∠A = 。
5、如果△ABC 中,∠ACB =900,CD 是AB 边上的高,则与∠A 相等的角是 。
6、如图,在△ABC 中,∠A =800,∠ABC 和∠ACB 的外角平分线相交于点D ,那么∠BDC = 。
7、如图,CE 平分∠ACB ,且CE ⊥DB ,∠DAB =∠DBA ,AC =18cm ,△CBD 的周长为28 cm ,则DB = 。
8、纸片△ABC 中,∠A =650,∠B =750,将纸片的一角折叠,使点C 落在△ABC 内(如图),若∠1=200,则∠2的度数为 。
9、在△ABC 中,∠A =500,高BE 、CF 交于点O ,则∠BOC = 。
第6题图FEDC BA第7题图EDC BA第8题图A二、选择题:1、若△ABC 的三边之长都是整数,周长小于10,则这样的三角形共有( )A 、6个B 、7个C 、8个D 、9个 2、在△ABC 中,AB =AC ,D 在AC 上,且BD =BC =AD ,则∠A 的度数为( )A 、300B 、360C 、450D 、720 3、等腰三角形一腰上的中线分周长为15和12两部分,则此三角形底边之长为( )A 、7B 、11C 、7或11D 、不能确定 4、在△ABC 中,∠B =500,AB >AC ,则∠A 的取值范围是( ) A 、00<∠A <1800 B 、00<∠A <800 C 、500<∠A <1300 D 、800<∠A <13005、如果三角形的一个外角等于它相邻内角的2倍,且等于它不相邻内角的4倍,那么这个三角形一定是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、正三角形 三、解答题:1、有5根木条,其长度分别为4,8,8,10,12,用其中三根可以组成几种不同形状的三角形?2、长为2,3,5的线段,分别延伸相同长度的线段后,能否组成三角形?若能,它能构成直角三角形吗?为什么?3、如图,在△ABC 中,∠A =960,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于1A ,∠1A BC 与∠1A CD 的平分线相交于2A ,依此类推,∠4A BC 与∠4A CD 的平分线相交于5A ,则∠5A 的大小是多少?2A 1A 第3题图DC B A4、如图,已知OA =a ,P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON =600,填空:(1)当OP = 时,△AOP 为等边三角形; (2)当OP = 时,△AOP 为直角三角形; (3)当OP 满足 时,△AOP 为锐角三角形; (4)当OP 满足 时,△AOP 为钝角三角形。
初一数学几何部分练习题

第四章平面图形及其位置关系试题一、选择题(共13 小题,每题 4分,满分 52 分)1、如图,以 O 为端点的射线有()条.A、 3 B 、 4C、5 D 、 62、以下说法错误的选项是()A、不订交的两条直线叫做平行线 B 、直线外一点与直线上各点连结的全部线段中,垂线段最短C、平行于同一条直线的两条直线平行 D 、平面内,过一点有且只有一条直线与已知直线垂直3、一个钝角与一个锐角的差是()A、锐角 B 、钝角C、直角 D 、不可以确立4、以下说法正确的选项是()A、角的边越长,角越大B、在∠ ABC 一边的延伸线上取一点 DC、∠ B= ∠ ABC+ ∠ DBCD、以上都不对5、以下说法中正确的选项是()A、角是由两条射线构成的图形 B 、一条射线就是一个周角C、两条直线订交,只有一个交点D、假如线段 AB=BC ,那么 B 叫做线段 AB 的中点6、同一平面内互不重合的三条直线的交点的个数是()A、可能是0个,1个,2个B、可能是0个,2个,3个C、可能是0 个,1个,2个或 3个D、可能是 1 个可 3 个7、以下说法中,正确的有()①过两点有且只有一条直线;②连结两点的线段叫做两点的距离;③两点之间,线段最短;④若AB=BC ,则点 B 是线段 AC 的中点.A、1 个B、2 个C、3 个D、4 个8、钟表上12 时 15 分钟时,时针与分针的夹角为()A、90°B、°C、°D、 60°9、按以下线段长度,能够确立点 A 、 B 、 C 不在同一条直线上的是()A、 AB=8cm , BC=19cm , AC=27cm B 、 AB=10cm , BC=9cm , AC=18cmC、 AB=11cm , BC=21cm , AC=10cm D 、 AB=30cm , BC=12cm , AC=18cm10、以下说法中,正确的个数有()①两条不订交的直线叫做平行线;②两条直线订交所成的四个角相等,则这两条直线相互垂直;③经过一点有且只有一条直线与已知直线平行;④假如直线a∥ b, a∥ c,则 b∥ c.A、1 个B、2 个C、3 个D、4 个11、以下图中表示∠A BC 的图是()A、B、C、D、12、以下说法中正确的个数为()①不订交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线相互平行④在同一平面内,两条直线不是平行就是订交A、1 个B、2 个C、3 个D、4 个13、∠ 1 和∠ 2 为锐角,则∠1+∠ 2 知足()A、 0°<∠ 1+∠ 2< 90°B、 0°<∠ 1+∠2< 180°C、∠ 1+∠ 2< 90° D 、 90°<∠ 1+∠ 2< 180°二、填空题(共 5 小题,每题 5 分,满分25 分)14、如图,点 A 、B 、 C、 D 在直线 l 上.( 1)AC=﹣CD; AB++CD=AD ;( 2)如图共有条线段,共有条射线,以点 C 为端点的射线是.15、用三种方法表示如图的角:.16、将一张正方形的纸片,按以下图对折两次,相邻两条折痕(虚线)间的夹角为度.17、如图, OB , OC 是∠ AOD 的随意两条射线,OM 均分∠ AOB , ON 均分∠ COD ,若∠ MON=α,∠ BOC=β,则表示∠ AOD 的代数式是∠ AOD=.18、如图,∠ AOD= ∠ AOC+=∠ DOB+.三、解答题(共 3 小题,满分23 分)19、如图, M 是线段AC 的中点, N 是线段 BC 的中点.(1)假如 AC=8cm , BC=6cm ,求 MN 的长.(2)假如 AM=5cm , CN=2cm ,求线段 AB 的长.20、如图,污水办理厂要把办理过的水引入排水渠PQ,应如何铺设排水管道,才能用料最省?试画出铺设管道的路线,并说明原因.21、如图,直线AB 、 CD、 EF 都经过点O,且 AB ⊥ CD ,∠ COE=35°,求∠ DOF 、∠ BOF 的度数.北师大版七年级下册第二章订交线、平行线单元测试题一、填空(每题 4 分,共 40 分)1、一个角的余角是30o,则这个角的大小是..2、一个角与它的补角之差是20o,则这个角的大小是3、如图①,假如∠= ∠,那么依据可得 AD ∥BC(写出一个正确的就能够).4、如图②,∠ 1 = 82o,∠ 2 = 98o,∠ 3 = 80o,则∠ 4 =度.5、如图③,直线AB , CD,EF 订交于点 O,AB ⊥CD,OG 均分∠ AOE,∠ FOD = 28o,则∠ BOE =度,∠ AOG =度.6、时钟指向 3 时 30 分时,这不时针与分针所成的锐角是.7、如图④, AB ∥ CD,∠ BAE = 120o,∠DCE = 30o,则∠ AEC =度.8、把一张长方形纸条按图⑤中,那样折叠后,若获得∠ AOB ′= 70o,则∠ B′OG =.9、如图⑥中∠ DAB 和∠ B 是直线 DE 和 BC 被直线称它们为角.10、如图⑦,正方形ABCD 边长为 8,M 在 DC 上,且则 DN + MN 的最小值为.二、选择题(每题 3 分,共 18 分)11、以下正确说法的个数是()①同位角相等②对顶角相等③等角的补角相等④两直线平行,同旁内角相等A. 1,B.2,C.3,D.412、如图⑧,在△ ABC 中, AB = AC ,∠ A = 36o,BD均分∠ ABC , DE∥ BC,那么在图中与△ ABC 相像的三角形的个数是()A.0,B.1,C.2,D.3所截而成的,DM=2,N是AC上一动点,13、以下图中∠ 1 和∠ 2 是同位角的是()A. ⑴、⑵、⑶,B.⑵、⑶、⑷,C. ⑶、⑷、⑸,D.⑴、⑵、⑸14、以下说法正确的选项是()A.两点之间,直线最短;B.过一点有一条直线平行于已知直线;C.和已知直线垂直的直线有且只有一条;D. 在平面内过一点有且只有一条直线垂直于已知直线.15、一束光芒垂直照耀在水平川面,在地面上放一个平面镜,欲使这束光芒经过平面镜反射后成水平光芒,则平面镜与地面所成锐角的度数为()A.45o,B.60o,C.75o,D.80o16、如图⑨, DH∥EG∥ BF,且 DC∥EF,那么图中和∠ 1 相等的角的个数是()A.2,B.4,C. 5,D.6三、解答题:117、按要求作图(不写作法,但要保存作图印迹)( 3 分)已知点 P、 Q 分别在∠ AOB 的边 OA , OB 上(如图) .①作直线 PQ,2②过点 P 作 OB 的垂线,③过点 Q 作 OA 的平行线 .18、已知线段 AB,延伸 AB 到 C,使 BC∶AB=1 ∶3,D 为 AC 中点,若 DC = 2cm,求 AB 的长 . (7 分)19、如图,,已知AB∥ CD,∠ 1 =∠ 2.求证.:∠ E=∠ F(6分)20、如图所示,在△ AFD 和△ BEC 中,点 A、 E、F、C 在同向来线上,有下边四个判断:⑴AD=CB⑵AE=FC⑶ ∠B= ∠D⑷ AD∥BC请用此中三个作为已知条件,余下一个作为结论,编一道数学识题,并写出解答过程.(8分)21、如图,ABCD是一块釉面砖,居室装饰时需要一块梯形APCD 的釉面砖,且使∠ APC=120o. 请在长方形 AB边上找一点 P,使∠ APC= 120o. 而后把剩余部切割下来,试着表达如何选用 P 点及其选用 P 点的原因 . ( 8 分)22、如图,已知AB ∥CD,∠ ABE和∠ CDE的均分线订交于F,∠ E = 140o,求∠ BFD 的度数 .(10 分)北师大版七年级下册第三章三角形单元测试题(一):一、选择题1.一个三角形的两边长为 2 和 6,第三边为偶数.则这个三角形的周长为()A.10 B .12C. 142.在△ ABC中, AB= 4a,BC=14,AC=3a.则 a 的取值范围是()A. a> 2B.2<a< 14 C .7<a< 14 D . a<143.一个三角形的三个内角中,锐角的个数最少为()A.0 B. 1 C .2D.34.下边说法错误的选项是()A.三角形的三条角均分线交于一点 B .三角形的三条中线交于一点C.三角形的三条高交于一点D.三角形的三条高所在的直线交于一点5.能将一个三角形分红面积相等的两个三角形的一条线段是()A.中线B.角均分线C.高线 D .三角形的角均分线6.如图—∠°⊥AB,垂足是 D,则图中与∠A 相等5 12,已知ACB=90 , CD的角是()A.∠1B.∠2 C .∠B D.∠1、∠ 2和∠B7.点 P 是△ ABC内随意一点,则∠ APC与∠ B 的大小关系是() A.∠ APC>∠ B B.∠ APC=∠ B C.∠APC<∠B D.不可以确立8.已知:a、b、c是△ABC三边长,且 M= (a + b+c)(a +b- c)(a - b-c) ,那么()A.M>0B. M=0 C.M<0 D.不可以确立9.周长为P 的三角形中,最长边m的取值范围是()A.Pm P B.P m P C .Pm P D.Pm P32323232()10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有A.5 个B.4个 C .3个D.2 个二、填空题1.五条线段的长分别为 1,2, 3,4, 5,以此中随意三条线段为边长能够________个三角形.2.在△ ABC中, AB= 6,AC= 10,那么 BC边的取值范围是 ________,周长的取值范围是 ___________ 3.一个三角形的三个内角的度数的比是2:2: 1,这个三角形是 _________三角形.4.一个等腰三角形两边的长分别是15cm 和 7cm则它的周长是 __________.5.在 △ABC 中,三边长分别为正整数≥ ≥a 、b 、c ,且 c b a > 0,假如 b =4,则这样的三角形共有 _________个.6.直角三角形中,两个锐角的差为 40 ° _________.,则这两个锐角的度数分别为7.在 △ ABC 中, ∠ A - ∠ ° ∠ C = 4 ∠ B ,则 ∠ C = ________.B = 30 、8.如图 — △ ⊥ ⊥ ⊥ ⊥5 13,在 ABC 中,AD BC ,GC BC ,CF AB ,BE AC ,垂足分别为 D 、C 、F 、E ,则 _______是 △ ABC 中 BC 边上的高, _________是 △ ABC 中 AB 边上的高, _________是 △ ABC 中 AC边上的高, CF 是△ ABC 的高,也是 △ _______、 △ _______、 △ _______、 △ _________的高.— △ ABC 的两个外角的均分线订交 于点 D ,假如 ∠ ° ∠ D =_____.9.如图 5 14, A = 50 ,那么— △ ABC 中, ∠A =60 ° ∠ ABC 、 ∠ ACB 的均分线 BD 、 CD 交于点D ,则 ∠ BDC =_____ 10.如图 5 15, , — ∠ A + ∠ B + ∠ C + ∠ D + ∠E = ________度.11.如图 5 16,该五角星中,12.等腰三角形的周长为 24cm ,腰长为 xcm ,则 x 的取值范围是 ________. 三、解答题1.如图 —A 、B 、C 、D 、E 五点可确立多少个三角形 ?说明原因.5 17,点 B 、 C 、D 、E 共线,试问图中 2.如图 — ∠ BAD = ∠ CAD ,则 AD 是 △ ABC 的角均分线,对 吗 ?说明理5 18, 由.3.一个飞机部件的形状如图 — 所示,按规定 ∠ °∠ B , ∠ D 5 19 A 应等于 90 ,应分别是 20 ° ° ∠ BCD =143 °部件不合 和 30 ,康师傅量得 ,就能判定这个格,你能说出此中的道理吗 ?— △ ABC 中,AD 是 BC 边上的中线, △ ADC 的周长比 △ ABD 的 4.如图 5 20,在周长多 5cm ,AB 与 AC 的和为 11cm ,求 AC 的长.5.如图 — △ ABC 中, ∠ B = 34 ° ∠ ACB = 104° ∠ BAC 的均分线,求5 21, , , AD 是 BC 边上的高, AE是 ∠ DAE 的度数.6.如图 5—22,在 △ ABC 中, ∠ ACB = 90°, CD 是 AB 边上的高, AB = 13cm ,BC = 12cm ,AC =5cm ,求:(1) △ ABC 的面积; (2)CD 的长.7.已知:如图 5 — △ ABC 内任一点,求证: ∠ BPC > ∠A .23,P 是 8. △ ABC 中,三个内角的度数均为整数,且 ∠ A <∠ B <∠ C ,4∠ C =7∠ A ,求 ∠ A 的度数.9.已知:如图 5 — △ABC 内任一点,求证: AB + AC > BP + PC . 24,P 是—A 、B 、C 、D .此刻要建筑一个水塔 P .请回答水塔 P 应建在何地点,10.如图 5 25,豫东有四个乡村 才能使它到 4 村的距离之和最小,说明最节俭资料的方法和原因.11.已知△ ABC 的周长为 48cm ,最大边与最小边之差为 14cm ,另一边与最小边之和为 25cm ,求△ ABC 各边的长.北师大版七年级下册 第三章三角形 单元测试题(二):1.必定在△ ABC 内部的线段是( )A .锐角三角形的三条高、三条角均分线、三条中线B .钝角三角形的三条高、三条中线、一条角均分线C .随意三角形的一条中线、二条角均分线、三条高D .直角三角形的三条高、三条角均分线、三条中线 2.以下说法中,正确的选项是( )A .一个钝角三角形必定不是等腰三角形,也不是等边三角形B .一个等腰三角形必定是锐角三角形,或直角三角形C .一个直角三角形必定不是等腰三角形,也不是等边三角形D .一个等边三角形必定不是钝角三角形,也不是直角三角形3.如图,在△ ABC中, D、 E 分别为 BC上两点,且 BD= DE=EC,则图中面积相等的三角形有(A.4对B.5对C.6对D.7对)(注意考虑完整,不要遗漏某些状况)4.假如一个三角形的三条高的交点正是三角形的一个极点,那么这个三角形是(A.锐角三角形 B .钝角三角形 C .直角三角形 D .没法确立5.以下各题中给出的三条线段不可以构成三角形的是()A. a+ 1,a+ 2, a+ 3(a> 0)B.三条线段的比为4∶ 6∶ 10C. 3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18B.15C.18或15D.没法确立)7.两根木棒分别为5cm和 7cm,要选择第三根木棒,将它们钉成一个三角形,假如第三根木棒长为偶数,那么第三根木棒的取值状况有()种A.3B.4C.5D.68.△ ABC的三边 a、 b、c 都是正整数,且知足a≤b≤ c,假如 b= 4,那么这样的三角形共有(个A.4B.6C.8D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个B.2个C.3个D.4个)10.三角形全部外角的和是(A. 180°B.360°)C. 720°D. 540°11.锐角三角形中,最大角α的取值范围是()A. 0°<α< 90°; B .60°<α< 180°; C . 60°<α< 90°; D . 60°≤α< 90°12.假如三角形的一个外角不大于和它相邻的内角,那么这个三角形为()A.锐角或直角三角形; B .钝角或锐角三角形;C .直角三角形 ; D .钝角或直角三角形13.已知△ ABC中,∠ ABC与∠ ACB的均分线交于点O,则∠ BOC必定()A.小于直角 ; B.等于直角;C.大于直角;D.大于或等于直角14.如图 : ( 1) AD⊥ BC,垂足为 D,则 AD是 ________的高,∠________=∠ ________= 90°;(2)AE 均分∠ BAC,交 BC于点 E,则 AE叫 ________,∠________=∠ ________=1∠ ________,AH叫 ________;2(3)若 AF= FC,则△ ABC的中线是 ________;(4)若 BG= GH= HF,则 AG是 ________的中线, AH是 ________的中线.15.如图,∠ ABC=∠ ADC=∠ FEC=90°.(1)在△ ABC中, BC边上的高是 ________;(2)在△ AEC中, AE边上的高是 ________;(3)在△ FEC中, EC边上的高是 ________;(4 )若 AB= CD= 3, AE= 5 ,则△ AEC 的面积为________.16.在等腰△ ABC中,假如两边长分别为 6cm、10cm,则这个等腰三角形的周长为 ________.17.五段线段长分别为 1cm、 2cm、 3cm、 4cm、 5cm,以此中三条线段为边长共能够构成________个三角形.18.已知三角形的两边长分别为 3 和 10,周长恰巧是 6 的倍数,那么第三边长为________.19.一个等腰三角形的周长为5cm,假如它的三边长都是整数,那么它的腰长为________cm.20.在△ ABC中,若∠ A∶∠ B∶∠ C= 5∶ 2∶ 3,则∠ A= ______;∠ B= ______;∠ C=______.21.如图,△ ABC中,∠ ABC、∠ ACB的均分线订交于点 I .(1)若∠ ABC= 70°,∠ ACB= 50°,则∠ BIC= ________;(2)若∠ ABC+∠ ACB=120°,则∠ BIC=________;( 3)若∠ A =60°,则∠ BIC = ________; ( 4)若∠ A =100°,则∠ BIC =________;( 5)若∠ A =n °,则∠ BIC = ________. 22.如图,在△ ABC 中,∠ BAC 是钝角.画出:( 1)∠ ABC 的均分线;( 2)边 AC 上的中线;( 3)边 AC 上的高.23.△ ABC 的周长为 16cm , AB =AC ,BC 边上的中线 AD 把△ ABC 分红周长相等的两个三角形.若BD =3cm ,求 AB 的长.24.如图, AB ∥ CD , BC ⊥ AB ,若 AB =4cm , S ABC 12cm 2,求△ ABD 中 AB 边上的高.25 .学校有一块菜地,以以下图.现计划从点 D 表示的地点( BD ∶DC = 2∶ 1)开始挖一条小水渠,希望小水渠两边的菜地面积相等.有人说:假如D 是 BC 的中点的话,由此点 D 笔挺地挖至点 A 就 能够了.此刻 D 不是 BC 的中点,问题就没法解决了. 但有人以为假如仔细研究的话必定能办到. 你以为上边两种建议哪一种正确,为何?23 题24 题26 .在直角△ ABC 中,∠ BAC = 90°,以以下图所示.作BC 边上的高,图中出现三个直角三角形( 3= 2×1+1);又作△ ABD 中 AB 边上的高DD 1,这时图中便出现五个不一样的直角三角形( 5=2×2+ 1);依据相同的方法作 D 1D 2、D 2 D 3、 、D k 1D k.看作出D k 1D k时,图中共有多少个不同的直角三角形 ? 25 题 26 题27.一块三角形优秀品种试验田,现引进四个良种进行对照实验,需将这块土地分红面积相等的四块.请你制定出两种以上的区分方案.28.一个三角形的周长为 36cm ,三边之比为 a ∶ b ∶ c =2∶3∶ 4,求 a 、b 、 c . 29.已知三角形三边的长分别为:5、 10、a -2,求 a 的取值范围.30.已知等腰三角形中, AB = AC ,一腰上的中线 BD 把这个三角形的周长分红 15cm 和 6cm 两部分,求这个等腰三角形的底边的长. 31.如图,已知△ ABC 中, AB =AC ,D 在 AC 的延伸线上.求证: BD - BC < AD - AB .32.如图,△ ABC 中, D 是 AB 上一点.求证:( 1) AB + BC + CA > 2CD ;(2) AB + 2CD >AC +BC .33.如图, AB ∥ CD ,∠ BMN 与∠ DNM 的均分线订交于点 G , ( 1)达成下边的证明:31 题∵ MG 均分∠ BMN ( ),∴ ∠ GMN = 1∠ BMN (),32 题2同理∠ GNM = 1∠ DNM .2∵ AB ∥CD ( ),∴ ∠ BMN +∠ DNM = ________( ).∴ ∠ GMN +∠ GNM = ________.∵∠ GMN +∠ GNM +∠ G = ________(),∴∠ G= ________ .∴ MG 与 NG的地点关系是 ________.( 2)把上边的题设和结论,用文字语言归纳为一个命题:_______________________________________________________________.34.已知,如图D是△ ABC中 BC边延伸线上一点,DF⊥ AB交 AB 于 F,交 AC于 E,∠ A= 46°,∠ D = 50°.求∠ ACB的度数.35.已知,如图△ ABC中,三条高AD、 BE、 CF订交于点 O.若∠ BAC= 60°,求∠ BOC的度数.36.已知,如图△ ABC中,∠ B=65°,∠ C= 45°, AD是 BC边上的高, AE 是∠ BAC的均分线.求∠ DAE的度数.37.已知,如图CE是△ ABC的外角∠ ACD的均分线, BE 是∠ ABC内任一射线,交CE 于 E.求证:∠EBC<∠ ACE.38.画出图形,并达成证明:35 题34 题已知: AD是△ ABC的外角∠ EAC的均分线,且A D∥BC.求证:∠ B=∠ C.北师大版七年级下册第三章三角形单元测试题(三):一、选择题 (每题 3 分,共 30 分)1.有以下长度的三条线段,能构成三角形的是()A2,3,4B1,4,2 C 1,2, 3D6,2, 32.在以下各组图形中,是全等的图形是()3.以下条件中,能判断两个直角三角形全等的是()A 、一个锐角对应相等B 、两个锐角对应相等C、一条边对应相等 D 、两条边对应相等4.已知:如图, CD ⊥ AB , BE⊥ AC ,垂足分别为D、 E,BE、CD 订交于 O 点,∠ 1=∠ 2.图中全等的三角形共有()A.4 对B..3对C2 对D.1 对5.如图所示,某同学把一块三角形玻璃打坏成了三块,此刻要到玻店去配一块完整相同的玻璃,那么最省事的方法是()①②③A. 带①去B. 带②去C. 带③去D. 带①和②去 5 题A6.右图中三角形的个数是() A.6B.7C. 8 D . 97.假如两个三角形全等,那么以下结论不正确的选项是()B FA .这两个三角形的对应边相等B .这两个三角形都是锐角三角形D C.这两个三角形的面积相等 D .这两个三角形的周长相等E C 6 题8.在以下四组条件中,能判断△ABC ≌△ A /B/C/的是()=A /B/, BC= B /C/,∠ A= ∠ A / B.∠A= ∠ A/,∠ C=∠C/,AC= B /C/C.∠ A= ∠ B/,∠ B=∠ C/, AB= B/C/=A /B/, BC= B /C/,△ ABC 的周长等于△ A /B /C/的周长9.以下图中,与左图中的图案完整一致的是()10.以下判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中起码有两个锐角,③有两个内角为500和 200的三角形必定是钝角三角形,④直角三角形中两锐角的和为900,此中判断正确的有()个个个个二、填空题:(每题4分共 24分)11、为了使一扇旧木门不变形,木匠师傅在木门的反面A B C。
初一数学几何图形初步几何图形练习题

长方形的面积:5a· a= a2≈21.65a2,
圆的半径r:r2= =7a2,
r= a≈2.6458a
圆的面积:π·(2.6458a)2≈21.98a2.
∵21.65a2<21.98a2,
∴甲的硬板纸利用高.
(2)画图
考点:1.长方形的面积公式;2.圆的面积公式.
20.见解析
【解析】
(1)长方形(非正方形);
(2)平行四边形;
(3)四边形(非平行四边形).
18.(本题满分10分)(1)由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图.
(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.
故选A.
考点:截一个几何体.
14.B.
【解析】
试题分析:A、左视图与主视图都是正方形,故A不符合题意;
B、左视图与主视图不相同,分别是正方形和长方形,故B符合题意;
C、左视图与主视图都是矩形,故C不符合题意;
D、左视图与主视图都是等腰三角形.故D不符合题意.
故选B.
考点:简单几何体的三视图.
15.A.
①请你帮小明分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;
②若图中的正方形边长5cm,长方形的长为8cm,宽为5cm,请直接写出修正后所折叠而成的长方体的表面积为cm2.
25.(4分)如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,请画出这个几何体的主视图和左视图.
故选C.
考点:简单组合体的三视图.
初一数学几何练习题
初一数学几何练习题一、线段与角的基本概念1. 判断下列说法是否正确:所有的线段都能测量长度。
角的大小与边的长短有关。
两条平行线之间的距离处处相等。
2. 填空题:一条直线上的两个点可以把这条直线分成______部分。
两条平行线之间的距离是______的。
一个直角三角形的两个锐角互为______角。
二、图形的性质1. 判断题:所有的三角形都有三条高。
四边相等的四边形一定是正方形。
对角线互相垂直的四边形一定是矩形。
2. 选择题:下列哪个图形是轴对称图形?(A. 正方形 B. 长方形 C. 平行四边形 D. 梯形)下列哪个角是周角?(A. 90° B. 180° C. 360° D. 720°)三、图形的变换1. 填空题:将一个图形向右平移3个单位,再向上平移2个单位,这个图形的每个点都______。
一个图形绕某点旋转90°,那么旋转后的图形与原图形的面积______。
2. 判断题:两个全等三角形经过平移后,仍能完全重合。
两个相似图形的面积比等于它们边长比的平方。
四、平面图形的面积计算1. 计算题:一个长方形的长是10cm,宽是6cm,求它的面积。
一个三角形的底是8cm,高是5cm,求它的面积。
2. 应用题:一个平行四边形的底是12cm,高是8cm,求它的面积。
一个梯形的上底是5cm,下底是10cm,高是6cm,求它的面积。
五、立体图形的认识1. 判断题:长方体的六个面都是长方形。
正方体的六个面都是正方形。
2. 选择题:下列哪个图形是正方体?(A. 球 B. 正方形 C. 长方体 D.正方体)六、几何图形的判定与证明1. 判断题:如果一个四边形的对角线相等,那么这个四边形是矩形。
两个角相等且它们的对边也相等的三角形是全等三角形。
2. 证明题:证明:如果一个三角形的两边之和等于第三边,那么这个三角形是直角三角形。
证明:对角线互相垂直的平行四边形是菱形。
七、坐标与图形1. 填空题:点A(2,3)向右平移3个单位,再向上平移2个单位,新点的坐标是______。
完整版)初一几何练习题及答案
完整版)初一几何练习题及答案初一几何:三角形一、选择题(本大题共24分)1.以下列各组数为三角形的三条边,其中能构成直角三角形的是()A。
17,15,8B。
1/3,1/4,1/5C。
4,5,6D。
3,7,112.如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是()A。
锐角三角形B。
直角三角形C。
钝角三角形D。
等腰三角形3.下列给出的各组线段中,能构成三角形的是()A。
5,12,13B。
5,12,7C。
8,18,7D。
3,4,84.如图已知:Rt△ABC中,∠C=90°,AD平分∠BAC,AE=AC,连接DE,则下列结论中,不正确的是()A。
DC=DEB。
∠___∠ADEC。
∠DEB=90°D。
∠___∠DAE5.一个三角形的三边长分别是15,20和25,则它的最大边上的高为()A。
12B。
10C。
8D。
56.下列说法不正确的是()A。
全等三角形的对应角相等B。
全等三角形的对应角的平分线相等C。
角平分线相等的三角形一定全等D。
角平分线是到角的两边距离相等的所有点的集合7.两条边长分别为2和8,第三边长是整数的三角形一共有()A。
3个B。
4个C。
5个D。
无数个8.下列图形中,不是轴对称图形的是()A。
线段MNB。
等边三角形C。
直角三角形D。
钝角∠AOB9.如图已知:△ABC中,AB=AC,BE=CF,AD⊥BC于D,此图中全等的三角形共有()A。
2对B。
3对C。
4对D。
5对10.直角三角形两锐角的平分线相交所夹的钝角为()A。
125°B。
135°C。
145°D。
150°11.直角三角形两锐角的平分线相交所夹的钝角为()A。
125°B。
135°C。
145°D。
150°12.___已知:∠A=∠D,∠C=∠F,如果△ABC≌△DEF,那么还应给出的条件是()A。
AC=DEB。
AB=DFC。
初一几何作图题试题及答案
初一几何作图题试题及答案试题一:题目:已知线段AB,求作一个等边三角形ABC,使得点C在AB的延长线上。
作法:1. 以点A为圆心,以线段AB的长度为半径画圆。
2. 以点B为圆心,同样以线段AB的长度为半径画圆。
3. 两圆相交于点C。
4. 连接AC和BC,得到等边三角形ABC。
答案:按照上述作法,我们可以得到一个等边三角形ABC,其中AC=BC=AB。
试题二:题目:已知线段AB和线段CD,求作一个平行四边形ABCD,使得AB平行于CD。
作法:1. 延长线段AB到点E,使得AE=CD。
2. 以点B为圆心,以BE为半径画圆。
3. 以点D为圆心,以DE为半径画圆。
4. 两圆相交于点C。
5. 连接AC和BC,得到平行四边形ABCD。
答案:按照上述作法,我们可以得到一个平行四边形ABCD,其中AB平行于CD。
试题三:题目:已知圆O和点A,求作点A在圆O上的切线。
作法:1. 以点A为圆心,任意长度为半径画圆,与圆O相交于点B和点C。
2. 连接点A和点B,再连接点A和点C。
3. 延长线段AB和AC,使其相交于点D。
4. 线段AD即为点A在圆O上的切线。
答案:按照上述作法,我们可以得到点A在圆O上的一条切线AD。
试题四:题目:已知点A和点B,求作一个矩形ABCD,使得AB=CD。
作法:1. 以点A为圆心,以AB为半径画圆。
2. 以点B为圆心,同样以AB为半径画圆。
3. 两圆相交于点C。
4. 连接AC和BC。
5. 以点C为圆心,以AC为半径画圆,与线段AB相交于点D。
6. 连接AD和CD,得到矩形ABCD。
答案:按照上述作法,我们可以得到一个矩形ABCD,其中AB=CD。
结束语:通过以上四个几何作图题的练习,同学们可以加深对几何图形性质和作图方法的理解,提高空间想象能力和几何作图技能。
希望这些练习能帮助同学们在几何学习中取得更好的成绩。
人教版初一数学几何图形练习题
人教版初一数学几何图形练习题一、选择题(共4小题)1.图中的平面展开图是下面名称几何体的展开图,则立体图形与平面展开图不相符的是A.B.C.D.2.如图所示的几何体,从上面看到的平面图形是A.B.C.D.3.如图,如果把一个圆锥的侧面沿图示中的线剪开,则得到的图形是A.三角形B.圆C.圆弧4.一个正方体的平面展开图如图所示,折叠后可折成的图形是第1页(共4页)D.扇形A.B.C.D.二、填空题(共3小题)5.下列各图是几何体的表面展开图,请写出对应的几何体的名称.6.如图所示是由若干个大小相同的小正方体所搭成的几何体从三个方向看到的图形,则搭成这个几XXX的小正方体的个数是个.7.从棱长为的正方体毛坯的一角,挖去一个棱长为的小正方体,得到一个如图所示的零件,则这个零件的表面积为.第2页(共4页)三、解答题(共3小题)8.图中的平面睁开图折叠成正方体后,相劈面上的两个数之和为,求的值.9.如图,几何体是由若干棱长为的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.(1)第个多少体中只有个面涂色的小立方体共有个.第个多少体中只有个面涂色的小立方体共有个.(2)求出第(3)求出前个几何体中只有个面涂色的小立方体的块数.个多少体中只有个面涂色的小立方体的块数的和.10.如图是一个几何体的平面展开图.(1)这个多少体是.(2)求这个多少体的体积.(取)第3页(共4页)谜底第一部分1.A2.B3.D4.D【解析】从上面看到的平面图形是两个同心圆.第二部分5.圆锥,三棱锥,圆柱6.【剖析】多少体漫衍情形以下列图所示:则小正方体的个数为7.第三部分8.(个).。
.9.(1);..【解析】这个零件的表面积与原正方体的表面积相同,为【剖析】观察图形可得第个多少体中最底层的个角的小立方体只有个面涂色;第个多少体中只有个面涂色的小立方体共有图②中,只有个面涂色的小立方体共有图③中,只有个面涂色的小立方体共有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何专项练习
1. 如图1,
(1)(2)
(1) ∵∠A=_____( 已知) ,∴AC∥ED( )
(2) ∵∠2=_____(已知) ,∴AC∥ED( )
(3) ∵∠A+_____=180°( 已知) ,∴AB∥FD( )
(4) ∵AB∥_____(已知) ,∴∠2+∠AED=180°( )
(5) ∵AC∥_____(已知) ,∴∠C=∠1( )
2. 根据下列证明过程填空:
如图2,BD⊥AC,EF⊥AC,D、F 分别为垂足,且∠1=∠4,求证:∠ADG=∠ C
证明:∵BD⊥AC,EF⊥AC( )
∴∠2=∠3=90°
∴BD∥EF( )
∴∠4=_____( )
∵∠1=∠4( )
∴∠1=_____( )
∴DG∥BC( )
∴∠ADG=∠C( )
3、如图所示,已知∠DAB=∠DCB,AF 平分∠DAB,CE平分∠DCB,∠FCE=∠CEB,试说明:AF ∥CE。
解:(1)因为∠DAB=∠DCB(),
又AF平分∠DAB,
1
(2)所以_____=
∠DAB(),
2
又因为CE平分∠DCB,
(3)所以∠FCE=_____(),
所以∠FAE=∠FCE。
因为∠FCE=∠CEB,
(4)所以______=________。
(5)所以AF∥CE()。
4、如图2-89 ,已知AB//CD,EF分别截AB、CD于G、H两点,GM平分∠AGE,HN平分∠CHG,求证:GM//HN.
证明:∵_____//_____ (),
∴∠AGE=∠CHG().
又∵GM平分∠AGE()
∴∠1= 1
2
_________().
∵_______平分_____(),
∴∠2=_______(),
∴∠_____=________
则GM//HN().
5、如图2-91 ,
①∵∠1=∠2,∠3=∠2,∴∠1=∠3()
②∵∠1=∠3,∴∠1+∠2=∠3+∠2(),
即∠BOD∠=AOC,
③∵∠AOC∠=BOD
∴∠AOC-∠2=∠BOD-∠2(),
即∠3=∠1.
6、如图2-92 ,已知,AB、AC、DE都是直线,∠2=∠3,求证:
∠1=∠4.
证明:∵AB、AC、DE都是直线(),
∴∠1=∠2,∠3=∠4().
∵∠2=∠3(),
∴∠1=∠4().
7、如图2-93 ,∠OBC∠=OCB,OB平分∠ABC,OC平分∠ACB,求证:∠ABC=∠ACB
证明:∵OB平分∠ABC(),
∴∠ABC=2∠OBC()
∵OC平分∠ACB()
∴∠A CB=2∠OCB()
∵∠OBC∠=OCB(),
∴2∠OBC=∠2OCB(),
即∠ABC=∠ACB,
8、如图2-94 ,AB⊥BC,∠1=∠2,∠3=∠4,求证CD⊥BC,证明:∵∠1=∠2,∠3=∠4()
∴∠1+∠3=∠2+∠4(),
即∠ABC=∠BCD.
∵AB⊥BC()∴∠ABC=90 ()
∴∠BCD=90 (),∴CD⊥BC().
9、如图2-95 ,∠1=∠2,AC平分∠DAB,求证:AB//CD.
证明:∵AC 平分∠DAB(),
∴∠1=∠3().
∵∠1=∠2(),
∴∠3=∠2(),
∴AB//CD().
10、如图2-56
①∵AB//CD(已知),
∴∠ABC=________(_ )
∴____________=_____________(_两直线平行,内错角相等),
∴∠BCD+____________=180 ()
②∵∠3=∠4(已知),
∴____________∥____________()③∵∠FAD=∠FBC(已知),
∴_____________∥____________()
11、如图2-57 ,直线AB,CD,EF被直线GH所截,∠1= 70 ,∠2=110 ,∠3= 70 .求证:AB//CD.
证明:∵∠1= 70 ,∠3= 70 (已知),
∴∠1=∠3()
∴________∥_________()
∵∠2= 110 ,∠3= 70 (),
∴_____________+__________=______________,
∴_____________//______________,
∴AB//CD().
12、如图2-59 ,已知AB//CD,BE平分∠ABC,CE平分∠BCD,求证∠1+∠2= 90 .
证明:∵BE 平分∠ABC(已知),
∴∠2=_________()
同理∠1=_______________,
∴∠1+∠2= 1
2
____________()
又∵AB//CD(已知),
∴∠ABC+∠BCD=_________________(_ )
∴∠1+∠2= 90 ()
13、如图2-60 ,E、F、G分别是AB、AC、BC上一点.
①如果∠B=∠FGC,则_____//___, 其理由是()
②∠BEG=∠EGF,则____//___ ,其理由是()
③如果∠AEG+∠EAF= 180 ,则___//__ ,其理由是()
14、如图2-61 ,已知AB//CD,AB//DE,求证:∠B+∠D=∠BCF+∠DCF.证明:∵AB//CF(已知),
∴∠______=∠________(两直线平行,内错角相等).
∵AB//CF,AB//DE (已知),
∴CF//DE()
∴∠_________=∠_________()
∴∠B+∠D=∠BCF+∠DCF(等式性质).
3.计算题,
1·如图2-63,已知AB//CD ,∠B=100 ,EF 平分∠BEC,EG⊥EF.求∠BEG 和∠DEG 的度数.
2·如图,已知CD 是∠ACB 的平分线,∠ACB= 50 ,∠B= 70 ,DE//BC,求∠EDC 和∠BDC 的度数.
3·如图2-66,已知∠C=∠D,DB//EC.AC 与DF 平行吗?
试说明你的理由.
4·如图2-67,已知∠1=∠2,求∠3+∠4 的度数.
5·如图2-68,已知AB//CD ,EF⊥AB,MN ⊥CD.求证:EF//MN.(用两种方法说明理由).
6·如图2-70,AB//CD ,∠BAE= 40 ,∠ECD=62 ,EF 平分∠AEC,求∠AEF 的度数.
7·如图2-74,已知∠1+∠2=180 ,∠3= 95 .求∠4 的度
数?
8.如图2-76,直线l分别和直线l 3,l4 相交,∠1 与∠3 互余,∠2 与∠3
1,ll 分别和直线l 3,l4 相交,∠1 与∠3 互余,∠2 与
∠3
2
的余角互补,∠4=115 .求∠3 的度数.
9.如图2-77,已知∠AEF=∠B,∠FEC=∠GHB,GH 垂
直于AB,G 为垂足,试问CE 能否垂直AB,为什么?
10·如图2-79,AB//CD ,∠1=∠2,∠3=∠4,求∠EMF 的度数.
11.已知:如图2-80,AB//CD ,AD⊥DB,求证∠1 与∠A
互余.
12·如图2-96,已知l1 // l2 ,∠1=65 ,∠2=35 ,求∠x
和∠y 的度数.
13·如图2-97,已知∠AMF= ∠BNG= 75 ,∠CMA= 55 .求∠MPN 的度数.
14.如图2-101,已知∠BED=∠ABE+ ∠CDE,那么AB//CD 吗?为什么?(用四种方法判断)
15·如图2-99,已知AE//BD ,∠1=3∠2,∠2=28 .求1
2
∠C.
16·如图2-100,OB⊥OA,直线CD 过O 点,∠AOC= 20 .求∠DOB 的度数.
17.如图2-102,在折线ABCDEFG 中,已知∠1=∠2=∠3=∠4=∠5 延长AB,GF 交于点M.那么,∠AMG= ∠3,为什么?
18·如图2-103,已知AB//CD ,∠1=∠2.试问
∠BEF=∠EFC 吗?为什么?(提示:作辅助线BC).
19·如图2-104 ,AB//CD ,在直线,AB 和CD 上分别任取一点
(1)如图2-104,已知有一定点P 在AB、CD 之间,试问∠EPF=∠AEP+CFP 吗?为什么?
(2)如图2-105,如果AB、CD 的外部有一定点P,试问
∠EPF=∠CFP-∠AEP 吗?为什么?
(3)如图2-106,AB//CD ,BEFGD 是折线,那么∠B+∠F+∠D=∠E+∠G 吗?简述你的理由.
19·线段AB=14cm,C 是AB 上的一点,BC=8cm,又D 是AC 上一点,AD:DC=1:2 ,E 是CB 的中点,求线段DE 的长.
20.如图2-107,已知∠1=∠2=∠3,∠GFA=36 ,∠ACB= 60 ,AQ 平分∠FAC,
求∠HAQ 的度数.
21、如图,已知点D,E 分别在AB,AC 上,要使DE∥BC,必须具备哪些条件?
尽可能把所有条件写出来。
比如:
(1)如果∠DEC+∠ECB=18°0,那么DE∥BC:
(2)________________________________;_
(3)________________________________;_
(4)________________________________;_
(5)_________________________________。
_。