上海徐汇区2011年初三年级数学一模试卷

合集下载

2011年上海市徐汇区中考数学一模试卷

2011年上海市徐汇区中考数学一模试卷

2011年上海市徐汇区中考数学一模试卷参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.(4分)(2011•徐汇区一模)在直角坐标平面内,如果抛物线y=﹣(x﹣1)2经过平移可以与抛物线y=﹣x2互相重合,那么这个平移是()A.向上平移1个单位 B.向下平移1个单位C.向左平移1个单位 D.向右平移1个单位【考点】M41A 函数图像的几何变换M442 二次函数的图象、性质M443 二次函数的关系式【难度】容易题【分析】∵抛物线y=﹣(x﹣1)2的顶点为(1,0);抛物线y=﹣x2的顶点为(0,0);从(1,0)到(0,0)是向左平移了1个单位,∴抛物线也是如此平移的.故选C.【解答】C.【点评】本题考查抛物线的平移;用到的知识点为:抛物线的平移要看顶点的平移;只横坐标改变是左右平移.2.(4分)在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosB的值是()A.B.C.D.【考点】M361 锐角的三角比的概念(正切、余切、正弦、余弦)M33E 勾股定理【难度】容易题【分析】根据勾股定理可以求出AB=5,根据三角函数的定义即可求得cosB==.故选:A.【解答】A.【点评】本题主要考查了勾股定理以及余弦函数的定义:直角三角形中邻边与斜边的比.3.(4分)(2011•徐汇区一模)下列命题不一定成立的是()A.斜边与一条直角边对应成比例的两个直角三角形相似B.两个等腰直角三角形相似C.两边对应成比例且有一个角相等的两个三角形相似D.各有一个角等于95°的两个等腰三角形相似【考点】M33M 相似三角形性质、判定【难度】容易题【分析】判定两三角形相似的方法很多如:“HL”,“AA”,“SAS”,但“SSA”不能判定两三角形相似.则:A、“HL”可以判断两直角三角形相似,命题成立.B、满足“AA”判定法,命题成立.C、∵两边对应成比例且夹角相等的两个三角形相似,∴命题不一定成立.D、满足“AA”判定法,命题成立.故选C.【解答】C.【点评】本题考查相似三角形的最常用的方法判断方法:“AA”,“SAS”,“HL”也可以判断两直角三角形相似;但“SSA”不一定能判断两三角形相似.4.(4分)(2011•徐汇区一模)二次函数y=ax2+bx+c的图象如图所示,下列结论正确的是()A.ab>0B.当x≤1时,y随x的增大而增大C.ac>0D.方程ax2+bx+c=0有两个正实数根【考点】M241 一元二次方程的概念、解法M416 函数图像的交点问题M41B 平面直角坐标系M442 二次函数的图象、性质M443 二次函数的关系式【难度】容易题【分析】由图象可知:a<0,﹣=1,c>0,∴b>0.A、因为ab<0,故本选项错误;B、由图象知:当x≤1时,y随x的增大而增大,故本选项正确;C、因为ac<0,故本选项错误;D、由图象知方程ax2+bx+c=0的根一正一负,故本选项错误.故选:B.【解答】B.【点评】本题主要考查了二次函数的性质,一元二次方程,有理数的乘法法则等知识点,能正确观察图象是解此题的关键.用了数形结合思想.5.(4分)(2011•徐汇区一模)如图,在△ABC中,点E、F分别是边AC、BC的中点,设=,=,用、表示,下列结果中正确的是()A.B.﹣C.D.【考点】M334 三角形中位线定理M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】此题主要用到了三角形中位线定理,在向量CA、BC已知的情况下,可求出向量==,又知题中EF为中线,所以.故选B.【解答】B.【点评】本题考查平面向量、三角形中位线定理.解决本题的关键是懂得三角形中如何用三边向量表示、三角形的中位线定理的应用.6.(4分)(2011•徐汇区一模)如图,在正方形ABCD中,E为BC中点,DF=3FC,连接AE、AF、EF,那么下列结果错误的是()A.△ABE与△EFC相似B.△ABE与△AEF相似C.△ABE与△AFD相似D.△AEF与△EFC相似【考点】M33D 直角三角形的性质和判定M33E 勾股定理M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质【难度】较难题【分析】已知在正方形ABCD中,E为BC中点,DF=3FC,得:AB=BC=DC=AD,BE=CE=AB=BC=DC,DC=4CF,∴CF=BE=CE,即BE=CE=2CF.在△ABE和△EFC中=,===∴△ABE与△EFC相似,∴∠AEB=∠EFC,∴∠AEB+FEC=90°,∴△ABE与△AEF相似都是直角三角形∴EF2=CF2+CE2=CF2+(2CF)2=5CF2BE2=CE2=4CF2∴==∴=.AE2=AB2+BE2=(2BE)2+BE2=5BE2AB2=(2BE)2=4BE2=∴=∴△ABE与△AEF相似又△ABE与△EFC相似(已证)∴△AEF与△EFC相似.已知正方形ABCD,∴在两直角三角形ABE和△AFD中的两直角边=1,DF=3CF,BE=2CF∴==∴△ABE与△AFD不相似.所以C答案相似错误.故选:C.【解答】C.【点评】此题考查了学生对正方形性质的应用及相似三角形判定的掌握.解答此题的关键是根据已知条件所给的4对三角形是否相似确定答案.此题为中档题.二、填空题(共12小题,每小题4分,满分48分)7.(4分)(2011•徐汇区一模)如果,那么=.【考点】M33H 比例的性质【难度】容易题【分析】根据比例的性质(两内项之积等于两外项之积)解答即:∵原式的两个内项分别是a+b、5,两个外项分别是a、7,∴7a=5(a+b),即2a=5b,∴=.故答案为:.【解答】.【点评】本题主要考查了比例的基本性质:在比例式中,两内项之积等于两外项之积.8.(4分)(2011•徐汇区一模)计算:=.【考点】M362 特殊角的锐角三角函数值【难度】容易题【分析】先把cos30°=,sin45°=,cot60°=代入原式,再根据实数的运算法则进行计算得:=﹣=.故答案为:.【解答】.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.9.(4分)(2011•徐汇区一模)二次函数y=3x2﹣6x+5的图象的顶点坐标是.【考点】M442 二次函数的图象、性质M443 二次函数的关系式【难度】容易题【分析】利用求顶点坐标公式x=﹣,y=代入计算可得x=﹣=1,y==2,即顶点坐标是(1,2).【解答】(1,2).【点评】本题考查用公式法求二次函数的顶点坐标.做对本题的关键是记熟公式.10.(4分)(2011•徐汇区一模)抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,则二次函数解析式是.【考点】M414 用待定系数法求函数关系式M416 函数图像的交点问题M442 二次函数的图象、性质M443 二次函数的关系式【难度】容易题【分析】由于抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,那么可以得到方程﹣x2+bx+c=0的两根为x=1或x=﹣3,然后利用根与系数关系得1+(﹣3)=b,1×(﹣3)=﹣c,∴b=﹣2,c=3,∴二次函数解析式是y=﹣x2﹣2x+3.【解答】y=﹣x2﹣2x+3.【点评】此题主要考查了利用抛物线与x轴的交点坐标确定函数解析式,解题的关键是利用待定系数法得到关于b、c的方程,解方程即可解决问题.11.(4分)(2011•徐汇区一模)如图,已知l1∥l2∥l3,若AB:BC=3:5,DF=16,则DE=.【考点】M33I 平行线分线段成比例定理【难度】容易题【分析】首先由已知l1∥l2∥l3,证得,又由AB:BC=3:5,AB+BC=AC,得AB:AC=3:8,又DF=16,即可求得,则DE=6.故答案为:6.【解答】6.【点评】本题考查平行线分线段成比例定理.解题时要注意找准对应关系,注意数形结合思想的应用.12.(4分)(2011•徐汇区一模)二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=2,若与x轴交点为A(6,0),则由图象可知,当y>0时,自变量x的取值范围是.【考点】M416 函数图像的交点问题M41B 平面直角坐标系M442 二次函数的图象、性质M443 二次函数的关系式M417 不同位置的点的坐标的特征【难度】容易题【分析】利用二次函数的对称性,得出图象与x轴的另一个交点坐标(﹣2,0),再结合图象,得出函数开口向下,x轴上方部分y>0,此时﹣2<x<6,故答案为:﹣2<x<6.【解答】﹣2<x<6.【点评】此题主要考查了二次函数的对称性,以及结合二次函数图象观察函数的取值问题.属于中考高频考点,考生要注意掌握!13.(4分)(2011•徐汇区一模)如图在△ABC中,∠ACB=90°,CD⊥AB于D,AC=4,BC=3,则cos∠DCB=.【考点】M33E 勾股定理M361 锐角的三角比的概念(正切、余切、正弦、余弦)【难度】容易题【分析】根据题意:∠DCB=∠CAB.在Rt△ABC中,易得AB=5,cos∠CAB=.故cos∠DCB=.【解答】.【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.14.(4分)(2011•徐汇区一模)如图,在菱形ABCD中,∠ABC=60°,AE⊥AB,交BD 于点G,交BC的延长线于点E,那么=.【考点】M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质【难度】容易题【分析】四边形ABCD为菱形,∴AD=AB=BC,∵AE⊥AB,∠ABC=60°,∴AB=AD=BE,∵AD∥BE,∴△ADG∽△EBG,∴==.故答案为:.【解答】.【点评】本题考查了相似三角形的判定及性质,解题时要注意比例线段的转化.15.(4分)(2011•徐汇区一模)某滑雪运动员沿着坡比为1:的斜坡滑行了200米,则他身体下降的高度为米.【考点】M364 解直角三角形M365 仰角、俯角、坡度、坡角【难度】容易题【分析】设垂直高度下降了x米,则水平前进了x米.根据勾股定理可得:x2+(x)2=2002.解得x=100,即它距离地面的垂直高度下降了100米.故答案为:100.【解答】100.【点评】本题考查解直角三角形的应用,难度不大,此题的关键是熟悉且会灵活应用公式:tanα(坡度)=垂直高度÷水平宽度,综合利用了勾股定理.16.(4分)如图是小玲设计用手电来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A出发经平面镜反射后,刚好射到古城墙CD的顶端C处.已知AB⊥BD,CD⊥BD.且测得AB=1.4米,BP=2.1米,PD=12米.那么该古城墙CD的高度是米.【考点】M33M 相似三角形性质、判定【难度】容易题【分析】由光学知识反射角等于入射角不难分析得出∠APB=∠CPD,再由∠ABP=∠CDP=90°得到△ABP∽△CDP,得到=代入数值求的=解得:CD=8米.【解答】8.【点评】本题考查了直角三角形的有关知识,同时渗透光学中反射原理,注意到相似三角形,解决本题关键.17.(4分)(2011•徐汇区一模)如图,在△ABC中,D是AB上一点,如果∠B=∠ACD,AB=6cm,AC=4cm,若S△ABC=36cm2,则△ACD的面积是cm2.【考点】M33M 相似三角形性质、判定M33O 三角形面积【难度】中等题【分析】D是AB上一点且∠B=∠ACD,∠A=∠A,∴△ACD∽△ABC,∴=∴===∵S△ABC=36cm2∴△ACD的面积是36×=16,∴△ACD的面积是16cm2.故应填:16.【解答】16.【点评】本题考查了相似三角形面积的比与相似比的关系,是相似三角形常考查的内容之一.关键是利用相似三角形面积的比等于相似比的平方求得△ACD的面积.18.(4分)(2011•徐汇区一模)如图,在△ABC中,AC=BC=2,∠C=90°,点D为腰BC 中点,点E在底边AB上,且DE⊥AD,则BE的长为.【考点】M33E 勾股定理【难度】中等题【分析】过D点作DH⊥AB,垂足为H,∵在△ABC中,AC=BC=2,∠C=90°,∴AB==2.∵点D为腰BC中点,∴AD==,∵DE⊥AD,∠B=45°,∴DH=HB=,∴AD2=AH•AE,∴AE===,EB=AB﹣AE=2﹣=.故答案为:.【解答】.【点评】此题主要考查学生对勾股定理的理解和掌握,解答关键是过D点作DH⊥AB,求出AE的长,这是此题的突破点,此题有点难度,属于中档题.三、解答题(共7小题,满分78分)19.(10分)(2011•徐汇区一模)已知:▱ABCD中,E是BA边延长线上一点,CE交对角线DB于点G,交AD边于点F.求证:CG2=GF•GE.【考点】M33I 平行线分线段成比例定理M344 平行四边形(包括矩形、菱形、正方形)的判定与性质【难度】容易题【分析】由平行四边形可得AD∥BC,AB∥CD,再由平行线分线段成比例即可证明.【解答】证明:∵四边形ABCD是平行四边形,∴DC∥AB,AD∥BC, (2)∵DC∥AB,∴, (4)∵AD∥BC,∴, (6)∴, (8)即CG2=GF•GE. (10)【点评】本题主要考查了平行四边形的性质以及平行线分线段成比例的性质,均属于中考常考知识点,要求考生要能够熟练掌握.20.(10分)(2011•徐汇区一模)已知:如图,▱ABCD中,E是BC中点,AE交BD于点F,设=、=.(1)用x+y(x,y为实数)的形式表示;(2)先化简,再直接在图中作:.【考点】M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】(1)从图中不难看到△ADF∽△EBF,由于BE=,那么或BF=.再利用向量的减法,求得向量AF.(2)先利用向量的加减法将化简,再根据实数与向量的积,画出向量,连接向量的首尾.【解答】解:(1)解一:; (5)解二:; (5)(2)=﹣,=﹣. (7) (10)【点评】本题考查平行向量、平行四边形的性质.解决本题的关键是利用相似三角形求得AF、FE,BF、FD的大小关系,理解平行向量的含义.21.(10分)(2011•徐汇区一模)已知:如图,在△ABC中,AB=AC=13,,中线BE和AD交于点F.求:△ABC的面积以及sin∠EBC的值.【考点】M333 三角形的高、中线、角平分线M339 等腰三角形的性质和判定M33O 三角形面积M33E 勾股定理M361 锐角的三角比的概念(正切、余切、正弦、余弦)M364 解直角三角形【难度】中等题【分析】由等腰三角形的性质得AD⊥BC,再由,求得CD、AD,则S△ABC=60,根据中线的性质求出DF,BF,在△BDF中求得sin∠EBC的值.【解答】解:∵△ABC中,AB=AC,且AD是中线,∴AD⊥BC,∠B=∠C. (2)∵Rt△ABD与Rt△ACD中,AB=AC=13,,∴BD=DC=ABcosB=5 (4)∴,∴S△ABC=60. (6)∵中线BE和AD交于点F,∴ (7)则在Rt△BDF中, (8)∴sin∠EBC= (10)【点评】本题考查了等腰三角形的性质和三角函数的定义,是中档题,难度不大.注意:突破口为由等腰三角形的性质得AD⊥BC,再由,求得CD、AD!22.(10分)(2011•徐汇区一模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼前面15米处要盖一栋高20米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°.(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市采光不受影响,两楼应至少相距多少米?(结果保留整数)【考点】M124 实数大小比较M361 锐角的三角比的概念(正切、余切、正弦、余弦)M364 解直角三角形【难度】容易题【分析】(1)首先沿着光线作射线AF交CD于点F,过点F作FG⊥AB于点G.在Rt△AFG中,利用正切函数求得AG的长,进而根据CF=BG=AB﹣AG求得CF的高度.通过比较CF与超市高度6米,可得到中午时,超市以上的居民住房采光是否有影响.(2)首先沿着光线作射线AE交直线BC于点E.在Rt△ABE中,利用正切函数求得BE 的长,即为使得超市采光不受影响,两楼应至少相距的米数.【解答】解:(1)沿着光线作射线AF交CD于点F,过点F作FG⊥AB于点G,由题意,在Rt△AFG中,GF=BC=15,∠AFG=29°,∴AG=GF•tan29°=15×0.55=8.25米, (2)∴GB=FC=20﹣8.25=11.75米, (4)∵11.75>6,∴居民住房会受影响 (5)(2)沿着光线作射线AE交直线BC于点E. (6)由题意,在Rt△ABE中,AB=20,∠AEB=29°, (8)∴米, (9)∴至少要相距37米 (10)【点评】此题考查了三角函数的基本概念,主要是正切概念及运算,关键把实际问题转化为数学问题加以计算.23.(12分)(2011•徐汇区一模)如图,在Rt△ABC中,∠ACB=90°,AB=15,,E为线AC上一点(不与A、C重合),过点E作ED⊥AC交线段AB于点D,将△ADE沿着直线DE翻折,A的对应点G落在射线AC上,线段DG与线段BC交于点M.(1)若BM=8,求证:EM∥AB;(2)设EC=x,四边形的ADMC的面积为S,求S关于x的函数解析式,并写出定义域.【考点】M33O 三角形面积M33E 勾股定理M33I 平行线分线段成比例定理M361 锐角的三角比的概念(正切、余切、正弦、余弦)M420 函数自变量的取值范围M443 二次函数的关系式M444 二次函数的应用【难度】中等题【分析】(1)根据三角函数先在Rt△ACB中,求出AC=9,BC=12,MC=4.再在Rt△MCG 中,求出CG=3.可得AG=12,EC=3,AE=6,根据平行线分线段成比例即可证明EM∥AB;(2)根据S ADMC=S△ABC﹣S△DBM,即可得出S关于x的函数解析式.(1)在Rt△ACB中,,设AC=3k,BC=4k, (1)【解答】解:则AB=,AB=5k=15,k=3.∴AC=9,BC=12. (3)∵BM=8,∴MC=4 (4)在Rt△MCG中,,∴CG=3. (5)∴AG=12,EC=3,AE=6. (6)∵,∴EM∥AB; (7)(2)EC=x,由题意有EG=AE=9﹣x,则CG=9﹣2x, (8),BM=12﹣(9﹣2x), (9)S ADMC=54﹣(0<x<4.5). (12)【点评】本题综合考查了平行线分线段成比例,三角函数的知识,组合图形的面积之间的关系,函数解析式等知识点,有一点的难度.尤其注意(2)问关键是根据S ADMC=S△ABC﹣S△DBM,得出S关于x的函数解析式.24.(12分)(2011•徐汇区一模)如图,抛物线与x轴相交于A、B,与y轴相交于点C,过点C作CD∥x轴,交抛物线点D.(1)求梯形ABCD的面积;(2)若梯形ACDB的对角线AD、BC交于点E,求点E的坐标,并求经过A、B、E三点的抛物线的解析式;(3)点P是直线CD上一点,且△PBC与△ABC相似,求符合条件的P点坐标.【考点】M241 一元二次方程的概念、解法M323 平行线的判定、性质M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质M345 梯形的概念M346 等腰梯形的性质与判定M348 四边形周长、面积M414 用待定系数法求函数关系式M417 不同位置的点的坐标的特征M41B 平面直角坐标系M442 二次函数的图象、性质M443 二次函数的关系式M444 二次函数的应用【难度】较难题【分析】(1)把x=0,y=0分别代入解析式,即可求出A、B、C的坐标,由CD∥x轴得到C和D的纵坐标相等(是﹣2)从而求出D的坐标,利用梯形的面积公式求出即可;此问简单(2)根据抛物线的对称性求出E的横坐标,过E作EN⊥AB,就可得到比例式,进一步求出E的纵坐标,即过、B、E三点的抛物线的顶点坐标,即可求出解析式;此问中等(3)由已知相似可得比例式,能求出CP的值,进而求出P的坐标.此问较难【解答】解:(1),当y=0时,﹣x2+x﹣2=0,解得:x1=1,x2=4, (1)当x=0时,y=﹣2,∴A(1,0),B(4,0),C(0,﹣2),∵CD∥x轴,∴D点的纵坐标也是﹣2, (2)把y=﹣2代入得:﹣x2+x﹣2=﹣2,解得:x3=0,x4=5,D点的坐标是:(5,﹣2), (3)S梯形ACDB=×[(4﹣1)+5]×|﹣2|,=8.所以梯形ABCD的面积是8. (4)(2)由抛物线的对称性有,过E作EN⊥AB于N,,,,∴, (6)设:经过A、B、E三点的抛物线的解析式为:y=a﹣,把A(1,0)代入解得:a=, (7)所以经过A、B、E三点的抛物线的解析式是:,即y═x2﹣x+. (8)(3)当点P在C的右侧,当∠CAB=∠CBP时,=,=,PB=, (9)设P(a,﹣2),∵B(4,0),∴由勾股定理得:22+(4﹣a)2=()2,a=(此时∠CAB≠∠CBP舍去),a=,∴P(,﹣2); (10)当∠CPB=∠CAB时,∵AB∥CD,∴∠ABC=∠PCB,∵∠CAB+∠ABC+∠ACB=180°,∠CBP+∠BCP+∠BPC=180°,∴∠ACB=∠CBP,∴AC∥PB,∴四边形ACPB是平行四边形,∴AB=CP, (11)∵A(1,0),B(4,0),∴CP=AB=3,∵C(0,﹣2),CP∥AB,∴P(3,﹣2),当点P在C的左侧,由题意有钝角∠BAC≠钝角∠PCB,此时不存在.所以符合条件的P点坐标是P(3,﹣2)和P(,﹣2). (12)【点评】本题主要考查了二次函数的性质,三角形相似的性质,梯形的面积公式,用待定系数法求二次函数的解析式等知识点,能综合运用这些知识解题是解决本题的关键.难点是(3)小题的求法,巧妙地运用了分类讨论思想.25.(14分)(2011•徐汇区一模)如图,在梯形ABCD中,AD∥BC,AB=CD=BC=6,AD=3.点M为边BC的中点,以M为顶点作∠EMF=∠B,射线ME交腰AB于点E,射线MF交腰CD于点F,连接EF.(1)求证:△MEF∽△BEM;(2)若△BEM是以BM为腰的等腰三角形,求EF的长;(3)若EF⊥CD,求BE的长.【考点】M232 一元一次方程的概念、解法M323 平行线的判定、性质M334 三角形中位线定理M33F 全等三角形概念、判定、性质M33M 相似三角形性质、判定M346 等腰梯形的性质与判定M347 梯形中位线定理M711 数学综合与实践【难度】较难题【分析】(1)先根据已知条件判断出梯形ABCD是等腰梯形,由等腰梯形的性质可得出△MEF∽△MFC,由相似三角形的性质及判定定理可得出△MEF∽△BEM;此问简单(2)由(1)可知△MEF∽△BEM,BM=BF=3=MC,则△MEF≌△FMC,由全等三角形的对应边相等可得出EF的长;同理,若BM=BM=3=MC,则△MEF≌△FMC,由全等三角形的对应边相等可得出EF的长;此问中等(3)根据EF⊥CD,△MEF∽△BEM可求出∠MFE=∠MFC=∠BME=45°,设BE=x,则BH=,EH=MH=,由MH+BH=3即可求出答案.此问较难【解答】证明:(1)在梯形ABCD中,∵AD∥BC,AB=CD,∴∠B=∠C, (1)∵∠BMF=∠EMB+∠EMF=∠C+∠MFC,又∵∠EMF=∠B,∴∠EMB=∠MFC, (2)∴△EMB∽△MFC,∴, (3)∵MC=MB,∴,又∵∠EMF=∠B,∴△MEF∽△BEM; (4)(2)解:若△BEM是以BM为腰的等腰三角形,则有两种情况:①BM=ME,那么根据△MEF∽△BEM,∴=,∴=,即EF=MF (5)根据第(1)问中已证△BME∽△MFC,∴=,即MF=FC,∴∠FMC=∠C,又∵∠B=∠C,∴∠FMC=∠B,∴MF∥AB (6)延长BA和CD相交于点G,又点M是BC的中点,∴MF是△GBC的中位线,∴MF=GB,又∵AD∥BC,∴△GAD∽△GBC,∴===,∴=1,即AG=AB=6,∴GB=12,∴MF=EF=6 (7)②BM=BE=3,∴点E是AB的中点,又△MEF∽△BEM,∴==1,即MF=ME,∴EF是梯形ABCD的中位线,∴EF=(AD+BC)=(3+6)=; (9)(3)∵EF⊥CD,∴∠EFC=90°,△MEF∽△BEM,∠MFE=∠MFC=∠BME=45°, (11)解一:过点E作EH⊥BC,则可得△EHM等腰直角三角形,故EH=MH, (12)设BE=x,则BH=,EH=MH=,,∴BE= (14)解二:过点M作MN⊥DC,MC=3,NC=.MN==FN,FC=﹣2由△MEF∽△MFC有, (12)即,得BE=. (14)【点评】本题主要考查的是等腰梯形的性质、相似三角形的判定与性质、全等三角形的判定与性质等知识点,综合性较强,难度较大.解题时尤其注意第(3)小问关键是得出BH、MH之间的关系,然后由MH+BH=3即可求出答案.。

2011年上海徐汇区数学一模试卷

2011年上海徐汇区数学一模试卷

徐汇区2011年第一学期初三年级数学学科期末学习能力诊断卷 2011、1一.选择题(本大题共6小题,每小题4分,满分24分)1.在直角坐标平面内,如果抛物线2)1(--=x y 经过平移可以与抛物线2x y -=互相重合,那么这个平移是( ).(A )向上平移1个单位; (B )向下平移1个单位; (C )向左平移1个单位 ; (D )向右平移1个单位.2.在Rt △ABC 中,∠C=90°,若AC=3,BC=4,则tanA 的值为( )(A )43 (B )53 (C ) 34 (D )543.下列命题不一定...成立的是( ) (A )斜边与一条直角边对应成比例的两个直角三角形相似;(B )两个等腰直角三角形相似;(C )两边对应成比例且有一个角相等的两个三角形相似; (D )各有一个角等于95°的两个等腰三角形相似.4.二次函数y=ax 2+bx+c 的图像如图所示,下列结论正确的是((A )ab>0; (B)当x ≤1时,y 随x 的增大而增大;(C )ac>0;;(D )方程ax 2+bx+c=0有两个正实数根.5.如图,在△ABC 中,点E 、F 分别是边AC 、BC 的中点,设a BC =,b CA =,用a 、b 表示EF ,下列结果中正确的是 ( )(A ))(21→→+b a ; (B ))(21→→+-b a ;(C ))(21→→-a b ; (D ))(21→→-b a .6.如图,在正方形ABCD 中,E 为BC 中点,DF=3FC ,联结AE 、AF 、EF ,那么下列结果错误..的是( ) (A )△ABE 与△EFC 相似;(B )△ABE 与△AEF 相似; (C )△ABE 与△AFD 相似; (D )△AEF 与△EFC 相似.二.填空题(本大题共12小题,每小题4分,满分48分)BA第4题第5题第6题7.如果57a a b =+,那么ab= . 8.计算:=⋅-60cot 45sin 30cos 2 .9.二次函数2365y x x =-+的图像的顶点坐标是 .10.抛物线c bx x y ++-=2与x 轴交于A (1,0),B (-3,0)两点,则二次函数解析式是 . 11.如图,已知21//l l 3//l ,若AB : BC =3:5,DF =16,则DE = .12.二次函数y=ax 2+bx+c 的图像如图所示,对称轴为直线x =2,若与x 轴交点为A (6,0),则由图像可知,当0>y 时,自变量x 的取值范围是 .13.在Rt △ABC 中,∠ACB =90°,CD AB ⊥,若AC =4,BC=3,则cos ∠DCB = . 14.如图,在菱形ABCD 中,∠ABC =60°,AE ⊥AB ,交BD 于点G ,交BC 的延长线于点E ,那么GEAG= .15. 某滑雪运动员沿着坡比为3的斜坡滑行了200米,则他身体下降的高度为_____米.16.如图,是用手电来测量古城墙高度的示意图, 将水平的平面镜放置在点P 处,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,若AB ⊥BD ,CD ⊥BD ,且AB=1.2米,BP=1.8米,PD=12米,则该古城墙的高度约是 米.17. 如图,在△ABC 中,D 是AB 上一点,如果∠B =∠ACD ,AB =6cm ,AC =4cm ,若S △ABC =36cm 2,则△ACD 的面积是 cm 2.18.如图,在△ABC 中,AC =BC =2,∠C =900,点D 为腰BC 中点,点E 在底边AB 上,且DE ⊥AD ,则BE 的长为 .三.(本大题共6题,第19~22题每题10分;第23、24题12分,满分64分)19.已知:□ABCD 中,E 是BA 边延长线上一点,CE 交对角线DB 于点G ,交A D 边于点F .求证:2CG GF GE =⋅第12题Oyxx=26 第14题第11题G ADP D CB A 第16题D C B A第17题 D C第18题 F G BD AE20. 已知:如图,□ABCD 中,E 是BC 中点,AE 交BD 于点F , 设→→=a BA 、→→=b BC . (1)用x a y b →→+(x y 、为实数)的形式表示→FA ;(2)先化简,再直接在图中作:)41()21(→→→→+-+-b a b a .21.已知:如图,在△ABC 中,13==AC AB ,135cos =C ,中线BE 和AD 交于点F . 求:△ABC 的面积以及sin EBC ∠的值.22.冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机。

初中数学 上海市徐汇区中考模拟数学一模考试题含答案

初中数学 上海市徐汇区中考模拟数学一模考试题含答案

xx 学校xx 学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:如果2x=3y,那么下列各式中正确的是()A.= B.=3 C.= D.=试题2:如果一斜坡的坡比是1:2.4,那么该斜坡坡角的余弦值是()A. B. C . D.试题3:如果将某一抛物线向右平移2个单位,再向上平移2各单位后所得新抛物线的表达式是y=2(x﹣1)2,那么原抛物线的表达式是()A.y=2(x﹣3)2﹣2 B.y=2(x﹣3)2+2 C.y=2(x+1)2﹣2 D.y=2(x+1)2+2试题4:在△ABC中,点D、E分别在边AB、AC上,联结DE,那么下列条件中不能判断△ADE和△ABC相似的是()A.DE∥BC B.∠AED=∠B C.AE:AD=AB:AC D.AE:DE=AC:BC试题5:一飞机从距离地面3000米的高空测得一地面监测点的俯角是60°,那么此时飞机与监测点的距离是()A.6000米 B.1000米 C.2000米 D.3000米已知二次函数y=﹣2x2+4x﹣3,如果y随x的增大而减小,那么x的取值范围是()A.x≥1 B.x≥0 C.x≥﹣1 D.x≥﹣2试题7:已知线段a=9,c=4,如果线段b是a、c的比例中项,那么b= .试题8:点C是线段AB延长线的点,已知=,=,那么= .试题9:如图,AB∥CD∥EF,如果AC=2,AE=5.5,DF=3,那么BD= .试题10:如果两个相似三角形的对应中线比是:2,那么它们的周长比是.试题11:如果点P是线段AB的黄金分割点(AP>BP),那么请你写出一个关于线段AP、BP、AB之间的数量关系的等式,你的结论是:.试题12:在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,如果CD=4,BD=3,那么∠A的正弦值是.试题13:正方形ABCD的边长为3,点E在边CD的延长线上,连接BE交边AD于F,如果DE=1,那么AF= .试题14:已知抛物线y=ax2﹣4ax与x轴交于点A、B,顶点C的纵坐标是﹣2,那么a= .如图,矩形ABCD的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果AB:BC=3:4,那么AB的长是.试题16:在梯形ABCD中,AD∥BC,AC、BD相交于O,如果△BOC、△ACD的面积分别是9和4,那么梯形ABCD的面积是.试题17:在Rt△ABC中,∠ABC=90°,AC=5,BC=3,CD是∠ACB的平分线,将△ABC沿直线CD翻折,点A落在点E处,那么AE的长是.试题18:如图,在▱ABCD中,AB:BC=2:3,点E、F分别在边CD、BC上,点E是边CD的中点,CF=2BF,∠A=120°,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,那么的值为.试题19:计算:2sin60°﹣|cot30°﹣cot45°|+.试题20:将抛物线y=x2﹣4x+4沿y轴向下平移9个单位,所得新抛物线与x轴正半轴交于点B,与y轴交于点C,顶点为D.求:(1)点B、C、D坐标;(2)△BCD的面积.试题21:如图,已知梯形ABCD中,AD∥BC,AB=4,AD=3,AB⊥AC,AC平分∠DCB,过点DE∥AB,分别交AC、BC于F、E,设=,=.求:(1)向量(用向量、表示);(2)tanB的值.试题22:如图,一艘海轮位于小岛C的南偏东60°方向,距离小岛120海里的A处,该海轮从A处正北方向航行一段距离后,到达位于小岛C北偏东45°方向的B处.(1)求该海轮从A处到B处的航行过程中与小岛C之间的最短距离(记过保留根号);(2)如果该海轮以每小时20海里的速度从B处沿BC方向行驶,求它从B处到达小岛C的航行时间(结果精确到0.1小时).(参考数据:=1.41,=1.73)试题23:如图,已知△ABC中,点D在边BC上,∠DAB=∠B,点E在边AC上,满足AE•CD=AD•CE.(1)求证:DE∥AB;(2)如果点F是DE延长线上一点,且BD是DF和AB的比例中项,联结AF.求证:DF=AF.试题24:如图,已知抛物线y=﹣x2+bx+3与x轴相交于点A和点B(点A在点B的左侧),与y轴交于点C,且OB=OC,点D是抛物线的顶点,直线AC和BD交于点E.(1)求点D的坐标;(2)联结CD、BC,求∠DBC余切值;(3)设点M在线段CA延长线,如果△EBM和△ABC相似,求点M的坐标.试题25:如图,已知△ABC中,AB=AC=3,BC=2,点D是边AB上的动点,过点D作DE∥BC,交边AC于点E,点Q是线段DE上的点,且QE=2DQ,连接BQ并延长,交边AC于点P.设BD=x,AP=y.(1)求y关于x的函数解析式及定义域;(2)当△PQE是等腰三角形时,求BD的长;(3)连接CQ,当∠CQB和∠CBD互补时,求x的值.试题1答案:B【考点】比例的性质.【专题】推理填空题.【分析】根据比例的性质逐项判断,判断出各式中正确的是哪个即可.【解答】解:∵2x=3y,∴=,∴选项A不正确;∵2x=3y,∴=,∴==3,∴选项B正确;∵2x=3y,∴=,∴==,∴选项C不正确;∵2x=3y,∴=,∴==,∴∴选项D不正确.故选:B.【点评】此题主要考查了比例的性质和应用,要熟练掌握.试题2答案:D【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比=坡角的正切值,设竖直直角边为5x,水平直角边为12x,由勾股定理求出斜边,进而可求出斜坡坡角的余弦值.【解答】解:如图所示:由题意,得:tanα=i==,设竖直直角边为5x,水平直角边为12x,则斜边==13x,则cosα==.故选D.【点评】此题主要考查坡比、坡角的关系以及勾股定理;熟记坡角的正切等于坡比是解决问题的关键.试题3答案:C【考点】二次函数图象与几何变换.【分析】根据图象反向平移,可得原函数图象,根据图象左加右减,上加下减,可得答案.【解答】解:一条抛物线向右平移2个单位,再向上平移2个单位后所得抛物线的表达式为y=2(x﹣1)2,抛物线的表达式为y=2(x﹣1)2,左移2个单位,下移2个单位得原函数解析式y=2(x+1)2﹣2,故选:C.【点评】本题考查了二次函数图象与几何变换,利用了图象左加右减,上加下减的规律.试题4答案:D【考点】相似三角形的判定.【分析】根据题意画出图形,再由相似三角形的判定定理进行解答即可.【解答】解:如图,A、∵DE∥BC,∴△ADE∽△ABC,故本选项错误;B、∵∠AED=∠B,∠A=∠A,∴△ADE∽△ACB,故本选项错误;C、∵AE:AD=AB:AC,∠A=∠A,∴△ADE∽△ACB,故本选项错误;D、AE:DE=AC:BC不能使△ADE和△ABC相似,故本选项正确.故选D.【点评】此题考查了相似三角形的判定,属于基础题,关键是掌握相似三角形的几种判定定理.试题5答案:C【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意可构造直角三角形,利用所给角的正弦函数即可求解.【解答】解:如图所示:由题意得,∠CAB=60°,BC=3000米,在Rt△ABC中,∵sin∠A=,∴AC===2000米.故选C.【点评】本题考查了解直角三角形的应用,解答本题的关键是借助俯角构造直角三角形,并结合三角函数解直角三角形.试题6答案:A【考点】二次函数的性质.【分析】把抛物线化为顶点式可求得开口方向及对称轴,再利用增减性可得到关于x的不等式,可求得答案.【解答】解:∵y=﹣2x2+4x﹣3=﹣2(x﹣1)2﹣1,∴抛物线开口向下,对称轴为x=1,∴当x≥1时,y随x的增大而减小,故选A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).试题7答案:6 .【考点】比例线段.【分析】根据比例中项的定义,若b是a,c的比例中项,即b2=ac.即可求解.【解答】解:若b是a、c的比例中项,即b2=ac.则b===6.故答案为:6.【点评】本题主要考查了线段的比例中项的定义,注意线段不能为负.试题8答案:﹣.【考点】*平面向量.【分析】根据向量、的方向相反进行解答.【解答】解:如图,向量、的方向相反,且=,=,所以=+=﹣.故答案是:﹣.【点评】本题考查了平面向量,注意向量既有大小,又有方向.试题9答案:.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可得到结论.【解答】解:∵AC=2,AE=5.5,∴CE=3.5,AB∥CD∥EF,∴,∴BD=,故答案为:.【点评】本题考查平行线分线段成比例定理,用到的知识点是平行线分线段成比例定理,关键是找准对应关系,列出比例式.试题10答案::2 .【考点】相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵两个相似三角形的对应中线比是:2,∴它们的周长比为:2.故答案为::2.【点评】本题考查的是相似三角形的性质,熟知相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比等于相似比是解答此题的关键.试题11答案:AP2=BP•AB .【考点】黄金分割.【分析】根据黄金分割的概念解答即可.【解答】解:∵点P是线段AB的黄金分割点,∴AP2=BP•AB,故答案为:AP2=BP•AB.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.试题12答案:.【考点】锐角三角函数的定义.【分析】求出∠A=∠BCD,根据锐角三角函数的定义求出tan∠BCD即可.【解答】解:∵CD⊥AB,∴∠CDB=90°,∵∠ACB=90°,∴∠A+∠B=90°,∠BCD+∠B=90°,∴∠A=∠BCD,∴tanA=tan∠BCD==,故答案为:.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,则sinA=,cosA=,tanA=.试题13答案:.【考点】相似三角形的判定与性质;正方形的性质.【分析】由四边形ABCD为正方形即可得出∠A=∠ADC=90°、AB∥CD,根据平行线的性质以及邻补角即可得出∠EDF=∠A、∠ABF=∠DEF,从而得出△ABF∽△DEF,再根据相似三角形的性质即可得出==3,结合AF+DF=AD=3即可求出AF的长度,此题得解.【解答】解:依照题意画出图形,如图所示.∵四边形ABCD为正方形,∴∠A=∠ADC=90°,AB∥CD,∴∠EDF=180°﹣∠ADC=90°=∠A,∠ABF=∠DEF,∴△ABF∽△DEF,∴==3,∵AF+DF=AD=3,∴AF=AD=.故答案为:.【点评】本题考查了相似三角形的判定与性质、正方形的性质、平行线的性质以及邻补角,通过两组相等的角证出△ABF ∽△DEF是解题的关键.试题14答案:.【考点】抛物线与x轴的交点.【分析】首先利用配方法确定函数的顶点坐标,根据顶点C的纵坐标是﹣2,即可列方程求得a的值.【解答】解:y=ax2﹣4ax=a(x2﹣4x+4)﹣4a=a(x﹣2)2﹣4a,则顶点坐标是(2,﹣4a),则﹣4a=﹣2,解得a=.故答案是:.【点评】本题考查了配方法确定函数的顶点坐标,正确进行配方是关键.试题15答案:.【考点】相似三角形的判定与性质;平行线之间的距离;矩形的性质.【分析】作辅助线,构建相似三角形,证明△ABE∽△BCF,列比例式求BE的长,利用勾股定理可以求AB的长.【解答】解:过A作AE⊥BM于E,过C作CF⊥BM于F,则CF=1,AE=2,∴∠AEB=∠BFC=90°,∴∠ABE+∠BAE=90°,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠BAE=∠CBE,∴△ABE∽△BCF,∴,∴,∴BE=,在Rt△ABE中,AB==,故答案为:.【点评】本题考查了矩形的性质、相似三角形的判定与性质、两平行线的距离以及勾股定理;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.试题16答案:16 .【考点】相似三角形的判定与性质;梯形.【分析】如图,设△AOD的面积为x,则△ODC的面积为4﹣x.由AD∥BC,推出△AOD∽△COB,可得=()2,因为=,得到=()2,解方程即可.【解答】解:如图,设△AOD的面积为x,则△ODC的面积为4﹣x.∵AD∥BC,∴△AOD∽△COB,∴=()2,∵=,∴=()2,解得x=1或16(舍弃),∵S△ABD=S△ADC=1,∴S△AOB=S△DOC=3,∴梯形ABCD的面积=1+3+3+9=16,故答案为16.【点评】本题考查相似三角形的判定和性质、梯形的性质等知识,解题的关键是熟练掌握相似三角形的性质,学会用方程的思想思考问题,属于中考常考题型.试题17答案:2.【考点】翻折变换(折叠问题);勾股定理.【分析】由勾股定理求AB=4,再根据旋转的性持和角平分线可知:点A的对应点E在直线CB上,BE=2,利用勾股定理可求AE的长.【解答】解:∵CD是∠ACB的平分线,∴将△ABC沿直线CD翻折,点A的对应点E在直线CB上,∵∠ABC=90°,AC=5,BC=3,∴AB=4,由旋转得:EC=AC=5,∴BE=5﹣3=2,在Rt△ABE中,由勾股定理得:AE===2,故答案为:2.【点评】本题考查了翻折变换的性质、勾股定理,明确折叠前后的两个角相等,两边相等;在图形中确定直角三角形,如果知道了一个直角三角形的两条边,可以利用勾股定理求第三边.试题18答案:.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】如图,连接AE、AF,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,作DH⊥BC于H,EG⊥BC于G,设AB=2a.BC=3a.根据•AP•BE=•DF•AQ,利用勾股定理求出BE、DF即可解决问题.【解答】解:如图,连接AE、AF,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,作DH⊥BC于H,EG⊥BC于G,设AB=2a.BC=3a.∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∠BAD=∠BCD=120°,∴S△ABE=S△ADF=S平行四边形ABCD,在Rt△CDH中,∵∠H=90°,CD=AB=2a,∠DCH=60°,∴CH=a,DH=a,在Rt△DFH中,DF===2a,在Rt△ECG中,∵CE=a,∴CG=a,GE=a,在Rt△BEG中,BE===a,∴•AP•BE=•DF•AQ,∴==,故答案为.【点评】本题考查平行四边形的性质、勾股定理,三角形的面积等知识,解题的关键是利用面积法求线段的长,学会添加常用辅助线,学会利用参数解决问题,属于中考常考题型.试题19答案:【考点】实数的运算;特殊角的三角函数值.【分析】首先根据特殊角的三角函数进行代入,然后再根据绝对值的性质计算绝对值,然后合并同类二次根式即可.【解答】解:原式=2×﹣|1|+,=+1+,=﹣2﹣3.【点评】此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.试题20答案:【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)首先求得抛物线y=x2﹣4x+4沿y轴向下平移9个单位后解析式,利用配方法求得D的坐标,令y=0求得C 的横坐标,令y=0,解方程求得B的横坐标;(2)过D作DA⊥y轴于点A,然后根据S△BCD=S梯形AOBD﹣S△BOC﹣S△ADC求解.【解答】解:(1)抛物线y=x2﹣4x+4沿y轴向下平移9个单位后解析式是y=x2﹣4x+4﹣9,即y=x2﹣4x﹣5.y=x2﹣4x﹣5=(x﹣2)2﹣9,则D的坐标是(2,﹣9).在y=x2﹣4x﹣5中令x=0,则y=﹣5,则C的坐标是(0,﹣5),令y=0,则x2﹣4x﹣5=0,解得x=﹣1或5,则B的坐标是(5,0);(2)过D作DA⊥y轴于点A.则S△BCD=S梯形AOBD﹣S△BOC﹣S△ADC=(2+5)×9﹣×2×4﹣×5×5=15.【点评】本题考查了配方法确定二次函数的顶点坐标,以及函数与x轴、y轴的交点的求法,正确求得抛物线y=x2﹣4x+4沿y轴向下平移9个单位后解析式是关键.试题21答案:【考点】*平面向量;梯形;解直角三角形.【分析】(1)首先证明四边形ABED是平行四边形,推出DE=AB,推出==,==,=+.(2)由△DFC∽△BAC,推出==,求出BC,在Rt△BAC中,∠BAC=90°,根据AC===2,由tanB=,即可解决问题.【解答】解:∵AD∥BC,∴∠DAC=∠ACB,∴AC平分∠DCB,∴∠DCA=∠ACB,∴∠DAC=∠DCA,∴AD=DC,∵DE∥AB,AB⊥AC,∴DE⊥AC,∴AF=CF,∴BE=CE,∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴DE=AB,∴==,==,∴=+.(2)∵∠DCF=∠ACB,∠DFC=∠BAC=90°,∴△DFC∽△BAC,∴==,∵CD=AD=3,∴BC=6,在Rt△BAC中,∠BAC=90°,∴AC===2,∴tanB===.【点评】本题考查平面向量、梯形、解直角三角形、平行四边形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识,属于基础题.试题22答案:【考点】解直角三角形的应用-方向角问题.【分析】(1)首先过点C作CD⊥AB于D,构建直角△ACD,通过解该直角三角形得到CD的长度即可;(2)通过解直角△BCD来求BC的长度.【解答】解:(1)如图,过点C作CD⊥AB于D,由题意,得∠ACD=30°.在直角△ACD中,∠ADC=90°,∴cos∠ACD=,∴CD=AC•cos30°=120×=60(海里);(2)在直角△BCD中,∠BDC=90°,∠DCA=45°,∴cos∠BCD=,∴BC===60≈60×2.44=146.4(海里),∴146.4÷20=7.32≈7.3(小时).答:(1)求该海轮从A处到B处的航行过程中与小岛C之间的最短距离是60海里;(2)如果该海轮以每小时20海里的速度从B处沿BC方向行驶,求它从B处到达小岛C的航行时间约为7.3小时.【点评】此题考查了方向角问题.此题难度适中,注意将方向角问题转化为解直角三角形的知识求解是解此题的关键,注意数形结合思想的应用.试题23答案:【考点】相似三角形的判定与性质.【分析】(1)根据已知条件得到,根据等腰三角形的判定定理得到AD=BD,等量代换即可得到结论;(2)由BD是DF和AB的比例中项,得到BD2=DF•AB,等量代换得到AD2=DF•AB,推出=,根据相似三角形的性质得到==1,于是得到结论.【解答】证明:(1)∵AE•CD=AD•CE,∴,∵∠DAB=∠B,∴AD=BD,∴,∴DE∥AB;(2)∵BD是DF和AB的比例中项,∴BD2=DF•AB,∵AD=BD,∴AD2=DF•AB,∴=,∵DE∥AB,∴∠ADF=∠BAD,∴△ADF∽△DBA,∴==1,∴DF=AF.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.试题24答案:【考点】二次函数综合题.【分析】(1)根据题意求出点C的坐标、点B的坐标,利用待定系数法求出抛物线的解析式,根据二次函数的性质求出顶点坐标;(2)根据等腰直角三角形的性质得到∠DCB=90°,根据余切的定义计算即可;(3)运用待定系数法求出直线CA的解析式,设点M的坐标为(x,3x+3),根据相似三角形的性质得到∠ACB=∠BME,根据等腰三角形的性质得到BM=BC,根据勾股定理列出方程,解方程即可.【解答】解:(1)∵已知抛物线y=﹣x2+bx+3与y轴交于点C,∴点C的坐标为:(0,3),∵OB=OC,∴点B的坐标为:(3,0),∴﹣9+3b+3=0,解得,b=2,∴抛物线的解析式为:y=﹣x2+2x+3,y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)如图1,作DH⊥y轴于H,则CH=DH=1,∴∠HCD=∠HDC=45°,∵OB=OC,∴∠OCB=∠OBC=45°,∴∠DCB=90°,∴cot∠DBC===3;(3)﹣x2+2x+3=0,解得,x1=﹣1,x2=3,∴点A的坐标为:(﹣1,0),∴=,又=,∴=,∴Rt△AOC∽Rt△DCB,∴∠ACO=∠DBC,∵∠ACB=∠ACO+45°=∠DBC+∠E,∴∠E=45°,∵△EBM和△ABC相似,∠E=∠ABC=45°,∴∠ACB=∠BME,∴BM=BC,设直线CA的解析式为:y=kx+b,则,解得,,则直线CA的解析式为:y=3x+3,设点M的坐标为(x,3x+3),则(x﹣3)2+(3x+3)2=18,解得,x1=0(舍去),x2=﹣,x2=﹣时,y=﹣,∴点M的坐标为(﹣,﹣).【点评】本题考查的是二次函数的综合运用、相似三角形的判定和性质,掌握二次函数的性质、待定系数法求函数解析式的一般步骤是解题的关键.试题25答案:【考点】三角形综合题;等腰梯形的性质;平行线分线段成比例;相似三角形的判定与性质.【专题】压轴题.【分析】(1)过点D作DF∥AC,交BP于F,根据平行线分线段成比例定理,可得EC=BD=x,PE=3﹣x﹣y,DF=,进而根据DF∥AC,求得y=,定义域为:0<x<3;(2)当△PEQ为等腰三角形时,△PBC也为等腰三角形,分三种情况讨论:①当PB=BC时,②当PC=BC=2时,③当PC=PB 时,分别求得BD的长即可;(3)先根据已知条件判定四边形BCED是等腰梯形,判定△BDQ∽△QEC,得出=,即2DQ2=x2,再根据DE∥BC,得出=,即=,求得x的值即可.【解答】解:(1)如图所示,过点D作DF∥AC,交BP于F,则根据QE=2DQ,可得==,又∵DE∥BC,∴==1,∴EC=BD=x,PE=3﹣x﹣y,DF=,∵DF∥AC,∴=,即=,∴y=,定义域为:0<x<3;(2)∵DE∥BC,∴△PEQ∽△PBC,∴当△PEQ为等腰三角形时,△PBC也为等腰三角形,①当PB=BC时,△ABC∽△BPC,∴BC2=CP•AC,即4=3(3﹣y),解得y=,∴=,解得x==BD;②当PC=BC=2时,AP=y=1,∴=1,解得x==BD;③当PC=PB时,点P与点A重合,不合题意;(3)∵DE∥BC,∴∠BDQ+∠CBD=180°,又∵∠CQB和∠CBD互补,∴∠CQB+∠CBD=180°,∴∠CQB=∠BDQ,∵BD=CE,∴四边形BCED是等腰梯形,∴∠BDE=∠CED,∴∠CQB=∠CED,又∵∠DQB+∠CQB=∠ECQ+∠CED,∴∠DQB=∠ECQ,∴△BDQ∽△QEC,∴=,即2DQ2=x2,∴DQ=,DE=,∵DE∥BC,∴=,即=,解得x=.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰梯形的判定与性质的综合应用,解决问题的关键是作辅助线构造相似三角形,运用相似三角形的对应边成比例进行求解.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.。

2011年上海市徐汇区初中数学一模卷试题及参考答案【纯word版,完美打印】

2011年上海市徐汇区初中数学一模卷试题及参考答案【纯word版,完美打印】

2009学年第一学期徐汇区初三年级数学学科期终学习能力诊断卷2010.1(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分) 1.抛物线22(3)4y x =-++的顶点坐标是( ) A.(3,4); B.(-3,4);C.(3,-4); D.(-3,-4).2.小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为( ) A .45米B .40米C .90米D . 80米3. 若向量→a 与→b 均为单位向量,则下列结论中正确的是( ) A .→a =→bB .1=→bC .10a →→-=D . →→=b a4.如图,下列条件中不能..判定ABC ACD △∽△的是( ) A .B ACD ∠=∠; B .ADC ACB ∠=∠;C . AC AB CD BC =; D .AB AD AC ∙=2. 5.如图,在Rt △ABC 中,CD 是斜边AB 的高,下列线段的比值不等于...sinA 的值的是( )A .BC AB B .CDBC C . CD AC D .BD BC6.已知二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:则下列判断中正确的是( )A .抛物线开口向上;B .抛物线与y 轴交于负半轴;C .当x =3时,y <0;D .方程02=++c bx ax 有两个相等实数根.第5题BA DCD CBA第4题二、填空题(本大题共12题,每题4分,满分48分) 7.如果23x y =,那么x y y+= __ __. 8.抛物线23125y x x =-+-的对称轴是直线 .9.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为 .10.计算:=+∙00045cos 60sin 30tan . 11.如果非零向量与满足等式1a 2b =-,那么向量与的方向 . 12.已知二次函数4)2(2+--=x y ,当2>x 时,若y 随着x 的增大而 (填增大、不变或减少).13.如图,直线l 1∥l 2∥l 3,已知AG =0.6cm ,BG =1.2cm ,CD =1.5cm ,CH =_______cm 14. 如图,ABC ∆中,AB>AC ,AD 是BC 边上的高,F 是BC 的中点,E F ⊥BC 交AB 于E ,若:3:2BD DC =,则:BE AB == .15.如图,已知抛物线c bx x y ++-=2的对称轴为直线1=x ,且与x 轴的一个交点为()0,3,那么它对应的函数解析式是 .16.如图:在△ABC 中,∠C =90°,AC=12,BC=9.则它的重心G 到C 点的距离是 . 17.如图,在ABC ∆中, ︒=∠90C ,13=AB ,AC=12,D 是AC 的中点,AB DE ⊥, 则DE 的长是 .18.已知三角形纸片(△ABC )中,AB =AC =5,BC =8,将三角形按照如图所示的方式折第18题第17题 EDB C A 第13题第14题DF ECBA第16题叠,使点B 落在边AC 上,记为点B ′,折痕为EF .若以点B ′,F ,C 为顶点的三角形与△ ABC 相似,那么BF 的长度是 .三、(本大题共7题,满分78分)19. (本题满分10分,第(1)题6分,第(2)题4分)已知:如图, 在△ABC 中AB =AC =9,BC =6。

2011年上海中考数学试卷及答案

2011年上海中考数学试卷及答案

2011年上海市初中毕业统一学业考试数学卷数学注意事项:1. 本试卷共4页,全卷满分150分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.2. 请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡及本试卷上. 3. 答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须0.5毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚. 一、选择题(本大题共6题,每题4分,共24分)1.下列分数中,能化为有限小数的是( )(A) 13; (B) 15; (C) 17; (D) 19 .2.如果a >b ,c <0,那么下列不等式成立的是( ).(A) a +c >b +c ; (B) c -a >c -b ; (C) ac >bc ; (D) a b c c > . 3.下列二次根式中,最简二次根式是( ).(A)(B) ;(C)(D).4.抛物线y =-(x +2)2-3的顶点坐标是( ).(A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) . 5.下列命题中,真命题是( ).(A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等; (C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等. 6.矩形ABCD 中,AB =8,BC =P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内; (C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内.二、填空题(本大题共12题,每题4分,共28分)12.一次函数y =3x -2的函数值y 随自变量x 值的增大而_____________(填“增大”或“减小”).13.有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是__________.14.某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.15.如图1,AM 是△ABC 的中线,设向量AB a =,BC b =,那么向量AM =____________(结果用a 、b 表示).16. 如图2, 点B 、C 、D 在同一条直线上,CE //AB ,∠ACB =90°,如果∠ECD =36°,那么∠A =_________.17.如图3,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =3,那么BC =_________.18.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(图4).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC 的边上,那么m=_________.图1 图2 图3 图4三、解答题(本大题共4题,满分48分)21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图5,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD 平行于AB,并与弧AB相交于点M、N.(1)求线段OD的长;(2)若1tan2C∠=,求弦MN的长.图523.(本题满分12分,每小题满分各6分)如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE 至F,使EF=DE.联结BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE·CE,求证四边形ABFC是矩形.24.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(如图1),一次函数33 4y x=+的图像与y轴交于点A,点M在正比例函数32y x=的图像上,且MO=MA.二次函数y=x2+bx+c的图像经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图像上,点D在一次函数334y x=+的图像上,且四边形ABCD是菱形,求点C的坐标.图125.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,12sin13EMP∠=.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.图1 图2 备用图2011年上海市初中毕业统一学业数学卷答案及评分参考(满分150分,考试时间100分钟)一、选择题 (本大题共6题,每题4分,满分24分) 题号 1 2 3 4 5 6答案 B A C D D C 二、填空题 (本大题共12题,每题4分,满分48分)题号 7 8 9 10 11 12 13 14 15 16 17 18 答案a 5(x +3y )(x -3y )1x ≤3y = -x2 增大85 20%a +21b 54680或120三、解答题 (本题共30分,每小题5分) 19. (本题满分10分)[解] (-3)0-27+|1-2|+231+=1-33+2-1+3-2= -23。

2011年上海市徐汇区中考数学一模试卷

2011年上海市徐汇区中考数学一模试卷

2011年上海市徐汇区中考数学一模试卷参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.(4分)(2011•徐汇区一模)在直角坐标平面内,如果抛物线y=﹣(x﹣1)2经过平移可以与抛物线y=﹣x2互相重合,那么这个平移是()A.向上平移1个单位 B.向下平移1个单位C.向左平移1个单位 D.向右平移1个单位【考点】M41A 函数图像的几何变换M442 二次函数的图象、性质M443 二次函数的关系式【难度】容易题【分析】∵抛物线y=﹣(x﹣1)2的顶点为(1,0);抛物线y=﹣x2的顶点为(0,0);从(1,0)到(0,0)是向左平移了1个单位,∴抛物线也是如此平移的.故选C.【解答】C.【点评】本题考查抛物线的平移;用到的知识点为:抛物线的平移要看顶点的平移;只横坐标改变是左右平移.2.(4分)在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosB的值是()A.B.C.D.【考点】M361 锐角的三角比的概念(正切、余切、正弦、余弦)M33E 勾股定理【难度】容易题【分析】根据勾股定理可以求出AB=5,根据三角函数的定义即可求得cosB==.故选:A.【解答】A.【点评】本题主要考查了勾股定理以及余弦函数的定义:直角三角形中邻边与斜边的比.3.(4分)(2011•徐汇区一模)下列命题不一定成立的是()A.斜边与一条直角边对应成比例的两个直角三角形相似B.两个等腰直角三角形相似C.两边对应成比例且有一个角相等的两个三角形相似D.各有一个角等于95°的两个等腰三角形相似【考点】M33M 相似三角形性质、判定【难度】容易题【分析】判定两三角形相似的方法很多如:“HL”,“AA”,“SAS”,但“SSA”不能判定两三角形相似.则:A、“HL”可以判断两直角三角形相似,命题成立.B、满足“AA”判定法,命题成立.C、∵两边对应成比例且夹角相等的两个三角形相似,∴命题不一定成立.D、满足“AA”判定法,命题成立.故选C.【解答】C.【点评】本题考查相似三角形的最常用的方法判断方法:“AA”,“SAS”,“HL”也可以判断两直角三角形相似;但“SSA”不一定能判断两三角形相似.4.(4分)(2011•徐汇区一模)二次函数y=ax2+bx+c的图象如图所示,下列结论正确的是()A.ab>0B.当x≤1时,y随x的增大而增大C.ac>0D.方程ax2+bx+c=0有两个正实数根【考点】M241 一元二次方程的概念、解法M416 函数图像的交点问题M41B 平面直角坐标系M442 二次函数的图象、性质M443 二次函数的关系式【难度】容易题【分析】由图象可知:a<0,﹣=1,c>0,∴b>0.A、因为ab<0,故本选项错误;B、由图象知:当x≤1时,y随x的增大而增大,故本选项正确;C、因为ac<0,故本选项错误;D、由图象知方程ax2+bx+c=0的根一正一负,故本选项错误.故选:B.【解答】B.【点评】本题主要考查了二次函数的性质,一元二次方程,有理数的乘法法则等知识点,能正确观察图象是解此题的关键.用了数形结合思想.5.(4分)(2011•徐汇区一模)如图,在△ABC中,点E、F分别是边AC、BC的中点,设=,=,用、表示,下列结果中正确的是()A.B.﹣C.D.【考点】M334 三角形中位线定理M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】此题主要用到了三角形中位线定理,在向量CA、BC已知的情况下,可求出向量==,又知题中EF为中线,所以.故选B.【解答】B.【点评】本题考查平面向量、三角形中位线定理.解决本题的关键是懂得三角形中如何用三边向量表示、三角形的中位线定理的应用.6.(4分)(2011•徐汇区一模)如图,在正方形ABCD中,E为BC中点,DF=3FC,连接AE、AF、EF,那么下列结果错误的是()A.△ABE与△EFC相似B.△ABE与△AEF相似C.△ABE与△AFD相似D.△AEF与△EFC相似【考点】M33D 直角三角形的性质和判定M33E 勾股定理M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质【难度】较难题【分析】已知在正方形ABCD中,E为BC中点,DF=3FC,得:AB=BC=DC=AD,BE=CE=AB=BC=DC,DC=4CF,∴CF=BE=CE,即BE=CE=2CF.在△ABE和△EFC中=,===∴△ABE与△EFC相似,∴∠AEB=∠EFC,∴∠AEB+FEC=90°,∴△ABE与△AEF相似都是直角三角形∴EF2=CF2+CE2=CF2+(2CF)2=5CF2BE2=CE2=4CF2∴==∴=.AE2=AB2+BE2=(2BE)2+BE2=5BE2AB2=(2BE)2=4BE2=∴=∴△ABE与△AEF相似又△ABE与△EFC相似(已证)∴△AEF与△EFC相似.已知正方形ABCD,∴在两直角三角形ABE和△AFD中的两直角边=1,DF=3CF,BE=2CF∴==∴△ABE与△AFD不相似.所以C答案相似错误.故选:C.【解答】C.【点评】此题考查了学生对正方形性质的应用及相似三角形判定的掌握.解答此题的关键是根据已知条件所给的4对三角形是否相似确定答案.此题为中档题.二、填空题(共12小题,每小题4分,满分48分)7.(4分)(2011•徐汇区一模)如果,那么=.【考点】M33H 比例的性质【难度】容易题【分析】根据比例的性质(两内项之积等于两外项之积)解答即:∵原式的两个内项分别是a+b、5,两个外项分别是a、7,∴7a=5(a+b),即2a=5b,∴=.故答案为:.【解答】.【点评】本题主要考查了比例的基本性质:在比例式中,两内项之积等于两外项之积.8.(4分)(2011•徐汇区一模)计算:=.【考点】M362 特殊角的锐角三角函数值【难度】容易题【分析】先把cos30°=,sin45°=,cot60°=代入原式,再根据实数的运算法则进行计算得:=﹣=.故答案为:.【解答】.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.9.(4分)(2011•徐汇区一模)二次函数y=3x2﹣6x+5的图象的顶点坐标是.【考点】M442 二次函数的图象、性质M443 二次函数的关系式【难度】容易题【分析】利用求顶点坐标公式x=﹣,y=代入计算可得x=﹣=1,y==2,即顶点坐标是(1,2).【解答】(1,2).【点评】本题考查用公式法求二次函数的顶点坐标.做对本题的关键是记熟公式.10.(4分)(2011•徐汇区一模)抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,则二次函数解析式是.【考点】M414 用待定系数法求函数关系式M416 函数图像的交点问题M442 二次函数的图象、性质M443 二次函数的关系式【难度】容易题【分析】由于抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,那么可以得到方程﹣x2+bx+c=0的两根为x=1或x=﹣3,然后利用根与系数关系得1+(﹣3)=b,1×(﹣3)=﹣c,∴b=﹣2,c=3,∴二次函数解析式是y=﹣x2﹣2x+3.【解答】y=﹣x2﹣2x+3.【点评】此题主要考查了利用抛物线与x轴的交点坐标确定函数解析式,解题的关键是利用待定系数法得到关于b、c的方程,解方程即可解决问题.11.(4分)(2011•徐汇区一模)如图,已知l1∥l2∥l3,若AB:BC=3:5,DF=16,则DE=.【考点】M33I 平行线分线段成比例定理【难度】容易题【分析】首先由已知l1∥l2∥l3,证得,又由AB:BC=3:5,AB+BC=AC,得AB:AC=3:8,又DF=16,即可求得,则DE=6.故答案为:6.【解答】6.【点评】本题考查平行线分线段成比例定理.解题时要注意找准对应关系,注意数形结合思想的应用.12.(4分)(2011•徐汇区一模)二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=2,若与x轴交点为A(6,0),则由图象可知,当y>0时,自变量x的取值范围是.【考点】M416 函数图像的交点问题M41B 平面直角坐标系M442 二次函数的图象、性质M443 二次函数的关系式M417 不同位置的点的坐标的特征【难度】容易题【分析】利用二次函数的对称性,得出图象与x轴的另一个交点坐标(﹣2,0),再结合图象,得出函数开口向下,x轴上方部分y>0,此时﹣2<x<6,故答案为:﹣2<x<6.【解答】﹣2<x<6.【点评】此题主要考查了二次函数的对称性,以及结合二次函数图象观察函数的取值问题.属于中考高频考点,考生要注意掌握!13.(4分)(2011•徐汇区一模)如图在△ABC中,∠ACB=90°,CD⊥AB于D,AC=4,BC=3,则cos∠DCB=.【考点】M33E 勾股定理M361 锐角的三角比的概念(正切、余切、正弦、余弦)【难度】容易题【分析】根据题意:∠DCB=∠CAB.在Rt△ABC中,易得AB=5,cos∠CAB=.故cos∠DCB=.【解答】.【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.14.(4分)(2011•徐汇区一模)如图,在菱形ABCD中,∠ABC=60°,AE⊥AB,交BD 于点G,交BC的延长线于点E,那么=.【考点】M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质【难度】容易题【分析】四边形ABCD为菱形,∴AD=AB=BC,∵AE⊥AB,∠ABC=60°,∴AB=AD=BE,∵AD∥BE,∴△ADG∽△EBG,∴==.故答案为:.【解答】.【点评】本题考查了相似三角形的判定及性质,解题时要注意比例线段的转化.15.(4分)(2011•徐汇区一模)某滑雪运动员沿着坡比为1:的斜坡滑行了200米,则他身体下降的高度为米.【考点】M364 解直角三角形M365 仰角、俯角、坡度、坡角【难度】容易题【分析】设垂直高度下降了x米,则水平前进了x米.根据勾股定理可得:x2+(x)2=2002.解得x=100,即它距离地面的垂直高度下降了100米.故答案为:100.【解答】100.【点评】本题考查解直角三角形的应用,难度不大,此题的关键是熟悉且会灵活应用公式:tanα(坡度)=垂直高度÷水平宽度,综合利用了勾股定理.16.(4分)如图是小玲设计用手电来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A出发经平面镜反射后,刚好射到古城墙CD的顶端C处.已知AB⊥BD,CD⊥BD.且测得AB=1.4米,BP=2.1米,PD=12米.那么该古城墙CD的高度是米.【考点】M33M 相似三角形性质、判定【难度】容易题【分析】由光学知识反射角等于入射角不难分析得出∠APB=∠CPD,再由∠ABP=∠CDP=90°得到△ABP∽△CDP,得到=代入数值求的=解得:CD=8米.【解答】8.【点评】本题考查了直角三角形的有关知识,同时渗透光学中反射原理,注意到相似三角形,解决本题关键.17.(4分)(2011•徐汇区一模)如图,在△ABC中,D是AB上一点,如果∠B=∠ACD,AB=6cm,AC=4cm,若S△ABC=36cm2,则△ACD的面积是cm2.【考点】M33M 相似三角形性质、判定M33O 三角形面积【难度】中等题【分析】D是AB上一点且∠B=∠ACD,∠A=∠A,∴△ACD∽△ABC,∴=∴===∵S△ABC=36cm2∴△ACD的面积是36×=16,∴△ACD的面积是16cm2.故应填:16.【解答】16.【点评】本题考查了相似三角形面积的比与相似比的关系,是相似三角形常考查的内容之一.关键是利用相似三角形面积的比等于相似比的平方求得△ACD的面积.18.(4分)(2011•徐汇区一模)如图,在△ABC中,AC=BC=2,∠C=90°,点D为腰BC 中点,点E在底边AB上,且DE⊥AD,则BE的长为.【考点】M33E 勾股定理【难度】中等题【分析】过D点作DH⊥AB,垂足为H,∵在△ABC中,AC=BC=2,∠C=90°,∴AB==2.∵点D为腰BC中点,∴AD==,∵DE⊥AD,∠B=45°,∴DH=HB=,∴AD2=AH•AE,∴AE===,EB=AB﹣AE=2﹣=.故答案为:.【解答】.【点评】此题主要考查学生对勾股定理的理解和掌握,解答关键是过D点作DH⊥AB,求出AE的长,这是此题的突破点,此题有点难度,属于中档题.三、解答题(共7小题,满分78分)19.(10分)(2011•徐汇区一模)已知:▱ABCD中,E是BA边延长线上一点,CE交对角线DB于点G,交AD边于点F.求证:CG2=GF•GE.【考点】M33I 平行线分线段成比例定理M344 平行四边形(包括矩形、菱形、正方形)的判定与性质【难度】容易题【分析】由平行四边形可得AD∥BC,AB∥CD,再由平行线分线段成比例即可证明.【解答】证明:∵四边形ABCD是平行四边形,∴DC∥AB,AD∥BC, (2)∵DC∥AB,∴, (4)∵AD∥BC,∴, (6)∴, (8)即CG2=GF•GE. (10)【点评】本题主要考查了平行四边形的性质以及平行线分线段成比例的性质,均属于中考常考知识点,要求考生要能够熟练掌握.20.(10分)(2011•徐汇区一模)已知:如图,▱ABCD中,E是BC中点,AE交BD于点F,设=、=.(1)用x+y(x,y为实数)的形式表示;(2)先化简,再直接在图中作:.【考点】M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】(1)从图中不难看到△ADF∽△EBF,由于BE=,那么或BF=.再利用向量的减法,求得向量AF.(2)先利用向量的加减法将化简,再根据实数与向量的积,画出向量,连接向量的首尾.【解答】解:(1)解一:; (5)解二:; (5)(2)=﹣,=﹣. (7) (10)【点评】本题考查平行向量、平行四边形的性质.解决本题的关键是利用相似三角形求得AF、FE,BF、FD的大小关系,理解平行向量的含义.21.(10分)(2011•徐汇区一模)已知:如图,在△ABC中,AB=AC=13,,中线BE和AD交于点F.求:△ABC的面积以及sin∠EBC的值.【考点】M333 三角形的高、中线、角平分线M339 等腰三角形的性质和判定M33O 三角形面积M33E 勾股定理M361 锐角的三角比的概念(正切、余切、正弦、余弦)M364 解直角三角形【难度】中等题【分析】由等腰三角形的性质得AD⊥BC,再由,求得CD、AD,则S△ABC=60,根据中线的性质求出DF,BF,在△BDF中求得sin∠EBC的值.【解答】解:∵△ABC中,AB=AC,且AD是中线,∴AD⊥BC,∠B=∠C. (2)∵Rt△ABD与Rt△ACD中,AB=AC=13,,∴BD=DC=ABcosB=5 (4)∴,∴S△ABC=60. (6)∵中线BE和AD交于点F,∴ (7)则在Rt△BDF中, (8)∴sin∠EBC= (10)【点评】本题考查了等腰三角形的性质和三角函数的定义,是中档题,难度不大.注意:突破口为由等腰三角形的性质得AD⊥BC,再由,求得CD、AD!22.(10分)(2011•徐汇区一模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼前面15米处要盖一栋高20米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°.(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市采光不受影响,两楼应至少相距多少米?(结果保留整数)【考点】M124 实数大小比较M361 锐角的三角比的概念(正切、余切、正弦、余弦)M364 解直角三角形【难度】容易题【分析】(1)首先沿着光线作射线AF交CD于点F,过点F作FG⊥AB于点G.在Rt△AFG中,利用正切函数求得AG的长,进而根据CF=BG=AB﹣AG求得CF的高度.通过比较CF与超市高度6米,可得到中午时,超市以上的居民住房采光是否有影响.(2)首先沿着光线作射线AE交直线BC于点E.在Rt△ABE中,利用正切函数求得BE 的长,即为使得超市采光不受影响,两楼应至少相距的米数.【解答】解:(1)沿着光线作射线AF交CD于点F,过点F作FG⊥AB于点G,由题意,在Rt△AFG中,GF=BC=15,∠AFG=29°,∴AG=GF•tan29°=15×0.55=8.25米, (2)∴GB=FC=20﹣8.25=11.75米, (4)∵11.75>6,∴居民住房会受影响 (5)(2)沿着光线作射线AE交直线BC于点E. (6)由题意,在Rt△ABE中,AB=20,∠AEB=29°, (8)∴米, (9)∴至少要相距37米 (10)【点评】此题考查了三角函数的基本概念,主要是正切概念及运算,关键把实际问题转化为数学问题加以计算.23.(12分)(2011•徐汇区一模)如图,在Rt△ABC中,∠ACB=90°,AB=15,,E为线AC上一点(不与A、C重合),过点E作ED⊥AC交线段AB于点D,将△ADE沿着直线DE翻折,A的对应点G落在射线AC上,线段DG与线段BC交于点M.(1)若BM=8,求证:EM∥AB;(2)设EC=x,四边形的ADMC的面积为S,求S关于x的函数解析式,并写出定义域.【考点】M33O 三角形面积M33E 勾股定理M33I 平行线分线段成比例定理M361 锐角的三角比的概念(正切、余切、正弦、余弦)M420 函数自变量的取值范围M443 二次函数的关系式M444 二次函数的应用【难度】中等题【分析】(1)根据三角函数先在Rt△ACB中,求出AC=9,BC=12,MC=4.再在Rt△MCG 中,求出CG=3.可得AG=12,EC=3,AE=6,根据平行线分线段成比例即可证明EM∥AB;(2)根据S ADMC=S△ABC﹣S△DBM,即可得出S关于x的函数解析式.(1)在Rt△ACB中,,设AC=3k,BC=4k, (1)【解答】解:则AB=,AB=5k=15,k=3.∴AC=9,BC=12. (3)∵BM=8,∴MC=4 (4)在Rt△MCG中,,∴CG=3. (5)∴AG=12,EC=3,AE=6. (6)∵,∴EM∥AB; (7)(2)EC=x,由题意有EG=AE=9﹣x,则CG=9﹣2x, (8),BM=12﹣(9﹣2x), (9)S ADMC=54﹣(0<x<4.5). (12)【点评】本题综合考查了平行线分线段成比例,三角函数的知识,组合图形的面积之间的关系,函数解析式等知识点,有一点的难度.尤其注意(2)问关键是根据S ADMC=S△ABC﹣S△DBM,得出S关于x的函数解析式.24.(12分)(2011•徐汇区一模)如图,抛物线与x轴相交于A、B,与y轴相交于点C,过点C作CD∥x轴,交抛物线点D.(1)求梯形ABCD的面积;(2)若梯形ACDB的对角线AD、BC交于点E,求点E的坐标,并求经过A、B、E三点的抛物线的解析式;(3)点P是直线CD上一点,且△PBC与△ABC相似,求符合条件的P点坐标.【考点】M241 一元二次方程的概念、解法M323 平行线的判定、性质M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质M345 梯形的概念M346 等腰梯形的性质与判定M348 四边形周长、面积M414 用待定系数法求函数关系式M417 不同位置的点的坐标的特征M41B 平面直角坐标系M442 二次函数的图象、性质M443 二次函数的关系式M444 二次函数的应用【难度】较难题【分析】(1)把x=0,y=0分别代入解析式,即可求出A、B、C的坐标,由CD∥x轴得到C和D的纵坐标相等(是﹣2)从而求出D的坐标,利用梯形的面积公式求出即可;此问简单(2)根据抛物线的对称性求出E的横坐标,过E作EN⊥AB,就可得到比例式,进一步求出E的纵坐标,即过、B、E三点的抛物线的顶点坐标,即可求出解析式;此问中等(3)由已知相似可得比例式,能求出CP的值,进而求出P的坐标.此问较难【解答】解:(1),当y=0时,﹣x2+x﹣2=0,解得:x1=1,x2=4, (1)当x=0时,y=﹣2,∴A(1,0),B(4,0),C(0,﹣2),∵CD∥x轴,∴D点的纵坐标也是﹣2, (2)把y=﹣2代入得:﹣x2+x﹣2=﹣2,解得:x3=0,x4=5,D点的坐标是:(5,﹣2), (3)S梯形ACDB=×[(4﹣1)+5]×|﹣2|,=8.所以梯形ABCD的面积是8. (4)(2)由抛物线的对称性有,过E作EN⊥AB于N,,,,∴, (6)设:经过A、B、E三点的抛物线的解析式为:y=a﹣,把A(1,0)代入解得:a=, (7)所以经过A、B、E三点的抛物线的解析式是:,即y═x2﹣x+. (8)(3)当点P在C的右侧,当∠CAB=∠CBP时,=,=,PB=, (9)设P(a,﹣2),∵B(4,0),∴由勾股定理得:22+(4﹣a)2=()2,a=(此时∠CAB≠∠CBP舍去),a=,∴P(,﹣2); (10)当∠CPB=∠CAB时,∵AB∥CD,∴∠ABC=∠PCB,∵∠CAB+∠ABC+∠ACB=180°,∠CBP+∠BCP+∠BPC=180°,∴∠ACB=∠CBP,∴AC∥PB,∴四边形ACPB是平行四边形,∴AB=CP, (11)∵A(1,0),B(4,0),∴CP=AB=3,∵C(0,﹣2),CP∥AB,∴P(3,﹣2),当点P在C的左侧,由题意有钝角∠BAC≠钝角∠PCB,此时不存在.所以符合条件的P点坐标是P(3,﹣2)和P(,﹣2). (12)【点评】本题主要考查了二次函数的性质,三角形相似的性质,梯形的面积公式,用待定系数法求二次函数的解析式等知识点,能综合运用这些知识解题是解决本题的关键.难点是(3)小题的求法,巧妙地运用了分类讨论思想.25.(14分)(2011•徐汇区一模)如图,在梯形ABCD中,AD∥BC,AB=CD=BC=6,AD=3.点M为边BC的中点,以M为顶点作∠EMF=∠B,射线ME交腰AB于点E,射线MF交腰CD于点F,连接EF.(1)求证:△MEF∽△BEM;(2)若△BEM是以BM为腰的等腰三角形,求EF的长;(3)若EF⊥CD,求BE的长.【考点】M232 一元一次方程的概念、解法M323 平行线的判定、性质M334 三角形中位线定理M33F 全等三角形概念、判定、性质M33M 相似三角形性质、判定M346 等腰梯形的性质与判定M347 梯形中位线定理M711 数学综合与实践【难度】较难题【分析】(1)先根据已知条件判断出梯形ABCD是等腰梯形,由等腰梯形的性质可得出△MEF∽△MFC,由相似三角形的性质及判定定理可得出△MEF∽△BEM;此问简单(2)由(1)可知△MEF∽△BEM,BM=BF=3=MC,则△MEF≌△FMC,由全等三角形的对应边相等可得出EF的长;同理,若BM=BM=3=MC,则△MEF≌△FMC,由全等三角形的对应边相等可得出EF的长;此问中等(3)根据EF⊥CD,△MEF∽△BEM可求出∠MFE=∠MFC=∠BME=45°,设BE=x,则BH=,EH=MH=,由MH+BH=3即可求出答案.此问较难【解答】证明:(1)在梯形ABCD中,∵AD∥BC,AB=CD,∴∠B=∠C, (1)∵∠BMF=∠EMB+∠EMF=∠C+∠MFC,又∵∠EMF=∠B,∴∠EMB=∠MFC, (2)∴△EMB∽△MFC,∴, (3)∵MC=MB,∴,又∵∠EMF=∠B,∴△MEF∽△BEM; (4)(2)解:若△BEM是以BM为腰的等腰三角形,则有两种情况:①BM=ME,那么根据△MEF∽△BEM,∴=,∴=,即EF=MF (5)根据第(1)问中已证△BME∽△MFC,∴=,即MF=FC,∴∠FMC=∠C,又∵∠B=∠C,∴∠FMC=∠B,∴MF∥AB (6)延长BA和CD相交于点G,又点M是BC的中点,∴MF是△GBC的中位线,∴MF=GB,又∵AD∥BC,∴△GAD∽△GBC,∴===,∴=1,即AG=AB=6,∴GB=12,∴MF=EF=6 (7)②BM=BE=3,∴点E是AB的中点,又△MEF∽△BEM,∴==1,即MF=ME,∴EF是梯形ABCD的中位线,∴EF=(AD+BC)=(3+6)=; (9)(3)∵EF⊥CD,∴∠EFC=90°,△MEF∽△BEM,∠MFE=∠MFC=∠BME=45°, (11)解一:过点E作EH⊥BC,则可得△EHM等腰直角三角形,故EH=MH, (12)设BE=x,则BH=,EH=MH=,,∴BE= (14)解二:过点M作MN⊥DC,MC=3,NC=.MN==FN,FC=﹣2由△MEF∽△MFC有, (12)即,得BE=. (14)【点评】本题主要考查的是等腰梯形的性质、相似三角形的判定与性质、全等三角形的判定与性质等知识点,综合性较强,难度较大.解题时尤其注意第(3)小问关键是得出BH、MH之间的关系,然后由MH+BH=3即可求出答案.。

徐汇一模数学试卷初三答案

一、选择题(每题4分,共40分)1. 已知a > b,则下列选项中正确的是()A. a + b > 0B. a - b > 0C. ab > 0D. a/b > 0答案:B解析:由不等式的性质可知,若a > b,则a - b > 0。

2. 若x^2 - 5x + 6 = 0,则x的值为()A. 2 或 3B. 1 或 4C. 2 或 1D. 3 或 2答案:A解析:通过因式分解可得(x - 2)(x - 3) = 0,解得x = 2或x = 3。

3. 下列函数中,y = kx + b(k ≠ 0)为正比例函数的是()A. k > 0,b > 0B. k < 0,b < 0C. k > 0,b < 0D. k < 0,b > 0答案:A解析:正比例函数的特点是y与x成正比,即k > 0,且y轴截距b可以为任意实数。

4. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为()A. 60°B. 75°C. 90°D. 105°答案:D解析:三角形内角和为180°,所以∠C = 180° - ∠A - ∠B = 180° - 60° - 45° = 75°。

5. 下列方程中,无解的是()A. x + 2 = 0B. 2x - 4 = 0C. 3x + 5 = 0D. 4x + 6 = 0答案:D解析:对于一元一次方程,若方程两边的系数和常数项同时乘以一个非零数,方程的解不变。

所以选项D的方程可变形为4x = -6,解得x = -6/4 = -3/2,方程有解。

二、填空题(每题4分,共40分)6. 若x^2 - 3x + 2 = 0,则x的值为______。

答案:1 或 27. 函数y = -2x + 1的图象与x轴交点的横坐标为______。

2023-2024学年上海市徐汇区九年级(上)期末数学试卷(一模)及答案解析

2023-2024学年上海市徐汇区九年级(上)期末数学试卷(一模)一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.(4分)下列抛物线中,对称轴为直线x=1的抛物线的表达式是()A.y=x2+1B.y=x2﹣1C.y=x2+2x D.y=x2﹣2x 2.(4分)如图,在直角坐标系xOy中,已知点A(4,3),直线OA与x轴正半轴的夹角为α,那么sinα的值是()A.B.C.D.3.(4分)下列两个三角形一定相似的是()A.两个直角三角形B.两个等腰三角形C.两个等边三角形D.两个面积相等的三角形4.(4分)如图,已知平行四边形ABCD的对角线AC和BD交于点O,设,,那么向量、、、关于、的分解式中,下列结论正确的是()A.B.=﹣C.﹣D.5.(4分)世博会期间,从一架离地200米的无人机A上,测得地面监测点B的俯角是60°,那么此时无人机A与地面监测点B的距离是()A.米B.米C.200米D.米6.(4分)如图,点D是△ABC内一点,点E在线段BD的延长线上,BE与AC交于点O,分别联结AD、AE、CE,如果,那么下列结论正确的是()A.CE∥AD B.BD=ADC.∠ABE=∠CBE D.BO•AE=AO•BC.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)求值:2sin60°﹣cot30°=.8.(4分)已知点P是线段AB的黄金分割点(AP>BP),AB=2,那么BP =.9.(4分)已知△ABC∽△DEF,如果它们对应高的比AM:,那么△ABC和△DEF的面积比是.10.(4分)在△ABC中,点D、E分别在边AB、AC上,如果AD:AB=2:3,AE=4,CE =2,DE=3,那么BC的长是.11.(4分)如图,AB∥CD∥EF,如果AD=2,DF=1.5,CE=1.8,那么BE的长是.12.(4分)如图,在Rt△ABC中,∠ABC=90°,BD⊥AC于D,如果△BCD和△ABD的面积比为9:16,CD=12,那么AB的长是.13.(4分)如图,一段东西向的限速公路MN长500米,在此公路的南面有一监测点P,从监测点P观察,限速公路MN的端点M在监测点P的北偏西60°方向,端点N在监测点P的东北方向,那么监测点P到限速公路MN的距离是米(结果保留根号).14.(4分)将抛物线y=﹣x2向右平移后,所得新抛物线的顶点是B,新抛物线与原抛物线交于点A(如图所示),联结OA、AB,如果△AOB是等边三角形,那么点B的坐标是.15.(4分)如图,在△ABC中,AD和BE是△ABC的高,且交于点F,已知AB=13,BC =14,AC=15,那么∠AFE的正切值是.16.(4分)中国古代数学书《御制数理精蕴》中有一道题大意如下:如图,从前有一座方城,四面城墙的中间都有城门,出南门后往前直走8里到宝塔A处(即EA=8里),出西门往前直走2里到B处(即DB=2里),此时,视线刚好能紧靠城墙角C看见宝塔A,如果设正方形的中心为O,点O、D、B在一直线上,点O、E、A在一直线上,那么这座方城每一面的城墙长是里.17.(4分)在△ABC中,AB=AC=6,BC=4,如果将△ABC绕着点B旋转,使得点C落在边AC上,此时,点A落在点A′处,联结AA′,那么AA′的长是.18.(4分)如图,在△ABC中,∠BAC=90°,,如果点P在△ABC的内部,且满足∠APC=∠BPC=135°,那么CP的长是.三、(本大题共7题,第19-22题每题10分:第23、24题每题12分;第25题14分;满分78分)19.(10分)已知:.(1)求代数式的值;(2)当2a+3b﹣3=35时,求a、b的值.20.(10分)已知抛物线y=﹣x2+bx+3与y轴交于点C,与x轴交于点A(﹣1,0)和点B,顶点为D.(1)求此抛物线的表达式及顶点D坐标;(2)联结CD、BD,求∠CDB的余弦值.21.(10分)如图,在梯形ABCD中,AD∥BC,BD平分∠ABC,CD=BD=8,AB=5.(1)求BC的长;(2)设,,求向量(用向量,表示).22.(10分)小杰在学习了“仰角、俯角、坡比”后,他在自己居住的小区设计了如下测量方案:小杰利用小区中的一个斜坡CD,首先在斜坡CD的底端C测得高楼顶端A的仰角是60°,然后沿斜坡CD向上走到D处,再测得高楼顶端A的仰角是37°,已知斜坡CD的坡比是i=1:6,斜坡CD的底端C到高楼AB底端B的距离是20米,且B、C、E三点在一直线上(如图所示).假设测角仪器的高度忽略不计,请根据小杰的方案,完成下列问题:(1)求高楼AB的高度;(2)求点D离地面的距离(结果精确到0.1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73)23.(12分)如图,在▱ABCD中,点E在边AB上,DE2=AE•CD.(1)求证:AD•CD=CE•DE;(2)当点E是边AB的中点时,分别延长DE、CB交于点F,求证:AB2=2EF2.24.(12分)如图,在平面直角坐标系xOy中,第二象限的点M在抛物线y=ax2(a>0)上,点M到两坐标轴的距离都是2.(1)求该抛物线的表达式;(2)将抛物线y=ax2(a>0)先向右平移个单位,再向下平移k(k>0)个单位后,所得新抛物线与x轴交于点A(m,0)和点B(n,0),已知m<n,且mn=﹣4,与y 轴负半轴交于点C.①求k的值;②设直线与上述新抛物线的对称轴的交点为D,点P是直线上位于点D下方的一点,分别联结CD、CP,如果,求点P的坐标.25.(14分)如图,在Rt△ABC中,∠BAC=90°,,点D是边AB上的动点(点D不与点B重合),以CD为斜边在直线BC上方作等腰直角三角形DEC.(1)当点D是边AB的中点时,求sin∠DCB的值;(2)联结AE,点D在边AB上运动的过程中,∠EAC的大小是否变化?如果变化,请说明理由;如果不变,请求出∠EAC的大小;(3)设DE与AC的交点为G,点P是边BC上的一点,且∠CPD=∠CGD,如果点P 到直线CD的距离等于线段GE的长度,求△CDE的面积.2023-2024学年上海市徐汇区九年级(上)期末数学试卷(一模)参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.(4分)下列抛物线中,对称轴为直线x=1的抛物线的表达式是()A.y=x2+1B.y=x2﹣1C.y=x2+2x D.y=x2﹣2x【分析】分别求出题目中四个选项中所给出的抛物线的对称轴即可.【解答】解:∵抛物线y=x2+1的对称轴为y轴;∴选项A不符合题意;∵抛物线y=x2﹣1的对称轴为y轴;、∴选项A不符合题意;∵抛物线y=x2+2x=(x+1)2﹣1,∴该抛物线的对称轴为x=﹣1;∴选项C不符合题意;∵抛物线y=x2﹣2x=(x﹣1)2﹣1,∴该抛物线的对称轴为x=1,∴选项D符合题意.故选:D.【点评】此题主要考查了二次函数的对称轴,熟练掌握求二次函数对称轴的方法与技巧是解决问题的关键.2.(4分)如图,在直角坐标系xOy中,已知点A(4,3),直线OA与x轴正半轴的夹角为α,那么sinα的值是()A.B.C.D.【分析】过点A作x轴的垂线,构造出直角三角形即可解决问题.【解答】解:过点A作x轴的垂线,垂足为B,由点A的坐标为(4,3)可知,OB=4,AB=3,所以AO=.在Rt△AOB中,sinα=.故选:A.【点评】本题考查解直角三角形,能构造出直角三角形是解题的关键.3.(4分)下列两个三角形一定相似的是()A.两个直角三角形B.两个等腰三角形C.两个等边三角形D.两个面积相等的三角形【分析】由相似三角形的判定,即可判断.【解答】解:A、B、D中的两个三角形不一定相似,故A、B、D不符合题意;C、两个等边三角形相似,故C符合题意.故选:C.【点评】本题考查相似三角形的判定,等边三角形、等腰三角形的性质,关键是掌握相似三角形的判定方法.4.(4分)如图,已知平行四边形ABCD的对角线AC和BD交于点O,设,,那么向量、、、关于、的分解式中,下列结论正确的是()A.B.=﹣C.﹣D.【分析】根据平行四边形对角线互相平分结合平面向量的运算法则逐一判断即可.【解答】解:∵平行四边形ABCD的对角线AC和BD交于点O,,,∴,,=,=,故选项A、C、D错误,选项B正确,故选:B.【点评】本题考查了平面向量的运算法则,平行四边形的性质,熟记平面向量的运算法则是解题的关键.5.(4分)世博会期间,从一架离地200米的无人机A上,测得地面监测点B的俯角是60°,那么此时无人机A与地面监测点B的距离是()A.米B.米C.200米D.米【分析】根据正切的定义求出AB,得到答案.【解答】解:在Rt△ABC中,AC=200米,∠ABC=60°,∵sin B=,∴AB===(米),故选:B.【点评】本题考查的是解直角三角形﹣仰角俯角问题,掌握锐角三角函数的定义是解题的关键.6.(4分)如图,点D是△ABC内一点,点E在线段BD的延长线上,BE与AC交于点O,分别联结AD、AE、CE,如果,那么下列结论正确的是()A.CE∥AD B.BD=ADC.∠ABE=∠CBE D.BO•AE=AO•BC.【分析】利用相似三角形的判定与性质解答即可.【解答】解:∵,∴△ADE∽△ABC,∴∠ACB=∠AED,∠BAC=∠DAE,∴∠BAD=∠CAE,∵∠AOE=∠BOC,∴△AOE∽△BOC,∴,∴BO•AE=AO•BC.∴D选项的结论正确.∵,∴△BAD∽△CAE,∴∠ABE=∠ACE,显然OE与OC不一定相等,∴∠ACE与∠BEC不一定相等,∴CE与BD不一定平行,∴A,C不一定正确,∵BD与AD不一定相等,∴B不一定正确.故选:D.【点评】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)求值:2sin60°﹣cot30°=0.【分析】把sin60=,cot30°=代入原式得到2×﹣,然后进行二次根式的运算即可.【解答】解:原式=2×﹣=﹣=0.故答案为0.【点评】本题考查了特殊角的三角函数值:sin60°=,cot30°=.8.(4分)已知点P是线段AB的黄金分割点(AP>BP),AB=2,那么BP=3﹣.【分析】根据黄金分割点的定义,知AP是较长线段;所以AP=AB,代入数据即可得出AP的长度,进而得出BP.【解答】解:由于P为线段AB=2的黄金分割点,且AP>BP,则AP=a==﹣1.BP=2﹣(﹣1)=;故答案为:3﹣【点评】此题考查黄金分割问题,理解黄金分割点的概念.要求熟记黄金比的值.9.(4分)已知△ABC∽△DEF,如果它们对应高的比AM:,那么△ABC和△DEF的面积比是2:9.【分析】相似三角形面积的比等于相似比的平方,由此即可计算.【解答】解:∵△ABC∽△DEF,它们对应高的比是AM:,∴△ABC和△DEF的相似比是:3,∴△ABC和△DEF的面积比是:32=2:9.故答案为:2:9.【点评】本题考查相似三角形的性质,关键是掌握相似三角形面积的比等于相似比的平方.10.(4分)在△ABC中,点D、E分别在边AB、AC上,如果AD:AB=2:3,AE=4,CE=2,DE=3,那么BC的长是.【分析】根据题意推出=,结合∠A=∠A,即可推出△ADE∽△ABC,根据相似三角形的性质求解即可.【解答】解:如图,∵AE=4,EC=2,∴AC=AE+EC=6,∴==,∵AD:AB=2:3,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴==,∵DE=3,∴BC=,故答案为:.【点评】本题考查了相似三角形的性质和判定等知识,熟练掌握相似三角形的判定与性质是解此题的关键.11.(4分)如图,AB∥CD∥EF,如果AD=2,DF=1.5,CE=1.8,那么BE的长是 4.2.【分析】根据平行线分线段成比例定理求解即可.【解答】解:∵AB∥CD∥EF,∴=,∵AD=2,DF=1.5,CE=1.8,∴=,解得BE=4.2.故答案为:4.2.【点评】本题考查平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解答的关键,注意比例线段要对应.12.(4分)如图,在Rt△ABC中,∠ABC=90°,BD⊥AC于D,如果△BCD和△ABD的面积比为9:16,CD=12,那么AB的长是.【分析】先证明△ABD∽△BCD,根据相似三角形的性质求出AD和BD,进而求出AB 即可.【解答】解:∵∠ABC=90°,∴∠ABD+∠CBD=90°,∵BD⊥AC,∴∠ABD+∠A=90°,∠ADB=∠BDC=90°,∴∠CBD=∠A,∴△ABD∽△BCD,∴,∵△BCD和△ABD的面积比为9:16,∴=,∵CD=12,∴BD=16,AD=,∴AB==.故答案为:.【点评】本题考查了相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定方法.13.(4分)如图,一段东西向的限速公路MN长500米,在此公路的南面有一监测点P,从监测点P观察,限速公路MN的端点M在监测点P的北偏西60°方向,端点N在监测点P的东北方向,那么监测点P到限速公路MN的距离是(250﹣250)米(结果保留根号).【分析】过点P作PA⊥MN于点A,则∠PAM=∠PAN=90°,设PA=x米,证△PAN是等腰直角三角形,得NA=PA=x米,再由锐角三角函数定义得MA=x米,然后由MA+NA=MN,求出x=250﹣250,即可得出结论.【解答】解:如图,过点P作PA⊥MN于点A,则∠PAM=∠PAN=90°,设PA=x米,由题意可知,∠MPA=60°,∠NPA=45°,∴△PAN是等腰直角三角形,∴NA=PA=x米,∵tan∠MPA==tan60°=,∴MA=PA=x(米),∵MA+NA=MN=500,∴x+x=500,解得:x=250﹣250,即监测点P到限速公路MN的距离是(250﹣250)米,故答案为:(250﹣250).【点评】本题考查了解直角三角形的应用—方向角问题,正确作出辅助线构造直角三角形是解题的关键.14.(4分)将抛物线y=﹣x2向右平移后,所得新抛物线的顶点是B,新抛物线与原抛物线交于点A(如图所示),联结OA、AB,如果△AOB是等边三角形,那么点B的坐标是(2,0).【分析】由题意设A点的坐标为(m,﹣m2),然后根据等边三角形的性质得到B(2m,0),m=m2,解得m=,从而求得B(2,0).【解答】解:∵点A抛物线y=﹣x2上,∴设A点的坐标为(m,﹣m2),∵△AOB是等边三角形,∴B(2m,0),m=m2,∴m=或m=0(舍去),∴B(2,0),故答案为:(2,0).【点评】本题考查了二次函数图象与几何变换,等边三角形的性质,二次函数图象上点的坐标特征,根据题意得到关于m的方程是解题的关键.15.(4分)如图,在△ABC中,AD和BE是△ABC的高,且交于点F,已知AB=13,BC=14,AC=15,那么∠AFE的正切值是.【分析】利用勾股定理求出BE的长,再将∠AFE转化成∠C即可解决问题.【解答】解:令AE=x,在Rt△ABE中,BE2=132﹣x2.在Rt△BCE中,BE2=152﹣(14﹣x)2.则132﹣x2=152﹣(14﹣x)2,解得x=5,所以BE=,CE=14﹣5=9.又因为∠AFE+∠CAD=90°,∠C+∠CAD=90°,所以∠AFE=∠C.在Rt△BCE中,tan C=,所以tan∠AFE=tan C=.故答案为:.【点评】本题考查解直角三角形,利用勾股定理求出BE的长是解题的关键.16.(4分)中国古代数学书《御制数理精蕴》中有一道题大意如下:如图,从前有一座方城,四面城墙的中间都有城门,出南门后往前直走8里到宝塔A处(即EA=8里),出西门往前直走2里到B处(即DB=2里),此时,视线刚好能紧靠城墙角C看见宝塔A,如果设正方形的中心为O,点O、D、B在一直线上,点O、E、A在一直线上,那么这座方城每一面的城墙长是8里.【分析】先根据正方形的性质得出OB∥CE,再根据相似三角形的性质列方程求解.【解答】解:设正方形是灭一面城墙的长度为2x里,∵正方形的中心为O,∴OD=CD=OE=CE=x里,OB∥CE,∴△ACE∽△ABO,∴,即:,解得:x=4,或x=﹣4(不合题意,舍去),∴2x=8,故答案为:8.【点评】本题考查了正方形的性质,掌握正方形的性质和相似三角形的性质是解题的关键.17.(4分)在△ABC中,AB=AC=6,BC=4,如果将△ABC绕着点B旋转,使得点C落在边AC上,此时,点A落在点A′处,联结AA′,那么AA′的长是4.【分析】作出图形,可以利用SAS证明△BA'A≌△ABC,从而得到AA'=BC,进而得到AA'的长.【解答】解:作出符合题意的图形如下:由题意,知△A'BC'≌△ABC,∴∠A'BC'=∠ABC,∴∠A'BC'﹣∠ABC'=∠ABC﹣∠ABC′,即∠A'BA=∠C'BC,∵AB=AC,BC=BC',∴∠ABC=∠C=∠BC'C,∴∠C'BC=∠BAC,∴∠A'BA=∠BAC,∵A'B=AB=AC,∴△BA'A≌△ABC(SAS),∴AA'=BC=4,故答案为:4.【点评】本题考查旋转的性质,等腰三角形的性质,全等三角形的判定和性质,理解题意,准确画出图形是解题的关键.18.(4分)如图,在△ABC中,∠BAC=90°,,如果点P在△ABC的内部,且满足∠APC=∠BPC=135°,那么CP的长是.【分析】通过证明△ACP∽△CBP,可得CP=AP,BP=CP,由勾股定理可求解.【解答】解:∵∠BAC=90°,AB=AC=,∴BC=AC=,∠ACB=45°,∵∠APC=∠BPC=135°,∴∠ACP+∠CAP=45°=∠ACP+∠BCP,∠APB=90°,∴∠BCP=∠CAP,∴△ACP∽△CBP,∴,∴CP=AP,BP=CP,∴BP=2AP,∵BP2+AP2=AB2,∴5AP2=5,∴AP=1,∴CP=,故答案为:.【点评】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,证明△ACP∽△CBP是解题的关键.三、(本大题共7题,第19-22题每题10分:第23、24题每题12分;第25题14分;满分78分)19.(10分)已知:.(1)求代数式的值;(2)当2a+3b﹣3=35时,求a、b的值.【分析】令a=2k,b=5k,(1)把a=2k,b=5k,代入即可求值;(2)把a=2k,b=5k,代入2a+3b﹣3=35,求出k=2,即可得到a=4,b=10.【解答】解:∵,∴令a=2k,b=5k,(1)===﹣2;(2)∵2a+3b﹣3=35时,∴2×2k+3×5k﹣3=35,∴k=2,∴a=2k=4,b=5k=10.【点评】本题考查比例的性质,关键是令a=2k,b=5k,即可求解.20.(10分)已知抛物线y=﹣x2+bx+3与y轴交于点C,与x轴交于点A(﹣1,0)和点B,(1)求此抛物线的表达式及顶点D坐标;(2)联结CD、BD,求∠CDB的余弦值.【分析】(1)依据题意,将(﹣1,0)代入y=﹣x2+bx+3求出b进而的表达式,再化成顶点式可得D的坐标;(2)依据题意,令y=0,可求得B的坐标,令x=0,求得C的坐标,再分别求出BC,BD,CD的长,由勾股定理逆定理可得∠DCB=90°,进而求出cos∠CDB的值.【解答】解:(1)由题意,将(﹣1,0)代入y=﹣x2+bx+3得,﹣1﹣b+3=0,∴b=2.∴抛物线为y=﹣x2+2x+3.又y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D为(1,4).(2)如图,由题意,令y=0,即﹣x2+2x+3=0.∴x=3或x=﹣1.∴B(3,0).又令x=0,∴y=3.∴CD==,DB==2,BC==3.∴BC2+CD2=BD2.∴∠BCD=90°.∴cos∠CDB===.【点评】本题主要考查了抛物线的图象与性质、解直角三角形,解题时要熟练掌握并能灵活运用是关键.21.(10分)如图,在梯形ABCD中,AD∥BC,BD平分∠ABC,CD=BD=8,AB=5.(1)求BC的长;(2)设,,求向量(用向量,表示).【分析】(1)证明△ABD∽△DBC,得出比例式求出BC的长即可;(2)过点D作DE∥AB,求出,再根据平行四边形法则求出即可.【解答】解:(1)∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD=5,∵CD=BD=8,∴∠DBC=∠C,∴∠ABD=∠DBC,∠ADB=∠C,∴△ABD∽△DBC,∴,∴,∴BC=;(2)如图,过点D作DE∥AB,则四边形ABED是菱形,∴BE=AD=5,∴BE=BC,∴,∵,∴=.【点评】本题考查了平面向量,相似三角形的判定与性质,证明△ABD∽△DBC,是解(1)的关键.22.(10分)小杰在学习了“仰角、俯角、坡比”后,他在自己居住的小区设计了如下测量方案:小杰利用小区中的一个斜坡CD,首先在斜坡CD的底端C测得高楼顶端A的仰角是60°,然后沿斜坡CD向上走到D处,再测得高楼顶端A的仰角是37°,已知斜坡CD的坡比是i=1:6,斜坡CD的底端C到高楼AB底端B的距离是20米,且B、C、E三点在一直线上(如图所示).假设测角仪器的高度忽略不计,请根据小杰的方案,完成下列问题:(1)求高楼AB的高度;(2)求点D离地面的距离(结果精确到0.1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73)【分析】(1)根据正切的定义求出AB;(2)过点D作DG⊥BE于点G,DH⊥AB于点H,设DG=x米,根据坡度的概念用x 表示出DH,根据正切的定义列出方程,解方程得到答案.【解答】解:(1)在Rt△ABC中,BC=20米,∠ACB=60°,∵tan∠ACB=,∴AB=BC•tan∠ACB=20×=60(米),答:高楼AB的高度为60米;(2)过点D作DG⊥BE于点G,DH⊥AB于点H,则四边形HBGD为矩形,∴BH=DG,DH=BG,设DG=x米,∴AH=AB﹣BH=(60﹣x)米,∵斜坡CD的坡比是i=1:6,∴CG=6x米,∴BG=(20+6x)米,在Rt△AHD中,tan∠ADH=,∴≈0.75,解得:x=≈6.2,经检验,x是原方程的解,答:点D离地面的距离约为6.2米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,熟记锐角三角函数的定义是解题的关键.23.(12分)如图,在▱ABCD中,点E在边AB上,DE2=AE•CD.(1)求证:AD•CD=CE•DE;(2)当点E是边AB的中点时,分别延长DE、CB交于点F,求证:AB2=2EF2.【分析】(1)根据相似三角形的判定与性质求解即可;(2)结合平行四边形的性质利用AAS证明△ADE≌△BFE,根据全等三角形的性质得出DE=EF,等量代换即可得解.【解答】证明:(1)在▱ABCD中,AB∥CD,∴∠AED=∠CDE,∵DE2=AE•CD,∴=,∴△ADE∽△ECD,∴=,∴AD•CD=CE•DE;(2)如图,在▱ABCD中,AB=CD,AD∥BC,∴∠A=∠FBE,∠ADE=∠F,∵点E是边AB的中点,∴AE=BE,∴△ADE≌△BFE(AAS),∴DE=EF,∵DE2=AE•CD,∴EF2=AB•AB,∴AB2=2EF2.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质、平行四边形的性质,熟记相似三角形的判定与性质、全等三角形的判定与性质是解题的关键.24.(12分)如图,在平面直角坐标系xOy中,第二象限的点M在抛物线y=ax2(a>0)上,点M到两坐标轴的距离都是2.(1)求该抛物线的表达式;(2)将抛物线y=ax2(a>0)先向右平移个单位,再向下平移k(k>0)个单位后,所得新抛物线与x轴交于点A(m,0)和点B(n,0),已知m<n,且mn=﹣4,与y 轴负半轴交于点C.①求k的值;②设直线与上述新抛物线的对称轴的交点为D,点P是直线上位于点D下方的一点,分别联结CD 、CP ,如果,求点P 的坐标.【分析】(1)由待定系数法即可求解;(2)①令y =(x ﹣)2﹣k =0,解得:x =±,即可求解;②由直线OD 的表达式知,tan ∠CPH =,则tan ∠POH =,在Rt △OPH 中,tan ∠POH===,即可求解.【解答】解:(1)由题意得,点M (﹣2,2),将点M 的坐标代入抛物线表达式得:2=4a ,解得:a =,则抛物线的表达式为:y =x 2;(2)①平移后的抛物线表达式为:y =(x ﹣)2﹣k ,令y =(x ﹣)2﹣k =0,解得:x =±,∵mn =﹣4,则(+)(﹣)=﹣4,解得:k =;②由①抛物线的表达式为:y =(x ﹣)2﹣k =x 2﹣x ﹣2,其对称轴为直线x =,则点C (0,﹣2),当x =时,=﹣2,即点D (,﹣2),∵点C 、D 的纵坐标相同,则CD∥x轴,由直线OD的表达式知,tan∠CPH=,则tan∠POH=,∵=tan∠CPH,设CH=3x,则PH=4x,在Rt△OPH中,tan∠POH===,解得:x=,则点P的坐标为:(,﹣).【点评】本题考查了二次函数综合题,考查了二次函数的性质,待定系数法求解析式,直角三角形的性质,灵活运用这些性质解决问题是解题的关键.25.(14分)如图,在Rt△ABC中,∠BAC=90°,,点D是边AB上的动点(点D不与点B重合),以CD为斜边在直线BC上方作等腰直角三角形DEC.(1)当点D是边AB的中点时,求sin∠DCB的值;(2)联结AE,点D在边AB上运动的过程中,∠EAC的大小是否变化?如果变化,请说明理由;如果不变,请求出∠EAC的大小;(3)设DE与AC的交点为G,点P是边BC上的一点,且∠CPD=∠CGD,如果点P 到直线CD的距离等于线段GE的长度,求△CDE的面积.【分析】(1)作DH⊥CB于点H,由勾股定理求出CD的长,则可得出答案;(2)连接AE,证出A,D,C,E四点共圆,得出∠EAC=∠EDC,由等腰直角三角形的性质可得出答案;(3)过点D作DN⊥BC于点N,PM⊥CD于点M,连接PG,证明△CEG≌△CMP(AAS),由全等三角形的性质得出CP=CG,证明△CGD≌△CPD(SSS),由全等三角形的性质得出∠DCG=∠PCD,DA=DN=BN,设DA=a,则BD=a,求出a的值,则可得出答案.【解答】解:(1)作DH⊥CB于点H,∵∠BAC=90°,,∴BC=AB=4,∵点D是边AB的中点,∴BD=,∴DH=BH=1,∴CH=BC﹣BH=3,∴CD===,∴sin∠DCB=;(2)∠EAC的大小不变化.连接AE,∵∠DAC=∠DEC=90°,∴A,D,C,E四点共圆,∴∠EAC=∠EDC,∵△DEC为等腰直角三角形,∴∠EDC=45°,∴∠EAC=45°.(3)过点D作DN⊥BC于点N,PM⊥CD于点M,连接PG,∵点P到直线CD的距离等于线段GE的长度,∴PM=EG,∵∠DCE=∠ACB=45°,∴∠ACE=∠BCD,∵∠E=∠PMC=90°,∴△CEG≌△CMP(AAS),∴CP=CG,∴∠CGP=∠CPG,又∵∠CGD=∠CPD,∴∠DGP=∠DPG,∴DG=DP,∴△CGD≌△CPD(SSS),∴∠DCG=∠PCD,∵DN⊥BC,DA⊥AC,∴DA=DN=BN,设DA=a,则BD=a,∴a+a=2,∴CD2=AD2+AC2==32﹣16,===8﹣4.∴S△CDE【点评】本题是三角形综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定与性质,三角形的面积,熟练掌握全等三角形的判定与性质是解题的关键。

上海市徐汇区2011学年九年级数学 学习能力诊断试卷

2010学年第二学期徐汇区初三年级数学学科学习能力诊断卷(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分) 1.下列运算正确的是(▲)A .224a a a +=; Ba =(a 为实数); C .a a a =÷23; D .()532a a =.2.汶川地震时温总理曾说:“多么小的问题,乘13亿,都会变得很大;多么大的经济总量,除以13亿,都会变得很小.”预计到2011年年末,我国人口总量约达1 400 000 000人,若每人每天浪费水,全国每天就浪费水( ▲ ) A .7×108升;B .7×109升×108升×109升.3.一次函数32y x =-+的图像一定不经过( ▲ )A .第一象限;B .第二象限;C .第三象限;D .第四象限. 4.如图,小明为了测量其所在位置A 点到河对岸B 点之间的距离,沿着与AB 垂直的方向走了10米,到达点C ,测得∠ACB =α,那么AB 的长为(▲)A .a cos 10米;B .a sin 10米;C .10cot a 米;D . a tan 10米.5.一次体育课上,15名男生跳高成绩如下表,他们跳高成绩的中位数和众数分别是( ▲ )A .3, 5;B .1.65, 1.65;C .;D ..6. 如图,将边长为3的等边ABC ∆沿着BA →平移,则'BC 的长为( ▲ )AB. C. D.二、填空题(本大题共12题,每题4分,满分48分)7.在直角坐标平面内,点(2,1)A -关于y 轴的对称点'A 的坐标是▲. 8.函数y =x 的取值X 围是▲.9.分解因式:228a -=__▲__.10.方程2422x x x =++的解是▲.11.若方程20x x m -+=有两个不相等的实数根,则m 的取值X 围是▲.12.抛物线22y x =-向左平移2个单位,向上平移1个单位后的抛物线的解析式是 ▲.13.布袋中有除颜色以外完全相同的8个球,3个黄球,5个白球, 从布袋中随机摸出一个球是白球的概率为▲.14. 一次函数b kx y +=的图像如图所示,当y >0时,x 的取值X 围是▲ .第14题C'A'C B第6题第4题15.如图,把一块直角..三角板放在直尺的一边上,如果∠2=65°,那么∠1=▲.16.Rt△ABC中,AD为斜边BC上的高,若4ABC ABDS S∆∆=, 则ABBC=▲.17.如图,在直角坐标平面内,ABO△中,90ABO∠=,30A∠=,1=OB,如果ABO△绕原点O按顺时针方向旋转到OA B''的位置,那么点B'的坐标是▲.18.如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在格点..上(小正方形的顶点).P1,P2,P3,P4,P5是△DEF边上的5个格点,请在这5个格点中选取2个作为三角形的顶点,使它和点D构成的三角形与△ABC相似, 写出所有..符合条件的三角形▲.三、(本大题共7题,19~22题每题10分,23~24题每题12分,25题14分,满分78分)127219⎛⎫-++⎪⎝⎭tan60︒20.先化简再求值:22693216284a a a aa a a+++÷---+,其中45a=.21.(本题满分10分,第(1)题6分,第(2)、(3)题各2分)作为国际化的大都市,某某有许多优秀的旅游景点.某旅行社对4月份本社接待的2000名外地游客来沪旅游的首选景点作了一次调查第17题x(1)填上频数和频率分布表中空缺的数据,并补全统计图;(2)由于五一黄金周、6月高三学生放假,该社接待外来旅游的人数每月比上月按,60%的速度增长,预计该旅行社6月将接待外地来沪的游客的人数是▲.(3)该旅行社预计10月黄金周接待外地来沪的游客将达5200人,请你估计首选景点是外滩的人数约是▲.22.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,正方形ABCD 中, M 是边BC 上一点,且B M =14BC . (1) 若,→→=a AB ,→→=b AD 试 用 ,→a →b 表 示 →DM ; (2) 若AB=4,求sin ∠AMD 的值.23.(本题满分12分,第(1)题7分,第(2)题5分)如图,在⊙O 中,直径AB 与弦CD 垂直,垂足为E ,连接AC ,将△ACE 沿AC 翻折得到△ACF ,直线FC 与直线AB 相交于点G .(1)证明:直线FC 与⊙O 相切;(2)若BG OB =,求证:四边形OCBD 是菱形.24.(本题满分12分,第(1)、(2)题各6分)DABD CM如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C, D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3∶2.(1)求直线AD和抛物线的解析式;(2)抛物线的对称轴与x轴相交于点F,点Q为直线AD上一点,且△ABQ与△ADF相似,直接写出....点Q点的坐标.Array25.(本题满分14分,第(1)题4分,第(2)题4在梯形ABCD中,AD//BC,AB⊥AD,AB=4,AD=5BE为半径画⊙E交直线DE于点F.=,(1)如图,当点F在线段DE上时,设BE x并写出自变量x的取值X围;(2)当以CD直径的⊙O与⊙E与相切时,求x(3)联接AF、BF,当△ABF是以AFAB2010学年第二学期徐汇区初三年级数学学习能力诊断卷评分标准和参考答案一.选择题(共6小题,每小题3分,满分18分)1.C ; 2.A ; 3.C ; 4.D ; 5.B ; 6.C . 二.填空题(共12小题,每小题3分,满分36分)7.'A (2,1); 8.2x ≥; 9.2(2)(2)a a +-; 10.2x =; 11.14m <; 12.1)2(22++-=x y ; 13.58; 14.2x <; 15.25; 16.12;17.⎪⎪⎭⎫⎝⎛23,21; 18.△DP 2P 5、△DP 2P 4、△DP 4P 5.三.(本大题共78分) 19.解:原式=51)1)3-+7分233=……………………………………………3分(说明:对一个2分,2个4分,3个5分,4个6分,5个7分)20.解:2(3)2(4)2(4)(4)(3)4a a aa a a a ⎛⎫+--⎪+-++⎝⎭……………………………………………4分 =2(3)244a aa a +-++……………………………………………………2分=64a +…………………………………………………………………………2分当45a =时,64a +=54……………………………………………………………2分21.(1)答案略; (2)5120; (3) 1690.22.(1) ∵正方形ABCD ,∴AD//BC ,AB//CD ,且AB=CD=BC=AD , …………1分∵B M =14BC ,∴34MC b →→=,DC AB a →→→==………………………………2分∴34DM a b →→→=-…………………………………………………………1分(2)∵AB=4,且B M =14BC ,∴MC=3,BM=1,在Rt △DMC 中,DM 5.===……………………1分 在Rt △ABM 中,AM =……………………1分过点A 作AE ⊥DM 于E , ………………………………………………………1分 S △ADM=1122DM AE AD AB ⋅=⋅,∴165AE =. ………………………1分在Rt △AEM 中,sin ∠AMD AE AM ==…………………………………2分 23.解:(1)连接OC .…………………………………………………………1分∵OA OC =, ∴12∠=∠…………………………………………1分由翻折得,13∠=∠,90F AEC ∠=∠=︒.…1分 ∴23∠=∠. …………………………………1分 ∴OC ∥AF .……………………………………1分 ∴90OCG F ∠=∠=︒.…………………………1分 ∵点C 在圆上∴直线FC 与⊙O 相切.………………………1分(2)解一:在Rt△OCG 中,∵BG OB =,∴12BC OG OB ==,…………1分∵直径AB 垂直弦CD ,∴CB BD =………………………1分 ∴CB BD =………………………1分D(第23题)∵OB OC OD ==∴OB OC OD BD ===. ………………………1分 ∴四边形OCBD 是菱形.………………………1分解二:在Rt△OCG 中,∵BG OB =,∴12BC OG OB ==,………………1分 ∵OB OC =,∴CB CO =………………………1分 ∵AB 垂直于弦CD ,∴OE EB =………………………1分 ∵直径AB 垂直弦CD ,∴CE ED =………………………1分 ∴四边形OCBD 是平行四边形∵AB 垂直于弦CD ,∴四边形OCBD 是菱形.…………………………………1分 24.(1)∵△ABE 与△ABC 的面积之比为3∶2.,E (2,6),∴C (0,4),D (0,2), ………………………………………………2分 设直线AD 的解析式为b kx y +=,由题意得⎩⎨⎧=+=642b k b ,解得⎩⎨⎧==22k b ,直线AD 的解析式为22+=x y ……1分∴A (1-,0).………………………1分抛物线经过A 、C 、E 三点,得⎪⎩⎪⎨⎧=++=+-=641604c b a c b a c 解得⎪⎩⎪⎨⎧=-==314b a c .所求抛物线的解析式为:432++-=x x y . ……………………………………2分(2)当△ABQ 与△CED 相似时,由(1)有B (4,0),F (23,0) …………………………………………2分 ①若△ABQ ∽△AFD ,AB AF AQ AD =,即215=AQ ,52=AQ ,Q (1,4) …2分 ②若△ABQ ∽△ADF ,AQ AF AB AD =, 即AQ 2555=,255=AQ ,Q (5,23)…2分25.(1) 过点D 作BC DG ⊥于点G .可得8,3,,4=====BC GC AD BG AB DG ,x EG -=5; ……2分 在Rt △DEG 中,∴222DG EG DE +=,即222)5(4)(x y x -+=+∴x x y -+-=16)5(2(负值舍去) (x <0 4.1≤ )…………………2+1分(2)设EF 的中点O ,联结OE ,过点O 作BC OH ⊥于点H .,23225===HC OH OC ,,238--=x EH ;︒1⊙O 与⊙E 外切时,25+=x OE ,在OEH Rt ∆中,222EH OH OE +=,∴222)25()238(2+=--+x x 化简并解得 920=x ……………2分︒2⊙O 与⊙D 内切时,25-=x OE 在OEH Rt ∆中,222EH OH OE +=, ∴222)25()238(2-=--+x x ,化简并解得 5x =……………2分综上所述,当⊙O 与⊙D 相切时,5x =或920. (3)①4==AB AF 时, 由BE=EF ,AE=AE ,有△ABE 和△AEF 全等,∴90=∠=∠ABE AFE ,即DE AF ⊥…1分 在AFD Rt ∆中,22AF AD y -==34522=-…1分当点F 在线段DE 上时,由x x y -+-=16)5(2=3,解得2=x ; …1分当点F 在线段DE 延长线上时,由16)5(2+--=x x y =3,解得8=x ;1分②FB FA =时,过点F 作AB QF ⊥于点Q ,有AQ=BQ ,且AD ∥BC ∥FQ∴EF DF =, ……………1分x x y -+-=16)5(2=x ,33725±-=x (负值舍去); ……………1分综上所述,当△ABF 是以AF 为腰的等腰三角形时,8=x 、2、33725+-.。

徐汇区一模初三数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 已知等差数列{an}的首项为a1,公差为d,若a1 + a3 + a5 = 18,则a1 + a2 + a3 =()A. 9B. 10C. 11D. 123. 在△ABC中,∠A=60°,∠B=45°,则∠C=()A. 60°B. 75°C. 90°D. 105°4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2C. y = 3/xD. y = x^35. 若方程x^2 - 5x + 6 = 0的两根分别为x1和x2,则x1 + x2 =()A. 5B. -5C. 6D. -66. 已知正方形的对角线长为10cm,则该正方形的周长为()A. 20cmB. 25cmC. 30cmD. 40cm7. 在直角坐标系中,点A(2,3)关于直线y=x的对称点为()A. (3,2)B. (2,3)C. (-3,-2)D. (-2,-3)8. 下列命题中,正确的是()A. 所有的等腰三角形都是等边三角形B. 所有的平行四边形都是矩形C. 所有的直角三角形都是等腰三角形D. 所有的等腰三角形都是直角三角形9. 若二次函数y = ax^2 + bx + c(a≠0)的图象开口向上,且顶点坐标为(1,-2),则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≠ 010. 在平面直角坐标系中,点P(2,-3)到直线y = 2x的距离为()A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 若等差数列{an}的前三项分别为2,5,8,则该数列的公差为______。

12. 在△ABC中,∠A=30°,∠B=75°,则△ABC的面积是△ABC外接圆半径的______倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011学年第一学期徐汇区初三年级数学学科
期终学习能力诊断卷 2012、1
(时间100分钟 满分150分)
考生注意∶
1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一.选择题(本大题共6题,每题4分,满分24分)
【下列各题的四个选项中,有且只有一个选项是正确的】
1.在ABC Rt ∆中,︒=∠90C ,5=AC ,α=∠A ,那么BC 的长是………( ) A.αcot 5; B.αtan 5; C.
αcos 5; D.α
sin 5
. 2.将抛物线22+=x y 向右平移1个单位后所得抛物线的解析式是………………( ) A.32+=x y ;
B.12+=x y ;
C.2)1(2++=x y ;
D.2)1(2+-=x y .
3.直升飞机在离地面2000米的上空测得上海东方明珠底部的俯角为︒30,此时直升飞机与
上海东方明珠底部之间的距离是……………………………………………………( ) A.2000米; B.32000米; C.4000米; D.34000米. 4.在ABC ∆中,5==AC AB ,8=BC ,BC AD ⊥,垂足为D ,BE 是边AC 上的中
线,AD 与BE 相交于点G ,那么AG 的长为 …………………………………( ) A.1 ; B.2; C.3; D.无法确定. 5.关于直角三角形,下列说法正确的是…………………………………………………( ) A.所有的直角三角形一定相似;
B.如果直角三角形的两边长分别是3和4,那么第三边的长一定是5; C.如果已知直角三角形两个元素(直角除外),那么这个直角三角形一定可解;
D.如果已知直角三角形一锐角的三角比,那么这个直角三角形的三边之比一定确定. 6.如图1所示的抛物线是二次函数2231y ax x a =-+-的图像,那么下列结论错误的 是……………………………………………………………(
A.当y <0时,x >0; B.当3-<x <0时,y >0C.当x <2
3
-
时,y 随x 的增大而增大; D.上述抛物线可由抛物线2
x y -=平移得到. 二.填空题(本大题共12题,每题4分,满分48分) 7.如果
4
3
=b a ,且21=+b a ,那么=-a b ▲ .
8.如果)2(3b a b a
-=+,那么用a 表示b :=b ▲ .
9.抛物线1322-+-=x x y 与x 轴的交点坐标是 ▲ .
10.2011年11月“天宫一号”和“神州八号”的成功对接是我国航天事业又一巨大成就.在
一比例尺是15000000:1的卫星地图上,测得上海和南京的距离大约是2厘米.那么上海和南京的实际距离大约是 ▲ 千米. 11.抛物线bx x y +=2的对称轴是直线2
1
-
=x ,那么抛物线的解析式是 ▲ . 12.如图2,在A B C ∆中,5,4,6===AC BC AB ,点D 在边AB 上,AB AD AC ⋅=2

那么=CD ▲ .
13.如图3,在ABC ∆中,点E D 、分别在边CA BA 、上,DE ∥BC ,
9
1
=∆∆BCA DEA S S ,
3=DE ,那么=BC ▲ .
14.如图4,在四边形ABDC 中,联结BC ,︒=∠=∠90BCD A ,︒=∠30D ,
︒=∠45ABC ,如果2=BC ,那么=ABDC S 四边形 ▲ .
15.如图5,在A B C Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果ADC ∆和BDC ∆
的周长之比是3:1,则=∠BCD cot ▲ .
16.一公路大桥引桥长180米,已知引桥的坡度3:1=i ,那么引桥的铅直高度为
__▲ (结果保留根号)米.
17.将抛物线442
+-=x x y 沿y 轴向下平移后,所得抛物线与x 轴交于点B A 、,顶点
为C ,如果ABC ∆是等腰直角三角形,那么顶点C 的坐标是 ▲ . 18.在△ABC 中,AB =AC ,把△ABC 折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC
于点N .如果△CAN 是等腰三角形,则∠B 的度数为______▲________.
三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分; 满分78分) 19.(本题满分10分)
计算:︒︒+︒--︒-︒
⋅︒︒
30tan 60cot 45sin )145(cos 60sin 30cot 45tan 2.
A
B
C D E
(图3) (图2) A
B C D
如图6,□ABCD 中,AB ∥CD ,AD ∥BC ,点F 是CD 的中点,BF 和AC 相交于点E .
(1)求CE
AE 的值;(5分)
(2)如果BA a = ,AD b = ,请用a 、b
分)
21.(本题满分10分)
如图7,在ABC ∆中,点D 在边AB 上,点E F 、在边AC 上,且DF ∥
BE ,
CE
AE
FE AF =. (1)求证:DE ∥BC ;(5分)
(2)如果3
2
=FE AF ,2=∆ADF S ,求ABC S ∆的值.(5分)
22.(本题满分10分)
小楠家附近的公路上通行车辆限速为60千米
/小时.小楠家住在距离公路50米的居民楼(如图8中的P 点处),在他家前有一道路指示牌MN 正好挡住公路上的AB 段(即点A M P 、、和点B N P 、、分别在一直线上),已知MN ∥AB , ︒=∠30MNP ,︒=∠45NMP ,小楠看见一辆卡车通过A 处,7秒后他在B 处再次看见这辆卡车,他认定这辆卡车一定超速,你同意小楠的结论吗?请说明理由. (参考数据:2≈1.41,3≈1.73)
23.(本题满分12分)
如图9,梯形ABCD 中,AB ∥CD ,BC AD =,点E 在边AD 上,BE 与AC 相 交于点O ,且BCA ABE ∠=∠.
求证:(1)BAE ∆∽BOA ∆; (6分)
(2)AE BC BE BO ⋅=⋅. (6分)
A A
B P M N (图8)
如图10,AOB ∆的顶点A 、B 在二次函数
3
12-=y A 、B 分别在y 轴和x 轴上,tan ∠ABO =1. (1)求此二次函数的解析式;(4分)
(2)过点A 作AC ∥BO 交上述函数图像于点C ,点P 在上述函数图像上,当POC ∆与ABO ∆
25.(本题满分14分)
如图11,在ABC Rt ∆中,︒=∠90ACB ,CE 是斜边AB 上的中线,10=AB ,
3
4tan =
A ,点P 是CE 延长线上的一动点,过点P 作C
B PQ ⊥,交CB 延长线于点Q , 设y BQ x EP ==,.
(1)求y 关于x 的函数关系式及定义域;(4分)
(2)联结PB ,当PB 平分CPQ ∠时,求PE 的长;(4分)
(3)过点B 作AB BF ⊥交PQ 于F ,当BEF ∆和QBF ∆相似时,求x 的值.(6分)。

相关文档
最新文档