信息论与编码概念总结

合集下载

信息论与编码总结

信息论与编码总结

信息论与编码1. 通信系统模型信源—信源编码—加密—信道编码—信道—信道解码—解密—信源解码—信宿 | | |(加密密钥) 干扰源、窃听者 (解密秘钥)信源:向通信系统提供消息的人或机器信宿:接受消息的人或机器信道:传递消息的通道,也是传送物理信号的设施干扰源:整个系统中各个干扰的集中反映,表示消息在信道中传输受干扰情况 信源编码:编码器:把信源发出的消息变换成代码组,同时压缩信源的冗余度,提高通信的有效性 (代码组 = 基带信号;无失真用于离散信源,限失真用于连续信源)译码器:把信道译码器输出的代码组变换成信宿所需要的消息形式基本途径:一是使各个符号尽可能互相独立,即解除相关性;二是使各个符号出现的概率尽可能相等,即概率均匀化信道编码:编码器:在信源编码器输出的代码组上增加监督码元,使之具有纠错或检错的能力,提高通信的可靠性译码器:将落在纠检错范围内的错传码元检出或纠正基本途径:增大码率或频带,即增大所需的信道容量2. 自信息:()log ()X i i I x P x =-,或()log ()I x P x =-表示随机事件的不确定度,或随机事件发生后给予观察者的信息量。

条件自信息://(/)log (/)X Y i j X Y i j I x y P x y =-联合自信息:(,)log ()XY i j XY i j I x y P x y =-3. 互信息:;(/)()(;)log log ()()()i j i j X Y i j i i j P x y P x y I x y P x P x P y ==信源的先验概率与信宿收到符号消息后计算信源各消息的后验概率的比值,表示由事件y 发生所得到的关于事件x 的信息量。

4. 信息熵:()()log ()i iiH X p x p x =-∑ 表示信源的平均不确定度,或信源输出的每个信源符号提供的平均信息量,或解除信源不确定度所需的信息量。

Information theory(信息论与编码)

Information theory(信息论与编码)

信息论与编码总结1.关于率失真函数的几点总结原理(需要解决什么问题?或者是受什么的启发,能达到什么目的)。

与无失真信源编码相比,限失真信源编码的原理是什么?我们知道无失真信源编码是要求使信源的所发送的信息量完全无损的传输到信宿,我们常见的编码方式有哈夫曼编码、费诺编码和香农编码。

他们的中心思想是使序列的中0和1出现的概率相等。

也就是说长的码字对应的信源符号出现的概率较小,而短的码字对应的信源符号出现的概率较大,这样就能实现等概。

若编码能实现完全的等概,则就能达到无失真的传输。

此时传输的信息量是最大的,和信源的信息量相等,此时传输的信息速率达到信道容量的值。

(其实这是编码的思想,与之对应的为限失真编码的思想。

香农本人并没有提出明确的编码方法,但是给出指导意义)与无失真的信道相比,如信道存在一定的损耗,即表明有传递概率。

此时我们换一个角度。

我们使信源概率分布固定不变,因为平均交互信息量I(X;Y)是信道传递概率P(Y/X)的下凸函数,因此我们设想一种信道,该信道的传递概率P(Y/X)能使平均交互信息达到最小。

注意,此时的传递概率P(Y/X)就相当于“允许一定的失真度”,此时我们能这样理解:即在允许的失真度的条件下,能使平均交互信息量达到最小,就表明我们传输的信息可以达到最小,原来的信息量还是那么大。

现在只需传输较小信息,表明压缩的空间是非常大的。

无失真压缩和限失真压缩其实是数学上的对偶问题。

即无失真压缩是由平均相互信息量的上凸性,调整信源概率分布,使传输的信息量达到最大值C,这个值就是信道容量。

(信道容量是不随信源概率分布而改变的,是一种客观存在的东西,我们只是借助信源来描述这个物理量,事实上也肯定存在另外一种描述方式。

)限失真压缩则是相反,他考虑的是信源概率分布固定不变,是调节信道转移概率的大小,使平均交互信息量达到最小。

此时信道容量还是相同,只是我们要传输的信息量变小了,(时效性)有效性得到提高。

信息论与编码复习重点整理(1页版)

信息论与编码复习重点整理(1页版)

1第1章 概论1. 信号(适合信道传输的物理量)、信息(抽象的意识/知识,是系统传输、转换、处理的对象)和消息(信息的载体)定义;相互关系:(1信号携带消息,是消息的运载工具(2信号携带信息但不是信息本身(3同一信息可用不同的信号来表示(4同一信号也可表示不同的信息。

2. 通信的系统模型及目的:提高信息系统可靠性、有效性和安全性,以达到系统最优化.第2章 信源及信息量1. 单符号离散信源数学模型2. 自信息量定义:一随机事件发生某一结果时带来的信息量I(xi)=-log2P(xi)、单位:bit 、物理意义:确定事件信息量为0;0概率事件发生信息量巨大、性质:I(xi)非负;P(xi)=1时I(xi)=0;P(xi)=0时I(xi)无穷;I(xi)单调递减;I(xi)是随机变量。

3. 联合自信息量:I(xiyi)=- log2P(xiyj) 物理意义:两独立事件同时发生的信息量=各自发生的信息量的和、条件自信息量:I(xi/yi)=- log2P(xi/yj);物理意义:特定条件下(yj 已定)随机事件xi 所带来的信息量。

三者关系:I(xi/yi)= I(xi)+ I(yi/xi)= I(yi)+ I(xi/yi)4. 熵:定义(信源中离散消息自信息量的数学期望)、单位(比特/符号)、物理意义(输出消息后每个离散消息提供的平均信息量;输出消息前信源的平均不确定度;变量的随机性)、计算:(H(X)=-∑P(xi)log2 P(xi)) 1)连续熵和离散的区别:离散熵是非负的2)离散信源当且仅当各消息P相等时信息熵最大H (X )=log 2 n 。

3)连续信源的最大熵:定义域内的极值. 5.条件熵H(Y/X) = -∑∑P(xiyj) log2P(yj/xi),H (X /Y )= -∑∑P(xiyj) log2P(xi/yj) 、物理意义:信道疑义度H(X/Y):信宿收到Y 后,信源X 仍存在的不确定度,有噪信道传输引起信息量的损失,也称损失熵。

[信息论与编码]知识点总结

[信息论与编码]知识点总结

[信息论与编码]知识点总结2021/12/02 from Xwhite这个是预习完之后,感觉应该掌握的⼀些知识的总结。

总共分成四个⼤部分吧信息量与信源熵 公式背住,然后套公式,冗余度的概念信道和信道容量 概念,互信息的计算,简单信道容量的计算信源编码 概念,定长编码,变长编码,哈夫曼编码(应该是必考),⾹农编码信道编码 挺难的,编码定理得看,纠错编译码的概念看看就⾏,线性分组码必会,循环码,汉明码。

卷积码应该不考知识点总结第⼀章的⼀些基本概念看书就完了,⽐如信息、消息、通信模型等。

信息量与信源熵背熟!背熟!背熟!因为是知识点总结,所以基本只给出公式,想加深了解可以看课本,当然也可以看看本博客的⽂章先验概率:⽐如,考完试你估算⾃⼰及格的概率是50%,这就是先验概率,你及格的概率。

后验概率:⽐如,你估算完之后,你找个最差的同学⼀问,他说他能及格,也就是在你已知他可能及格的条件下你及格的概率,就是后验概率。

总结如果做题过程中,题⽬问的是单个符号的⾃信息量,那么我们就⽤以下公式。

如果题⽬问的是离散信源的信息量,或者熵,就⽤以下公式。

各概念之间的关系补充⼀些概念我们从信息量的传输⾓度来看通信模型信源:发出信息量H(X)——>信道:信道中损失的信息量H(X|Y)——>信宿:接收端获得的信息量I(X;Y) H(X|Y):疑义度,也可以叫损失熵,表⽰由于信道上存在⼲扰和噪声⽽损失掉的平均信息量。

H(Y|X):噪声熵全损信道:⼲扰很⼤,难以从Y中提取X的有效信息,信源发出的所有信息都损失在信道中I(X;Y)=0 ⽐如:加密编码⽆损信道:没有⼲扰,接收端能完全收到信源发出的信息。

I(X;Y)=H(X)冗余度概念看看书。

想要对这⾥的深⼊理解可以看⼀下课本或者看⼀下博客中离散信道的⽂章。

信道和信道容量信道的概念请⾃⾏看书记忆。

总结信源编码定长码:若⼀组码中所有码字的码长相同,则称为定长码变长码:若⼀组码中所有码字的码长各不相同,则称为变长码奇异码:若⼀组码中存在相同的码字,则称为奇异码。

信息论与编码(伴随式译码)

信息论与编码(伴随式译码)
详细描述
最佳编码定理是信息论中的重要定理 之一,它为信源编码提供了理论指导 。在实际应用中,可以通过哈夫曼编 码、算术编码等算法实现最佳编码。
03 信道编码
信道编码的分类
线性编码
线性编码是一种简单的编码方式,它将输入信息映射到一个线性空间中的码字。 线性编码具有较低的编码复杂度和较好的解码性能,但可能存在较高的误码率。
熵的概念及其性质
总结词
熵是系统不确定性的度量,具有非负性、对称性、可加性等 性质。
详细描述
熵是系统不确定性的度量,其值越大,系统的不确பைடு நூலகம்性越高 。熵具有非负性,即熵永远为非负值;对称性,即等概率事 件组成的系统的熵相同;可加性,即两个独立系统的熵可以 相加。
互信息与条件互信息
总结词
互信息是两个随机变量之间的相关性度量,条件互信息是给定第三个随机变量条件下两个随机变量之间的相关性 度量。
信息论与编码(伴随式译码)
目录
• 信息论基础 • 信源编码 • 信道编码 • 伴随式译码 • 编码在实际通信系统中的应用
01 信息论基础
信息量的定义与性质
总结词
信息量是衡量信息不确定性的量,具有非负性、对称性、可加性等性质。
详细描述
信息量用于度量信息的不确定性,其值越大,信息的不确定性越小。信息量具 有非负性,即信息量永远为非负值;对称性,即两个等概率事件的信息量相同; 可加性,即两个独立事件的信息量可以相加。
详细描述
互信息用于度量两个随机变量之间的相关性,其值越大,两个随机变量的相关性越强。条件互信息是在给定第三 个随机变量条件下度量两个随机变量之间的相关性,其值越大,在给定条件下两个随机变量的相关性越强。互信 息和条件互信息在信息论中广泛应用于信号处理、数据压缩等领域。

信息论与编码_课程总结

信息论与编码_课程总结

《信息论与编码》课程总结吴腾31202130 通信1204信息论与编码是一门应用概率论、随机过程和数理统计等方法来研究信息的存储、传输、处理、控制和利用一般规律的科学。

它主要研究如何提高信息系统的可靠性、有效性、保密性和认证性,以使信息系统最优化。

本书系统地论述信息论与纠错编码的基本理论。

共9章,内容包括:信息的定义和度量;离散信源和连续信源的信息熵;信道和信道容量;平均失真度和信息率失真函数;三个香农信息论的基本定理:无失真信源编码定理、限失真信源编码定理和信道编码定理;若干种常见实用的无失真信源编码方法,以及信道纠错编码的基本内容的分析方法。

第1章首先讨论处信息的概念,进而讨论信息论这一学科的研究对象,目的和内容,并简述本学科的发展历史,现状和动向。

本章需掌握的大多是记忆性内容,主要记住香农(C.E.Shannon)在1948年发表的论文《通信的数学理论》为信息论奠定了理论基础。

通信系统模型以及其五个部分(信息源,编码器,信道,译码器信宿)第2章首先讨论信源,重点研究信源的统计特性和数学模型,以及各类离散信源的信息测度—熵及其性质,从而引入信息理论的一些基本概念和重要结论。

本章内容是香农信息论的基础。

重点要掌握离散信源的自信息,信息熵(平均自信息量),条件熵,联合熵的的概念和求法及其它们之间的关系,离散无记忆的扩展信源的信息熵。

另外要记住信源的数学模型。

第3章首先讨论离散信息信道的统计特性和数学模型,然后定量的研究信道传输的平均互信息及其性质,并导出信道容量及其计算方法。

重点要掌握信道的数学模型,平均互信息的性质和算法以及与信息熵,条件熵之间的关系,会求一些特殊信道的信道容量,如:无噪无损信道,对称信道,准对称信道以及一般信道的信道容量的求法。

第4章讨论随机波形信源的统计特性和它的信息测度,以及波形信道的信道容量等问题。

重点要掌握连续信源的差熵,联合差熵,条件熵,平均互信息的性质和求法以及它们之间的关系。

信息论课程总结

信息论课程总结

《信息论与编码》课程总结信息论与编码作为我们的一门所学课程从它的名称我们就可以知道它是由信息论和编码组成,信息论是编码的基础。

也就是说信息论是理论而编码就是我们的实际操作了。

纵观本书可以看出,信息论与编码是一门应用概率论、随机过程和数理统计等方法来研究信息的存储、传输、控制、和利用的一般规律的科学。

可见它与我们大二所学的概率论与数理统计有很大的联系。

从学习我们也可以看出,书中的很多定义和证明都是从概率论角度出发的,从而衍生出信息论。

作为一名信息与计算科学专业的学生,从这个名字就可以看出信息论与编码对我们所学的专业也是挺重要的了。

通常人们公认信息论的奠基人是当代伟大的数学家和美国杰出的科学家香农,他著名的论文《通信的数学理论》是信息论的理论基础,半个世纪以来,以通信理论为核心的经典信息论,正以信息技术为物化手段,向尖端方向发展,并以神奇般的力量把人类推人信息时代。

那么信息论与编码到底是干嘛的呢?它主要研究如何提高信息系统的可靠性、有效性、保密性和认证性,以使信息系统最优化。

所谓可靠性高就是要使信源发出的消息经过新到传输以后,尽可能准确的、不失真的再现在接收端;而所谓有效性高,就是经济效果好,即用经可能少的和尽可能少的设备来传送一定数量的信息;所谓保密性就是隐蔽和保护通信系统中传送的信息,使他只能被授权接受者获取,而不能被未授权者接受和理解;而认证性是指接受者能正确的判断所接受的消息的正确性,验证消息的完整性,而不是伪造的和被修改的。

20世纪中出现了一个很厉害的人!香农!自香农信息论问世以后,信息理论本身得到不断的发展和深化,尤其在这个理论指导下,信息技术也得到飞快的发展。

这又使对信息的研究冲破了香农狭义信息论的范畴,几乎渗透到自然科学与社会科学的所有领域。

从而形成了一门具有划时代意义的新兴学科----信息科学。

所以信息论是信息科学发展的源泉,也是信息科学的基础理论。

随着信息时代的到来,计算机的应用越来越广泛,所以只要涉及信息的存储,传输和处理的问题就要利用香农信息论的理论---无失真通信的传输的速率极限(香农极限),无失真和限失真信源编码理论(数据压缩原理)和信道编码原理(纠错码原理)。

信息论与编码

信息论与编码

信息论与编码第⼀章1、信息,信号,消息的区别信息:是事物运动状态或存在⽅式的不确定性的描述消息是信息的载体,信号是消息的运载⼯具。

2、1948年以“通信的数学理论”(A mathematical theory of communication )为题公开发表,标志着信息论的正式诞⽣。

信息论创始⼈:C.E.Shannon(⾹农)第⼆章1、⾃信息量:⼀个随机事件发⽣某⼀结果后所带来的信息量称为⾃信息量,简称⾃信息。

单位:⽐特(2为底)、奈特、笛特(哈特)2、⾃信息量的性质(1)是⾮负值(2) =1时, =0, =1说明该事件是必然事件。

(3) =0时, = , =0说明该事件是不可能事件。

(4)是的单调递减函数。

3、信源熵:各离散消息⾃信息量的数学期望,即信源的平均信息量。

)(log )(])(1[log )]([)( 212i ni i i i a p a p a p E a I E X H ∑=-===单位:⽐特/符号。

(底数不同,单位不同)信源的信息熵;⾹农熵;⽆条件熵;熵函数;熵。

4、信源熵与信息量的⽐较(书14页例2.2.2)()log () 2.1.3 i i I a p a =-()5、信源熵的意义(含义):(1)信源熵H(X)表⽰信源输出后,离散消息所提供的平均信息量。

(2)信源熵H(X)表⽰信源输出前,信源的平均不确定度。

(3)信源熵H(X)反映了变量X 的随机性。

6、条件熵:(书15页例2.2.3) 7、联合熵:8、信源熵,条件熵,联合熵三者之间的关系:H(XY)= H(X)+H(Y/X) H(XY)= H(Y)+H(X/Y)条件熵⼩于⽆条件熵,H(Y/X)≤H(Y)。

当且仅当y 和x 相互独⽴p(y/x)=p(y),H(Y/X)=H(Y)。

两个条件下的条件熵⼩于⼀个条件下的条件熵H(Z/X,Y)≤H(Z/Y)。

当且仅当p(z/x,y)=p(z/y)时取等号。

联合熵⼩于信源熵之和, H(YX)≤H(Y)+H(X)当两个集合相互独⽴时得联合熵的最⼤值 H(XY)max =H(X)+H(Y) 9、信息熵的基本性质:(1)⾮负性;(2)确定性;(3)对称性;(4)扩展性(5)可加性 ( H(XY) = H(X)+ H(Y) X 和Y 独⽴ H (XY )=H (X )+ H (Y/X )H (XY )=H (Y )+ H (X/Y ) )(6)(重点)极值性(最⼤离散熵定理):信源中包含n 个不同离散消息时,信源熵H(X)有当且仅当X 中各个消息出现的概率全相等时,上式取等号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息论与编码概念总结
信息论最初由克劳德·香农在1948年提出,被称为“信息论的父亲”。

它主要研究的是如何最大化信息传输的效率,并对信息传输的性能
进行量化。

信息论的核心概念是信息熵,它描述了在一个信息源中包含的
信息量的平均值。

信息熵越高,信息量越大,反之亦然。

具体来说,如果
一个信源生成的信息是等可能的,那么它的信息熵达到最大值,可以通过
二进制对数函数计算。

此外,信息论还提出了联合熵、条件熵、相对熵等
概念,用于分析复杂的信息源与信道。

除了信息熵,信息论对信道容量的定义也是非常重要的。

信道容量指
的是信道可以传输的最大信息速率,单位是bit/s。

在信息论中,最为典
型的信道是噪声信道,它在传输数据过程中会引入随机噪声,从而降低传
输的可靠性。

通过信道编码,可以在一定程度上提高信号的可靠性。

信息
论提出了香农编码定理,它给出了当信道容量足够大时,存在一种信道编
码方式,可以使误码率趋近于零,实现可靠的数据传输。

信息论不仅可以应用于通信领域,还可以应用于数据压缩。

数据压缩
主要有无损压缩和有损压缩两种方式。

无损压缩的目标是保持数据的原始
信息完整性,最常见的压缩方式是霍夫曼编码。

它通过统计原始数据中的
频率分布,将高频率的符号用较短的编码表示,从而减小数据的存储空间。

有损压缩则是在保证一定的视觉质量、音频质量或其他质量指标的前提下,对数据进行压缩。

有损压缩的目标是尽可能减小数据的存储空间和传输带宽。

常见的有损压缩方法包括JPEG、MP3等。

编码是信息论的应用之一,它是实现信息传输与处理的关键技术。


码主要分为源编码和信道编码两个方面。

源编码是将源信号进行编码,以
减小信号的冗余,并且保持重构信号与原信号的接近程度。

常见的源编码
方法有霍夫曼编码、香农-费诺编码等。

信道编码则是在信道传输中引入冗余信息,以便在传输过程中检测和修复错误。

常见的信道编码方法有海明码、卷积码、LDPC码等。

这些编码方法可以通过增加冗余信息的方式来提高传输的可靠性和纠错能力。

此外,编码还可以用于加密,以保护信息的安全性。

总之,信息论与编码是现代通信领域中非常重要的理论与技术。

信息论提供了一种量化信息的方法,研究信息的传输与处理问题;编码则是将信息用相应的编码方式进行处理和压缩的技术。

信息论与编码的研究给通信技术的发展提供了理论基础,为实现高效、可靠的信息传输做出了重要贡献。

相关文档
最新文档