高中物理磁场经典计算题专题

合集下载

高中物理竞赛讲义-磁场典型例题解析精选全文完整版

高中物理竞赛讲义-磁场典型例题解析精选全文完整版

可编辑修改精选全文完整版磁场典型例题解析一、磁场与安培力的计算【例题1】两根无限长的平行直导线a 、b 相距40cm ,通过电流的大小都是3.0A ,方向相反。

试求位于两根导线之间且在两导线所在平面内的、与a 导线相距10cm 的P 点的磁感强度。

【解说】这是一个关于毕萨定律的简单应用。

解题过程从略。

【答案】大小为×10−6T ,方向在图9-9中垂直纸面向外。

【例题2】半径为R ,通有电流I 的圆形线圈,放在磁感强度大小为B 、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。

【解说】本题有两种解法。

方法一:隔离一小段弧,对应圆心角θ ,则弧长L = θR 。

因为θ → 0(在图9-10中,为了说明问题,θ被夸大了),弧形导体可视为直导体,其受到的安培力F = BIL ,其两端受到的张力设为T ,则T 的合力ΣT = 2Tsin 2θ再根据平衡方程和极限xxsin lim0x →= 0 ,即可求解T 。

方法二:隔离线圈的一半,根据弯曲导体求安培力的定式和平衡方程即可求解…【答案】BIR 。

〖说明〗如果安培力不是背离圆心而是指向圆心,内张力的方向也随之反向,但大小不会变。

〖学员思考〗如果圆环的电流是由于环上的带正电物质顺时针旋转而成(磁场仍然是进去的),且已知单位长度的电量为λ、环的角速度ω、环的总质量为M ,其它条件不变,再求环的内张力。

〖提示〗此时环的张力由两部分引起:①安培力,②离心力。

前者的计算上面已经得出(此处I = ωπλ•π/2R 2 = ωλR ),T 1 = B ωλR 2 ;后者的计算必须..应用图9-10的思想,只是F 变成了离心力,方程 2T 2 sin 2θ =πθ2M ω2R ,即T 2 =πω2R M 2 。

〖答〗B ωλR 2 + πω2R M 2 。

【例题3】如图9-11所示,半径为R 的圆形线圈共N 匝,处在方向竖直的、磁感强度为B 的匀强磁场中,线圈可绕其水平直径(绝缘)轴OO ′转动。

高中物理【磁场】专题分类典型题(带解析)

高中物理【磁场】专题分类典型题(带解析)

高中物理磁场专题分类题型一、【磁场的描述 磁场对电流的作用】典型题1.如图所示,带负电的金属环绕轴OO ′以角速度ω匀速旋转,在环左侧轴线上的小磁针最后平衡时的位置是( )A .N 极竖直向上B .N 极竖直向下C .N 极沿轴线向左D .N 极沿轴线向右解析:选C .负电荷匀速转动,会产生与旋转方向反向的环形电流,由安培定则知,在磁针处磁场的方向沿轴OO ′向左.由于磁针N 极指向为磁场方向,可知选项C 正确.2.磁场中某区域的磁感线如图所示,则( )A .a 、b 两处的磁感应强度的大小不等,B a >B bB .a 、b 两处的磁感应强度的大小不等,B a <B bC .同一通电导线放在a 处受力一定比放在b 处受力大D .同一通电导线放在a 处受力一定比放在b 处受力小解析:选A .磁感线的疏密程度表示磁感应强度的大小,由a 、b 两处磁感线的疏密程度可判断出B a >B b ,所以A 正确,B 错误;安培力的大小跟该处的磁感应强度的大小B 、电流大小I 、导线长度L 和导线放置的方向与磁感应强度的方向的夹角有关,故C 、D 错误.3.将长为L 的导线弯成六分之一圆弧,固定于垂直纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图所示.若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( )A .ILB ,水平向左B .ILB ,水平向右C .3ILB π,水平向右D .3ILB π,水平向左解析:选D .弧长为L ,圆心角为60°,则弦长AC =3L π,导线受到的安培力F =BIl =3ILB π,由左手定则可知,导线受到的安培力方向水平向左.4.如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 为半圆弧的圆心,∠MOP =60°,在M 、N 处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O 点的磁感应强度大小为B 1.若将M 处长直导线移至P 处,则O 点的磁感应强度大小为B 2,那么B 2与B 1之比为( )A .3∶1B .3∶2C .1∶1D .1∶2解析:选B .如图所示,当通有电流的长直导线在M 、N 两处时,根据安培定则可知:二者在圆心O 处产生的磁感应强度大小都为B 12;当将M 处长直导线移到P 处时,两直导线在圆心O 处产生的磁感应强度大小也为B 12,做平行四边形,由图中的几何关系,可得B 2B 1=B 22B 12=cos 30°=32,故选项B 正确.5.阿明有一个磁浮玩具,其原理是利用电磁铁产生磁性,让具有磁性的玩偶稳定地飘浮起来,其构造如图所示.若图中电源的电压固定,可变电阻为一可以随意改变电阻大小的装置,则下列叙述正确的是( )A .电路中的电源必须是交流电源B .电路中的a 端点须连接直流电源的负极C .若增加环绕软铁的线圈匝数,可增加玩偶飘浮的最大高度D .若将可变电阻的电阻值调大,可增加玩偶飘浮的最大高度解析:选C .电磁铁产生磁性,使玩偶稳定地飘浮起来,电路中的电源必须是直流电源,电路中的a 端点须连接直流电源的正极,选项A 、B 错误;若增加环绕软铁的线圈匝数,电磁铁产生的磁性更强,电磁铁对玩偶的磁力增强,可增加玩偶飘浮的最大高度,选项C 正确;若将可变电阻的电阻值调大,电磁铁中电流减小,产生的磁性变弱,则降低玩偶飘浮的最大高度,选项D 错误.6.一通电直导线与x 轴平行放置,匀强磁场的方向与xOy 坐标平面平行,导线受到的安培力为F .若将该导线做成34圆环,放置在xOy 坐标平面内,如图所示,并保持通电的电流不变,两端点ab 连线也与x 轴平行,则圆环受到的安培力大小为( )A .FB .23πFC .223πFD .32π3F 解析:选C .根据安培力公式,安培力F 与导线长度L 成正比;若将该导线做成34圆环,由L =34×2πR ,解得圆环的半径R =2L 3π,34圆环ab 两点之间的距离L ′=2R =22L 3π.由F L =F ′L ′解得:F ′=223πF ,选项C 正确. 7.在绝缘圆柱体上a 、b 两个位置固定有两个金属圆环,当两环通有如图所示电流时,b 处金属圆环受到的安培力为F 1;若将b 处金属圆环移动到位置c ,则通有电流为I 2的金属圆环受到的安培力为F 2.今保持b 处金属圆环原来位置不变,在位置c 再放置一个同样的金属圆环,并通有与a 处金属圆环同向、大小为I 2的电流,则在a 位置的金属圆环受到的安培力( )A .大小为|F 1-F 2|,方向向左B .大小为|F 1-F 2|,方向向右C .大小为|F 1+F 2|,方向向左D .大小为|F 1+F 2|,方向向右解析:选A .c 金属圆环对a 金属圆环的作用力大小为F 2,根据同方向的电流相互吸引,可知方向向右,b金属圆环对a金属圆环的作用力大小为F1,根据反方向的电流相互排斥,可知方向向左,所以a金属圆环所受的安培力大小|F1-F2|,由于a、b间的距离小于a、c 间距离,所以两合力的方向向左.8.如图,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等.关于以上几点处的磁场,下列说法正确的是()A.O点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处磁感应强度的方向不同解析:选C.由安培定则可知,两导线中的电流在O点产生的磁场均竖直向下,合磁感应强度一定不为零,选项A错;由安培定则知,两导线中的电流在a、b两点处产生的磁场的方向均竖直向下,由于对称性,M中电流在a处产生的磁场的磁感应强度等于N中电流在b处产生的磁场的磁感应强度,同时M中电流在b处产生的磁场的磁感应强度等于N 中电流在a处产生的磁场的磁感应强度,所以a、b两点处磁感应强度大小相等,方向相同,选项B错;根据安培定则,两导线中的电流在c、d两点处产生的磁场垂直c、d两点与导线的连线方向向下,且产生的磁场的磁感应强度大小相等,由平行四边形定则可知,c、d 两点处的磁感应强度大小相等,方向相同,选项C正确;a、c两点处磁感应强度的方向均竖直向下,选项D错.9. (多选)如图所示,金属细棒质量为m,用两根相同轻弹簧吊放在水平方向的匀强磁场中,弹簧的劲度系数为k,棒ab中通有恒定电流,棒处于平衡状态,并且弹簧的弹力恰好为零.若电流大小不变而方向反向,则()A .每根弹簧弹力的大小为mgB .每根弹簧弹力的大小为2mgC .弹簧形变量为mg kD .弹簧形变量为2mg k解析:选AC .电流方向改变前,对棒受力分析,根据平衡条件可知,棒受到的安培力竖直向上,大小等于mg ;电流方向改变后,棒受到的安培力竖直向下,大小等于mg ,对棒受力分析,根据平衡条件可知,每根弹簧弹力的大小为mg ,弹簧形变量为mg k,选项A 、C 正确.10.如图所示,两平行光滑金属导轨CD 、EF 间距为L ,与电动势为E 0的电源相连,质量为m 、电阻为R 的金属棒ab 垂直于导轨放置构成闭合回路,回路平面与水平面成θ角,回路其余电阻不计.为使ab 棒静止,需在空间施加的匀强磁场磁感应强度的最小值及其方向分别为( )A .mgR E 0L,水平向右 B .mgR cos θE 0L,垂直于回路平面向上 C .mgR tan θE 0L,竖直向下 D .mgR sin θE 0L,垂直于回路平面向下 解析:选D .对金属棒受力分析,受重力、支持力和安培力,如图所示;从图可以看出,当安培力沿斜面向上时,安培力最小,故安培力的最小值为:F A =mg sin θ,故磁感应强度的最小值为B =F A IL =mg sin θIL ,根据欧姆定律,有E 0=IR ,故B =mgR sin θE 0L,故D 正确.11.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比.现有平行放置的三根长直通电导线,分别通过一个直角三角形△ABC的三个顶点且与三角形所在平面垂直,如图所示,∠ACB=60°,O为斜边的中点.已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,则关于O点的磁感应强度,下列说法正确的是()A.大小为2B,方向垂直AB向左B.大小为23B,方向垂直AB向左C.大小为2B,方向垂直AB向右D.大小为23B,方向垂直AB向右解析:选B.导线周围的磁场的磁感线,是围绕导线形成的同心圆,空间某点的磁场沿该点的切线方向,即与该点和导线的连线垂直,根据右手螺旋定则,可知三根导线在O点的磁感应强度的方向如图所示.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比,已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,O点到三根导线的距离相等,可知B3=B2=B,B1=2B,由几何关系可知三根导线在平行于AB方向的合磁场为零,垂直于AB方向的合磁场为23B.综上可得,O点的磁感应强度大小为23B,方向垂直于AB向左.故B正确,A、C、D 错误.12.(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g=10 m/s2,则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J解析:选AB.导体棒向右沿圆弧摆动,说明受到向右的安培力,由左手定则知该磁场方向一定竖直向下,A项正确;导体棒摆动过程中只有安培力和重力做功,由动能定理知BIL·L sin θ-mgL(1-cos θ)=0,代入数值得导体棒中的电流为I=3 A,由E=IR得电源电动势E=3.0 V,B项正确;由F=BIL得导体棒在摆动过程中所受安培力F=0.3 N,C项错误;由能量守恒定律知电源提供的电能W等于电路中产生的焦耳热Q和导体棒重力势能的增加量ΔE的和,即W=Q+ΔE,而ΔE=mgL(1-cos θ)=0.048 J,D项错误.13.(多选)某同学自制的简易电动机示意图如图所示.矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将()A.左、右转轴下侧的绝缘漆都刮掉B.左、右转轴上下两侧的绝缘漆都刮掉C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉解析:选AD.若将左、右转轴下侧的绝缘漆都刮掉,这样当线圈在图示位置时,线圈的上下边受到水平方向的安培力而转动,转过一周后再次受到同样的安培力而使其连续转动,选项A正确;若将左、右转轴上下两侧的绝缘漆都刮掉,则当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后再次受到相反方向的安培力而使其停止转动,选项B 错误;左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉,电路不能接通,故不能转起来,选项C 错误;若将左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉,这样当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后电路不导通,转过一周后再次受到同样的安培力而使其连续转动,选项D 正确.14.光滑的金属轨道分水平段和圆弧段两部分,O 点为圆弧的圆心.两金属轨道之间的宽度为0.5 m ,匀强磁场方向如图所示,大小为0.5 T .质量为0.05 kg 、长为0.5 m 的金属细杆置于金属水平轨道上的M 点.当在金属细杆内通以电流强度为2 A 的恒定电流时,金属细杆可以沿轨道由静止开始向右运动.已知MN =OP =1 m ,则下列说法中正确的是( )A .金属细杆开始运动时的加速度大小为5 m/s 2B .金属细杆运动到P 点时的速度大小为5 m/sC .金属细杆运动到P 点时的向心加速度大小为10 m/s 2D .金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N解析:选D .金属细杆在水平方向受到安培力作用,安培力大小F 安=BIL =0.5×2×0.5 N =0.5 N ,金属细杆开始运动时的加速度大小为a =F 安m=10 m/s 2,选项A 错误;对金属细杆从M 点到P 点的运动过程,安培力做功W 安=F 安·(MN +OP )=1 J ,重力做功W G =-mg ·ON =-0.5 J ,由动能定理得W 安+W G =12m v 2,解得金属细杆运动到P 点时的速度大小为v =20 m/s ,选项B 错误;金属细杆运动到P 点时的向心加速度大小为a ′=v 2r=20 m/s 2,选项C 错误;在P 点金属细杆受到轨道水平向左的作用力F 和水平向右的安培力F 安,由牛顿第二定律得F -F 安=m v 2r,解得F =1.5 N ,每一条轨道对金属细杆的作用力大小为0.75 N ,由牛顿第三定律可知金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N ,选项D 正确.二、【磁场对运动电荷的作用】典型题1.如图所示,a 、b 、c 、d 为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )A .向上B .向下C .向左D .向右解析:选B .根据安培定则及磁感应强度的矢量叠加,可得O 点处的磁场方向水平向左,再根据左手定则判断可知,带电粒子受到的洛伦兹力方向向下,B 正确.2.如图,半径为R 的圆形区域内有垂直于纸面的匀强磁场,半径OC 与OB 夹角为60°.甲电子以速率v 从A 点沿直径AB 方向射入磁场,从C 点射出.乙电子以速率v 3从B 点沿BA 方向射入磁场,从D 点(图中未画出)射出,则( )A .C 、D 两点间的距离为2RB .C 、D 两点间的距离为3RC .甲在磁场中运动的时间是乙的2倍D .甲在磁场中运动的时间是乙的3倍解析:选B .洛伦兹力提供向心力,q v B =m v 2r 得r =m v qB,由几何关系求得r 1=R tan 60°=3R ,由于质子乙的速度是v 3,其轨道半径r 2=r 13=33R ,它们在磁场中的偏转角分别为60°和120°,根据几何知识可得BC =R ,BD =2r 2tan 60°=R ,所以CD =2R sin 60°=3R ,故A 错误,B 正确;粒子在磁场中运动的时间为t =θ2πT =θ2π·2πm qB,所以两粒子的运动时间之比等于偏转角之比,即为1∶2,即甲在磁场中运动的时间是乙的12倍,故C 、D 错误. 3. (多选)如图所示,一轨道由两等长的光滑斜面AB 和BC 组成,两斜面在B 处用一光滑小圆弧相连接,P 是BC 的中点,竖直线BD 右侧存在垂直纸面向里的匀强磁场,B 处可认为处在磁场中,一带电小球从A 点由静止释放后能沿轨道来回运动,C 点为小球在BD 右侧运动的最高点,则下列说法正确的是( )A .C 点与A 点在同一水平线上B .小球向右或向左滑过B 点时,对轨道压力相等C .小球向上或向下滑过P 点时,其所受洛伦兹力相同D .小球从A 到B 的时间是从C 到P 时间的2倍解析:选AD .小球在运动过程中受重力、洛伦兹力和轨道支持力作用,因洛伦兹力永不做功,支持力始终与小球运动方向垂直,也不做功,即只有重力做功,满足机械能守恒,因此C 点与A 点等高,在同一水平线上,选项A 正确;小球向右或向左滑过B 点时速度等大反向,即洛伦兹力等大反向,小球对轨道的压力不等,选项B 错误;同理小球向上或向下滑过P 点时,洛伦兹力也等大反向,选项C 错误;因洛伦兹力始终垂直BC ,小球在AB 段和BC 段(设斜面倾角均为θ)的加速度均由重力沿斜面的分力产生,大小为g sin θ,由x =12at 2得小球从A 到B 的时间是从C 到P 的时间的2倍,选项D 正确. 4.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M 点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角;该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.已知磁场Ⅰ、Ⅱ的磁感应强度大小分别为B 1、B 2,则B 1与B 2的比值为( )A .2cos θB .sin θC .cos θD .tan θ解析:选C .设有界磁场Ⅰ宽度为d ,则粒子在磁场Ⅰ和磁场Ⅱ中的运动轨迹分别如图1、图2所示,由洛伦兹力提供向心力知Bq v =m v 2r ,得B =m v rq,由几何关系知d =r 1sin θ,d =r 2tan θ,联立得B 1B 2=cos θ,选项C 正确.5.如图所示,正方形区域内存在垂直纸面的匀强磁场.一带电粒子垂直磁场边界从a 点射入,从b 点射出.下列说法正确的是( )A .粒子带正电B .粒子在b 点速率大于在a 点速率C .若仅减小磁感应强度,则粒子可能从b 点右侧射出D .若仅减小入射速率,则粒子在磁场中运动时间变短解析:选C .由左手定则知,粒子带负电,A 错.由于洛伦兹力不做功,粒子速率不变,B 错.由R =m vqB , 若仅减小磁感应强度B ,R 变大,则粒子可能从b 点右侧射出,C 对.由R =m v qB ,若仅减小入射速率v, 则R 变小,粒子在磁场中的偏转角θ变大.由t =θ2πT ,T =2πm qB 知,运动时间变长,D 错.6.如图所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B .圆心O 处有一放射源,放出粒子的质量为m 、带电量为q ,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场后第一次通过A 点,则初速度的大小是多少?(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?解析:(1)如图甲所示,设粒子在磁场中的轨道半径为R 1,则由几何关系得R 1=3r3又q v 1B =m v 21R 1得v 1=3Bqr3m.(2)如图乙所示,设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R 2,则由几何关系有(2r -R 2)2=R 22+r 2可得R 2=3r 4,又q v 2B =m v 22R 2,可得v 2=3Bqr 4m故要使粒子不穿出环形区域,粒子的初速度不能超过3Bqr4m. 答案:(1)3Bqr 3m (2)3Bqr4m7. (多选)如图所示为一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度大小为B 、方向垂直纸面向里的匀强磁场中.现给圆环向右初速度v 0,在以后的运动过程中,圆环运动的v -t 图象可能是下图中的( )解析:选BC .当q v B =mg 时,圆环做匀速直线运动,此时图象为B ,故B 正确;当q v B >mg 时,F N =q v B -mg ,此时:μF N =ma ,所以圆环做加速度逐渐减小的减速运动,直到q v B =mg 时,圆环开始做匀速运动,故C 正确;当q v B <mg 时,F N =mg -q v B ,此时:μF N =ma ,所以圆环做加速度逐渐增大的减速运动,直至停止,所以其v -t 图象的斜率应该逐渐增大,故A 、D 错误.8.如图所示,水平放置的平行板长度为L 、两板间距也为L ,两板之间存在垂直纸面向里、磁感应强度大小为B 的匀强磁场,在两板正中央P 点有一个不计重力的电子(质量为m 、电荷量为-e ),现在给电子一水平向右的瞬时初速度v 0,欲使电子不与平行板相碰撞,则( )A .v 0>eBL 2m 或v 0<eBL4mB .eBL 4m <v 0< eBL2mC .v 0>eBL2mD .v 0<eBL4m解析:选A .此题疑难点在于确定“不与平行板相碰撞”的临界条件.电子在磁场中做匀速圆周运动,半径为R =m v 0eB ,如图所示.当R 1=L 4时,电子恰好与下板相切;当R 2=L2时,电子恰好从下板边缘飞出两平行板(即飞出磁场).由R 1=m v 1eB ,解得v 1=eBL4m ,由R 2=m v 2eB ,解得v 2=eBL 2m ,所以欲使电子不与平行板相碰撞,电子初速度v 0应满足v 0>eBL 2m 或v 0<eBL4m ,故选项A 正确.9.如图所示,在x >0,y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B ,现有一质量为m 、电荷量为q 的带正电粒子,从x 轴上的某点P (不在原点)沿着与x 轴成30°角的方向射入磁场.不计重力的影响,则下列有关说法中正确的是( )A .只要粒子的速率合适,粒子就可能通过坐标原点B .粒子在磁场中运动所经历的时间一定为5 πm 3qBC .粒子在磁场中运动所经历的时间可能为πmqBD .粒子在磁场中运动所经历的时间可能为πm6qB解析:选C .利用“放缩圆法”:根据同一直线边界上粒子运动的对称性可知,粒子不可能通过坐标原点,A 项错误;粒子运动的情况有两种,一种是从y 轴边界射出,最短时间要大于2πm 3qB ,故D 项错误;对应轨迹①时,t 1=T 2=πm qB ,C 项正确,另一种是从x 轴边界飞出,如轨迹③,时间t 3=56T =5πm 3qB,此时粒子在磁场中运动时间最长,故B 项错误.10.如图所示,OM 的左侧存在范围足够大、磁感应强度大小为B 的匀强磁场,磁场方向垂直纸面向外,OM 左侧到OM 距离为L 的P 处有一个粒子源,可沿纸面向各个方向射出质量为m 、电荷量为q 的带正电粒子(重力不计),速率均为v =qBLm,则粒子在磁场中运动的最短时间为( )A .πm 2qBB .πm 3qBC .πm 4qBD .πm 6qB解析:选B .粒子进入磁场中做匀速圆周运动,洛伦兹力提供向心力,则有:q v B =m v 2r ,将题设的v 值代入得:r =L ,粒子在磁场中运动的时间最短,则粒子运动轨迹对应的弦最短,最短弦为L ,等于圆周运动的半径,根据几何关系,粒子转过的圆心角为60°,运动时间为T 6,故t min =T 6=16×2πm qB =πm 3qB,故B 正确,A 、C 、D 错误.11.(2019·高考全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A .5πm 6qBB .7πm6qBC .11πm 6qBD .13πm6qB解析:选B .带电粒子在不同磁场中做圆周运动,其速度大小不变,由r =m vqB 知,第一象限内的圆半径是第二象限内圆半径的2倍,如图所示.粒子在第二象限内运动的时间:t 1=T 14=2πm 4qB =πm 2qB ;粒子在第一象限内运动的时间:t 2=T 26=2πm ×26qB =2πm 3qB ,则粒子在磁场中运动的时间t =t 1+t 2=7πm 6qB,选项B 正确.12.如图,在直角三角形OPN 区域内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U 加速后,沿平行于x 轴的方向射入磁场;一段时间后,该粒子在OP 边上某点以垂直于x 轴的方向射出.已知O 点为坐标原点,N 点在y 轴上,OP 与x 轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d ,不计重力.求:(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x 轴的时间.解析: (1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v .由动能定理有qU =12m v 2①设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛顿第二定律有 q v B =m v 2r②由几何关系知d =2r ③ 联立①②③式得q m =4UB 2d2.④(2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为 s =πr2+r tan 30°⑤带电粒子从射入磁场到运动至x 轴的时间为t =sv ⑥联立②④⑤⑥式得t =Bd 24U ⎝⎛⎭⎫π2+33.⑦ 答案:(1)4U B 2d 2 (2)Bd 24U ⎝⎛⎭⎫π2+33三、【带电粒子在组合场中的运动】典型题1.(多选)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A .增大匀强电场间的加速电压B .增大磁场的磁感应强度C .减小狭缝间的距离D .增大D 形金属盒的半径解析:选BD .回旋加速器利用电场加速和磁场偏转来加速粒子,粒子射出时的轨道半径恰好等于D 形盒的半径,根据q v B =m v 2R 可得,v =qBR m ,因此离开回旋加速器时的动能E k =12m v 2=q 2B 2R 22m 可知,与加速电压无关,与狭缝距离无关,A 、C 错误;磁感应强度越大,D 形盒的半径越大,动能越大,B 、D 正确.2.质谱仪是一种测定带电粒子质量和分析同位素的重要工具.图中的铅盒A 中的放射源放出大量的带正电粒子(可认为初速度为零),从狭缝S 1进入电压为U 的加速电场区加速后,再通过狭缝S 2从小孔G 垂直于MN 射入偏转磁场,该偏转磁场是以直线MN 为切线、磁感应强度为B ,方向垂直于纸面向外半径为R 的圆形匀强磁场.现在MN 上的F 点(图中未画出)接收到该粒子,且GF =3R .则该粒子的比荷为(粒子的重力忽略不计)( )。

高考物理带电粒子在磁场中的运动题20套(带答案)含解析

高考物理带电粒子在磁场中的运动题20套(带答案)含解析

高考物理带电粒子在磁场中的运动题20套(带答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l rπ=粒子在电场中沿虚线方向做匀变速直线运动,21cos22qEl r tmα-=⋅解得:220(23)9mvEqlππ-=2.如图所示,在xOy坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。

高中物理《磁场》典型题(经典推荐含答案)

高中物理《磁场》典型题(经典推荐含答案)

高中物理《磁场》典型题(经典推荐含答案)高中物理《磁场》典型题(经典推荐)一、单项选择题1.下列说法中正确的是:A。

在静电场中电场强度为零的位置,电势也一定为零。

B。

放在静电场中某点的检验电荷所带的电荷量 q 发生变化时,该检验电荷所受电场力 F 与其电荷量 q 的比值保持不变。

C。

在空间某位置放入一小段检验电流元,若这一小段检验电流元不受磁场力作用,则该位置的磁感应强度大小一定为零。

D。

磁场中某点磁感应强度的方向,由放在该点的一小段检验电流元所受磁场力方向决定。

2.物理关系式不仅反映了物理量之间的关系,也确定了单位间的关系。

如关系式 U=IR,既反映了电压、电流和电阻之间的关系,也确定了 V(伏)与 A(安)和Ω(欧)的乘积等效。

现有物理量单位:m(米)、s(秒)、N(牛)、J (焦)、W(瓦)、C(库)、F(法)、A(安)、Ω(欧)和 T(特),由他们组合成的单位都与电压单位 V(伏)等效的是:A。

J/C 和 N/CB。

C/F 和 T·m2/sC。

W/A 和 C·T·m/sD。

W·Ω 和 T·A·m3.如图所示,重力均为 G 的两条形磁铁分别用细线 A 和B 悬挂在水平的天花板上,静止时,A 线的张力为 F1,B 线的张力为 F2,则:A。

F1=2G,F2=GB。

F1=2G,F2>GC。

F1GD。

F1>2G,F2>G4.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在 1s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在 1s时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为:A。

1/2B。

1C。

2D。

45.如图所示,矩形 MNPQ 区域内有方向垂直于纸面的匀强磁场,有 5 个带电粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量,电荷量以及速度大小如下表所示,由以上信息可知,从图中 a、b、c 处进入的粒子对应表中的编号分别为:A。

高中物理磁场12个基础计算题专练(含答案)

高中物理磁场12个基础计算题专练(含答案)

2018.1。

15磁场12个计算题参考答案与试题解析一.解答题(共12小题)1.图中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感强度为B的匀强磁场,方向垂直纸面向外.O是MN上的一点,从O点可以向磁场区域发射电量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向.已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P 到O的距离为L,不计重力及粒子间的相互作用.(1)求所考察的粒子在磁场中的轨道半径.(2)求这两个粒子从O点射入磁场的时间间隔.【分析】(1)粒子射入磁场后做匀速圆周运动,洛伦兹力充当向心力,根据牛顿第二定律列式即可求得半径;(2)根据时间与转过的角度之间的关系求得两个粒子从O点射入磁场的时间间隔之差值.【解答】解:(1)设粒子在磁场中做圆周运动的轨道半径为R,由牛顿第二定律,有:得:(2)如图所示,以OP为弦可画两个半径半径相同的圆,分别表示在P点相遇的两个粒子的轨道,圆心和直径分别为O1、O2和OO1Q1、OO2Q2,在O处两个圆的切线分别表示两个粒子的射入方向,用θ表示它们之间的夹角.由几何关系可知:∠PO1Q1=∠PO2Q2=θ从O点射入到相遇,粒子1的路程为半个圆周加弧长Q1PQ1P=Rθ粒子2的路程为半个圆周减弧长PQ2PQ2=Rθ粒子1运动的时间:粒子2运动的时间:两粒子射入的时间间隔:因得解得:答:(1)所考察的粒子在磁场中的轨道半径是.(2)这两个粒子从O点射入磁场的时间间隔是.【点评】本题考查带电粒子在磁场中的运动,关键是明确洛伦兹力提供向心力,根据牛顿第二定律求解出半径,然后结合几何关系列式求解,属于带电粒子在磁场中运动的基础题型.2.如图所示,两根光滑平行的金属导轨相距5m,固定在水平面上,导轨之间接有电源盒开关,整个装置处于磁感应强度为2T,方向与导轨平行的匀强磁场中.当开关闭合时,一根垂直放在导轨上的导体棒MN恰好对金属导轨没有压力.若导体棒MN的质量为4kg,电阻为2Ω,电源的内阻为0。

高中物理选修2磁场对通电导线的作用力计算题专项训练

高中物理选修2磁场对通电导线的作用力计算题专项训练

高中物理选修2磁场对通电导线的作用力计算题专项训练高中物理选修2磁场对通电导线的作用力计算题专项训练姓名:__________班级:__________考号:__________一、计算题(共11题)1、如图所示,在与水平方向成60°角的光滑金属导轨间连一电源,在相距1m的平行导轨上放一重为3N的金属棒ab,棒上通以3A的电流,磁场方向竖直向上,这时棒恰好静止,求:(1)匀强磁场的磁感应强度;(2)ab棒对导轨的压力.2、如图,金属杆ab的质量为m,长为L,通过的电流为I,处在磁感应强度为B的匀强磁场中,结果ab静止且紧压于水平导轨上。

若磁场方向与导轨平面成θ角,求:(1)棒ab受到的摩擦力;(2)棒对导轨的压力。

3、(8分)如图所示,质量为m=50g,长l=10cm的铜棒,用长度相等的两根轻软导线悬吊在竖直向上的匀强磁场中,导线跟铜棒的接触良好,磁感应强度B=0.5T。

当导线中通入某恒定电流后,铜棒恰好偏离竖直方向37°而静止。

求:铜棒中所通恒定电流的大小和方向。

(g=10m/s2)4、(10分)在B=2T的匀强磁场中放一根与磁场方向垂直、长度为0.8m的通电直导线,若导线中的电流为5A,求:(1)导线受到的安培力(2)若将导线沿磁场方向移动了0.5m,求安培力对导线所做的功。

5、在倾角为α的光滑斜面上,置一通有电流I,长L,质量为m 的导体棒,如图所示,求:(1)欲使棒静止在斜面上,外加匀强磁场的磁感应强度B的最小值和方向。

(2)欲使棒静止在斜面上且对斜面无压力,外加匀强磁场的磁感应强度B的大小和方向。

(3)分析棒有可能静止在斜面上且要求B垂直L,应加外磁场的方向范围。

6、图为一电流表的原理示意图。

质量为m的均质细金属棒MN 的中点处通过一绝缘挂钩与一竖直悬挂的弹簧相连,弹簧劲度系数为k。

在矩形区域abcd内有匀强磁场,磁感应强度大小为B,方向垂直纸面向外。

与MN的右端N连接的一绝缘轻指针可指示标尺上的读数,MN的长度大于ab。

高中物理磁场经典习题(题型分类)含答案

高中物理磁场经典习题(题型分类)含答案

高中物理磁场经典习题(题型分类)含答案题组一1.在xOy平面内,y≥0的区域有垂直于平面向里的匀强磁场,磁感应强度为B。

一质量为m、带电量大小为q的粒子从原点O沿与x轴正方向成60°角方向以速度v射入。

粒子的重力不计。

求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。

2.如图所示,abcd是一个正方形的盒子,在cd边的中点有一小孔e。

盒子中存有沿ad方向的匀强电场,场强大小为E。

一粒子源不断地从a处的小孔沿ab方向向盒内发射相同的带电粒子,粒子的初速度为v,经电场作用后恰好从e处的小孔射出。

现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B。

粒子仍恰好从e孔射出。

不考虑带电粒子的重力和粒子之间的相互作用。

1)所加的磁场的方向是什么?2)电场强度E与磁感应强度B的比值是多少?题组二4.如图所示的坐标平面内,在y轴的左侧存在垂直纸面向外、磁感应强度大小为B1 = 0.20 T的匀强磁场,在y轴的右侧存在垂直纸面向里、宽度d=0.125 m的匀强磁场B2.某时刻一质量为m=2.0×10^-8 kg、电量为q=+4.0×10^-4 C的带电微粒(重力可忽略不计),从x轴上坐标为(-0.25 m,0)的P点以速度v=2.0×10^3 m/s沿y轴正方向运动。

试求:1)微粒在y轴的左侧磁场中运动的轨道半径;2)微粒第一次经过y轴时速度方向与y轴正方向的夹角;3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件。

5.图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁场应强度大小为B,方向平行于板面并垂直于纸面朝里。

图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。

假设一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域。

高中物理磁场习题200题(带答案解析)

高中物理磁场习题200题(带答案解析)

WORD格式整理一、选择题1.如图所示,一电荷量为q的负电荷以速度v射入匀强磁场中.其中电荷不受洛仑兹力的是( )A. B. C. D.【答案】C【解析】由图可知,ABD图中带电粒子运动的方向都与粗糙度方向垂直,所以受到的洛伦兹力都等于qvB,而图C中,带电粒子运动的方向与磁场的方向平行,所以带电粒子不受洛伦兹力的作用.故C正确,ABD错误.故选C.2.如图所示为电流产生磁场的分布图,其中正确的是( )A. B. C. D.【答案】D【解析】A中电流方向向上,由右手螺旋定则可得磁场为逆时针(从上向下看),故A错误;B图电流方向向下,由右手螺旋定则可得磁场为顺时针(从上向下看),故B错误;C图中电流为环形电流,由由右手螺旋定则可知,内部磁场应向右,故C错误;D图根据图示电流方向,由右手螺旋定则可知,内部磁感线方向向右,故D正确;故选D.点睛:因磁场一般为立体分布,故在判断时要注意区分是立体图还是平面图,并且要能根据立体图画出平面图,由平面图还原到立体图.3.下列图中分别标出了一根放置在匀强磁场中的通电直导线的电流I、磁场的磁感应强度B和所受磁场力F的方向,其中图示正确的是( )A. B. C. D.【答案】C【解析】根据左手定则的内容:伸开左手,使大拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向,可得:A、电流与磁场方向平行,没有安培力,故A错误;B、安培力的方向是垂直导体棒向下的,故B错误;C、安培力的方向是垂直导体棒向上的,故C正确;D、电流方向与磁场方向在同一直线上,不受安培力作用,故D错误.故选C.点睛:根据左手定则直接判断即可,凡是判断力的方向都是用左手,要熟练掌握,是一道考查基础的好题目.4.如图所示,水平地面上固定着光滑平行导轨,导轨与电阻R连接,放在竖直向上的匀强磁场中,杆的初速度为v0,不计导轨及杆的电阻,则下列关于杆的速度与其运动位移之间的关系图像正确的是()A. B. C. D.【答案】C【解析】导体棒受重力、支持力和向后的安培力;感应电动势为:E=BLv感应电流为:I=II安培力为:I=III=I 2I2II=II=I△I△I故:I 2I2II△I=I△I求和,有:I 2I2I∑I△I=I∑△I故:I 2I2II=I(I0−I)故v与x是线性关系;故C正确,ABD错误;故选:C.5.如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,粒子仅受磁场力作用,分别从AC边上的P、Q两点射出,则( )A. 从P射出的粒子速度大B. 从Q射出的粒子速度大C. 从P射出的粒子,在磁场中运动的时间长D. 两粒子在磁场中运动的时间一样长【答案】BD【解析】试题分析:粒子在磁场中做圆周运动,根据题设条件作出粒子在磁场中运动的轨迹,根据轨迹分析粒子运动半径和周期的关系,从而分析得出结论.WORD 格式整理粒子在磁场中做匀速圆周运动,根据几何关系(图示弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间:I =I 2II ,又因为粒子在磁场中圆周运动的周期I =2II II ,可知粒子在磁场中运动的时间相等,故D 正确,C 错误;如图,粒子在磁场中做圆周运动,分别从P 点和Q 点射出,由图知,粒子运动的半径I I <I I ,又粒子在磁场中做圆周运动的半径I =II II知粒子运动速度I I <I I ,故A 错误B 正确;【点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式I =II II ,周期公式I =2II II ,运动时间公式I =I 2I I ,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题,6.在等边三角形的三个顶点a 、b 、c 处,各有一条长直导线垂直纸面放置,导线中通有大小相等的恒定电流,方向如图所示.过c 点的导线所受安培力的方向( )A. 与ab 边平行,竖直向上B. 与ab 边垂直,指向右边C. 与ab 边平行,竖直向下D. 与ab 边垂直,指向左边【答案】D【解析】试题分析:先根据右手定则判断各个导线在c 点的磁场方向,然后根据平行四边形定则,判断和磁场方向,最后根据左手定则判断安培力方向导线a 在c 处的磁场方向垂直ac 斜向下,b 在c 处的磁场方向垂直bc 斜向上,两者的和磁场方向为竖直向下,根据左手定则可得c 点所受安培力方向为与ab 边垂直,指向左边,D 正确;7.下列说法中正确的是( )A. 电场线和磁感线都是一系列闭合曲线B. 在医疗手术中,为防止麻醉剂乙醚爆炸,医生和护士要穿由导电材料制成的鞋子和外套,这样做是为了消除静电C. 奥斯特提出了分子电流假说D. 首先发现通电导线周围存在磁场的科学家是安培【答案】B【解析】电场线是从正电荷开始,终止于负电荷,不是封闭曲线,A 错误;麻醉剂为易挥发性物品,遇到火花或热源便会爆炸,良好接地,目的是为了消除静电,这些要求与消毒无关,B 正确;安培发现了分子电流假说,奥斯特发现了电流的磁效应,CD 错误;8.在如图所示的平行板电容器中,电场强度E 和磁感应强度B 相互垂直,一带正电的粒子q 以速度v 沿着图中所示的虚线穿过两板间的空间而不偏转(忽略重力影响)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、弹性挡板围成边长为L= 100cm的正方形abcd,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0。

5T,如图所示. 质量为m=2×10-4kg、带电量为q=4×10—3C的小球,从cd边中点的小孔P处以某一速度v垂直于cd边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失.(1)为使小球在最短的时间内从P点垂直于dc射出来,小球入射的速度v1是多少?(2)若小球以v2 = 1 m/s的速度入射,则需经过多少时间才能由P点出来?2、如图所示,在区域足够大空间中充满磁感应强度大小为B的匀强磁场,其方向垂直于纸面向里。

在纸面内固定放置一绝缘材料制成的边长为L的等边三角形框架DEF, DE中点S处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a)所示。

发射粒子的电量为+q,质量为m,但速度v有各种不同的数值。

若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边。

试求:(1)带电粒子的速度v为多大时,能够打到E点?(2)为使S点发出的粒子最终又回到S点,且运动时间最短,v应为多大?最短时间为多少?(3)若磁场是半径为a的圆柱形区域,如图(b)所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O,且a=)10133(L。

要使S点发出的粒子最终又回到S点,带电粒子速度v的大小应取哪些数值?3、在直径为d的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q,质量为m的粒子,从磁场区域的一条直径AC上的A点射入磁场,其速度大小为v0,方向与AC成α.若此粒子恰好能打在磁场区域圆周上D点,AD与AC的夹角为β,如图所示.求该匀强磁场的磁感强度B的大小?4、如图所示,真空中有一半径为R的圆形磁场区域,圆心为O,磁场的方向垂直纸面向内,磁感强度为B,距离O为2R处有一光屏MN,MN垂直于纸面放置,AO过半径垂直于屏,延长线交于C.一个带负电粒子以初速度v0沿AC方向进入圆形磁场区域,最后打在屏上D点,DC相距23R,不计粒子的重力.若该粒子仍以初速v0从A点进入圆形磁场区域,但方向与AC成600角向右上方,粒子最后打在屏上E点,求粒子从A到E所用时间?a bcdAFD(a)(b)5、如图所示,3条足够长的平行虚线a 、b 、c ,ab 间和bc 间相距分别为2L 和L,ab 间和bc 间都有垂直于纸面向里的匀强磁场,磁感应强度分别为B 和2B 。

质量为m ,带电量为q 的粒子沿垂直于界面a 的方向射入磁场区域,不计重力,为使粒子能从界面c 射出磁场,粒子的初速度大小应满足什么条件?6、如图所示宽度为d 的区域上方存在垂直纸面、方向向内、磁感应强度大小均为B 的匀强磁场,现有一质量为m ,带电量为+q 的粒子在纸面内以速度v 从此区域下边缘上的A 点射入,其方向与下边缘线成30°角,试求当v 满足什么条件时,粒子能回到A ?7、在受控热核聚变反应的装置中温度极高,因而带电粒子没有通常意义上的容器可装,而是由磁场将带电粒子的运动束缚在某个区域内。

现有一个环形区域,其截面内圆半径R 1=33m ,外圆半径R 2=1.0m ,区域内有垂直纸面向外的匀强磁场(如图所示)。

已知磁感应强度B =1。

0T,被束缚带正电粒子的荷质比为m q=4.0×107C/kg,不计带电粒子的重力和它们之间的相互作用.⑴若中空区域中的带电粒子由O 点沿环的半径方向射入磁场,求带电粒子不能穿越磁场外边界的最大速度v 0?⑵若中空区域中的带电粒子以⑴中的最大速度v 0沿圆环半径方向射入磁场,求带电粒子从刚进入磁场某点开始到第一次回到该点所需要的时间?8、空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示。

该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直.如图中Q 点箭头所示。

已知P 、Q 间的距离为L.若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时的速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点。

不计重力。

求:⑴电场强度的大小.⑵两种情况中粒子由P 运动到Q 点所经历的时间之差?2L Lv 0 B2B a b c d300v APQ9、如图所示,一个质量为m,带电量为+q 的粒子以速度v0从O 点沿y 轴正方向射入磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从点b 处穿过x 轴,速度方向与x 轴正方向的夹角为300.粒子的重力不计,试求:(1)圆形匀强磁场区域的最小面积? (2)粒子在磁场中运动的时间? (3)b 到O 的距离?10、纸平面内一带电粒子以某一速度做直线运动,一段时间后进入一垂直于纸面向里的圆形匀强磁场区域(图中未画出磁场区域),粒子飞出磁场后从上板边缘平行于板面进入两面平行的金属板间,两金属板带等量异种电荷,粒子在两板间经偏转后恰从下板右边缘飞出。

已知带电粒子的质量为m ,电量为q ,重力不计.粒子进入磁场前的速度方向与带电板成θ= 60°角,匀强磁场的磁感应强度为B ,带电板板长为L,板距为d,板间电压为U ,试解答: ⑴上金属板带什么电?⑵粒子刚进入金属板时速度为多大? ⑶圆形磁场区域的最小面积为多大?11、如图所示,在y 〉0的区域内有沿y 轴正方向的匀强电场,在y 〈0的区域内有垂直坐标平面向里的匀强磁场。

一电子(质量为m 、电量为e )从y 轴上A 点以沿x 轴正方向的初速度v 0开始运动。

当电子第一次穿越x 轴时,恰好到达C 点;当电子第二次穿越x 轴时,恰好到达坐标原点;当电子第三次穿越x 轴时,恰好到达D 点。

C 、D 两点均未在图中标出。

已知A 、C 点到坐标原点的距离分别为d 、2d.不计电子的重力.求(1)电场强度E 的大小?(2)磁感应强度B 的大小? (3)电子从A 运动到D 经历的时间t ?12、如图所示,在半径为R 的绝缘圆筒内有匀强磁场,方向垂直纸面向里,圆筒正下方有小孔C 与平行金属板M 、N 相通.两板间距离为d,两板与电动势为E 的电源连接,一带电量为-q 、质量为m 的带电粒子(重力忽略不计),开始时静止于C 点正下方紧靠N 板的A 点,经电场加速后从C 点进入磁场,并以最短的时间从C 点射出。

已知带电粒子与筒壁的 碰撞无电荷量的损失,且碰撞后以原速率返回.求: ⑴筒内磁场的磁感应强度大小?⑵带电粒子从A 点出发至重新回到A 点射出所经历的时间?13、如图所示,空间分布着有理想边界的匀强电场和匀强磁场。

左侧匀强电场的场强大小为E 、方向水平向右,电场宽度为L ;中间区域和右侧匀强磁场的磁感应强度大小均为B ,方向分别垂直纸面向外和向里。

一个质量为m 、电量为q 、不计重力M Nv的带正电的粒子从电场的左边缘的O 点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O 点,然后重复上述运动过程。

求:(1)中间磁场区域的宽度d ?(2)带电粒子从O 点开始运动到第一次回到O 点所用时间t ?14、如图所示,粒子源S 可以不断地产生质量为m 、电荷量为+q 的粒子(重力不计).粒子从O 1孔漂进(初速不计)一个水平方向的加速电场,再经小孔O 2进入相互正交的匀强电场和匀强磁场区域,电场强度大小为E,磁感应强度大小为B 1,方向如图.虚线PQ 、MN 之间存在着水平向右的匀强磁场,磁感应强度大小为B 2.有一块折成直角的硬质塑料板abc (不带电,宽度很窄,厚度不计)放置在PQ 、MN 之间(截面图如图),a 、c 两点恰在分别位于PQ 、MN 上,ab=bc=L ,α= 45°.现使粒子能沿图中虚线O 2O 3进入PQ 、MN 之间的区域. (1) 求加速电压U 1?(2) 假设粒子与硬质塑料板相碰后,速度大小不变,方向变化遵守光的反射定律.粒子在PQ 、MN 之间的区域中运动的时间和路程分别是多少?15、如图所示,K 与虚线MN 之间是加速电场。

虚线MN 与PQ 之间是匀强电场,虚线PQ 与荧光屏之间是匀强磁场,且MN 、PQ 与荧光屏三者互相平行。

电场和磁场的方向如图所示.图中A 点与O 点的连线垂直于荧光屏。

一带正电的粒子从A 点离开加速电场,速度方向垂直于偏转电场方向射入偏转电场,在离开偏转电场后进入匀强磁场,最后恰好垂直地打在荧光屏上。

已知电场和磁场区域在竖直方向足够长,加速电场电压与偏转电场的场强关系为U=21Ed ,式中的d 是偏转电场的宽度,磁场的磁感应强度B 与偏转电场的电场强度E 和带电粒子离开加速电场的速度v 0关系符合表达式v 0=B E,若题中只有偏转电场的宽度d 为已知量,则:(1)画出带电粒子轨迹示意图; (2)磁场的宽度L 为多少?(3)带电粒子在电场和磁场中垂直于v0方向的偏转距离分别是多少?16、在如图所示的直角坐标中,x 轴的上方有与x 轴正方向成45°角的匀强电场,场强的大小为E =2×104V/m 。

x 轴的下方有垂直于xOy 面的匀强磁场,磁感应强度的大小为 B =2×10-2T 。

把一个比荷为q/m=2×108C/㎏的正电荷从坐标为(0,1.0)的A 点处由静止释放。

电荷所受的重力忽略不计,求: ⑴电荷从释放到第一次进入磁场时所用的时间t; ⑵电荷在磁场中的轨迹半径;⑶电荷第三次到达x 轴上的位置。

+ + + + + + + +SO 1 O 2B 2 B 1 U 11E PQ ab c α - - - - - - -α O 3 x /m y /m O 1 BE-2 2 1 —1 45° AE B B EL17、如图所示,与纸面垂直的竖直面MN 的左侧空间中存在竖直向上场强大小为E=2。

5×102N/C 的匀强电场(上、下及左侧无界).一个质量为m=0。

5kg 、电量为q=2.0×10—2C 的可视为质点的带正电小球,在t=0时刻以大小为v 0的水平初速度向右通过电场中的一点P ,当t=t 1时刻在电场所在空间中加上一如图所示随时间周期性变化的磁场,使得小球能竖直向下通过D 点,D为电场中小球初速度方向上的一点,PD 间距为L ,D 到竖直面MN 的距离DQ 为L/π.设磁感应强度垂直纸面向里为正.(g=10m/s 2) (1)如果磁感应强度B 0为已知量,试推出满足条件时t 1的表达式(用题中所给物理量的符号表示)? (2)若小球能始终在电场所在空间做周期性运动。

相关文档
最新文档