并联电抗器无功补偿
电力系统无功补偿设备的选用规定

电力系统无功补偿设备的选用规定
1、并联电容器和并联电抗器是电力系统无功补偿的重要设备,应优先选用此种设备。
2、当发电厂经过长距离的线路(今后不再П接中间变电所)送给一个较强(短路容量较大)的受端系统时,为缩短线路的电气距离,宜选用串联电容器,其补偿度一般不宜大于50%,并应防止次同步谐振。
3、当220~500kV电网的受端系统短路容量不足和长距离送电线路中途缺乏电压支持时,为提高输送容量和稳定水平,经技术经济比较合理时,可采用调相机。
1)新装调相机组应具有长期吸收70%~80%额定容量无功电力的能力。
2)对已投入运行的调相机应进行试验,确定吸收无功电力的能力。
4、电力系统为提高系统稳定、防止电压崩溃、提高输送容量,经技术经济比较合理时,可在线路中点附近(振荡中心位置)或在线路沿线分几处安装静止补偿器;带有冲击负荷或负荷波动、不平衡严重的工业企业,本身也应采用静止补偿器。
1。
并联电抗器在电气工程中的应用研究

并联电抗器可以补偿系统的电容,有助于平衡负荷电流,降低线损,提高电力系统的效率 。
抑制谐波
并联电抗器可以抑制电力系统中的谐波,有助于减少谐波对设备的影响,保护设备免受损 坏。
并联电抗器的挑战
设备容量大
并联电抗器通常需要较大的设备容量,以满足电 力系统对电流平衡和稳定性的要求。
安装和维护困难
并联电抗器的分类
并联电抗器可以根据不同的标准进行分类,如按照用途可分为串联电抗器和 并联电抗器;按照结构可分为铁芯电抗器和空心电抗器;按照功能可分为滤 波电抗器和限流电抗器等。
并联电抗器的选型
在电气工程中,选择合适的并联电抗器需要考虑系统的电压等级、电流大小 、谐波和涌流的抑制要求等因素,同时还需要考虑设备的安装尺寸、重量、 价格等因素。
故障诊断
环保与节能
通过监测并联电抗器的运行状态,及时发现 潜在故障,提高设备运行可靠性。
研究绿色制造和节能技术,降低并联电抗器 的环境影响和能耗。
发展趋势
智能化
利用传感器、人工智能等技术,实现并联 电抗器的智能化控制和状态监测。
集成化
将并联电抗器与其他电气设备进行集成, 实现系统优化和协同控制。
高效化
并联电抗器在电气工程中的重要性
提高电力系统的稳定性
并联电抗器能够补偿电力系统中的 容性无功功率,提高电力系统的稳 定性。
抑制谐波和涌流
并联电抗器能够抑制电力系统中的 谐波和涌流,保护电气设备和系统 安全。
改善电能质量
并联电抗器能够改善电能质量,提 高电力系统的供电质量和可靠性。
降低设备损坏风险
并联电抗器能够降低设备损坏的风 险,减少维修和更换设备的成本。
研发具有更高性能和更低能耗的并联电抗 器,提高设备运行效率。
变电站无功补偿及高压并联电容补偿装置设计

变电站无功补偿及高压并联电容补偿装置设计2020-05-20 新用户796...修改一、电力系统的无功功率平衡1.1、无功功率电网中的电力负荷如电动机、变压器等都是靠电磁能量的变换而工作的,大部分属于感性负荷,建立磁场时要吸收无功,磁场消失时要交出无功。
在运行过程中需向这些设备提供相应的无功功率。
电力设备电磁能量的交换伴随着吸收和放出无功。
每交换一次,无功都要在整个电力系统中传输,这不仅要造成很多电能损失,而且往往在无功来回转换中会引起电压变化,因此设计时,应注意保持无功功率平衡。
变电站装设并联电容器是改善电压质量和降低电能损耗的有效措施。
在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗。
1.2、功率因数电网中的电气设备如电动机、变压器属于既有电阻又有电感的电感性负载,电感性负载的电压与电流的相量间存在相位差,相位角的余弦值即为功率因数cosφ,它是有功功率与视在功率的比值,即cosφ=P/S。
1.3、无功功率补偿的目的电网中的无功功率负荷主要有异步电动机、变压器,还有一部分输电线路。
而无功电源主要有发电机、静电电容器、同步调相机、静止补偿器。
无功功率的产生基本不消耗能源,但是无功功率沿电力网传输却要引起有功功率损耗和电压损耗。
合理配置无功功率补偿容量,以改变电力网无功潮流分布,可以减少网络中的有功功率损耗和电压损耗,从而改善用户端的电压质量。
在做电网网架规划时,根据各水平年各负荷点的有功负荷量及可靠性要求确定了变电容量的分配、线路回路数及导线截面和接线方式等等。
但是,这样还不能保证各用户端的电压达到国家和地区规定的要求。
因为做电网网架规划时是以最大负荷为依据,而实际运行时,负荷是变化的,功率因数也是变化的,通过线路的有功、无功功率都与规划计算时大不相同,因此,导致某些负荷点的电压“越限”(过高或过低)。
关于电力系统电压与无功补偿问题探讨

关于电力系统电压与无功补偿问题探讨电力系统中无功补偿对电力系统的重要性越来越受到重视,合理地投停使用无功补偿设备,对调整电网电压、提高供电质量、抑制谐波干扰、保证电网安全运行都有着十分重要的作用。
如果系统无功电源不足,则会使电网处于低电压水平上的无功功率平衡,即靠电压降低、负荷吸收无功功率的减少来弥补无功电源的不足。
同样,如果由于电网缺乏调节手段或无功补偿元件的不合理运行使某段时间无功功率过剩,也会造成整个电网的运行电压过高。
因此,要维持整个系统的电压水平,就必须有足够的无功电源来满足系统负荷对无功功率的需求和补偿线路和变压器中的无功功率损耗。
一、无功功率就地补偿的概念无功补偿装置的分布,首先要考虑调压的要求,满足电网电压质量指标。
同时,也要避免无功功率在电网内的长距离传输,减少电网的电压损耗和功率损耗。
无功功率补偿的原则是做到无功功率分层分区平衡,就是要做到哪里有无功负荷就在那里安装无功补偿装置。
这既是经济上的需要,也是无功电力特征所必需的,如果不这样做,就达不到最佳补偿的目的,解决不了无功电力就地平衡的问题。
二、无功功率的平衡在电力系统中,频率与有功功率是一对统一体,当有功负荷与有功电源出力相平衡时,频率就正常,达到额定值50Hz,而当有功负荷大于有功出力时,频率就下降,反之,频率就会上升。
电压与无功功率也和频率与有功功率一样,是一对对立的统一体。
当无功负荷与无功出力相平衡时,电压就正常,达到额定值,而当无功负荷大于无功出力时,电压就下降,反之,电压就会上升。
电压与无功功率之间的关系要比频率与有功功率之间的关系复杂得多,大体上有以下几点:2.1在一个并列运行的电力系统中,任何一点的频率都是一样的,而电压与无功电力却不是这样的。
当无功功率平衡时,整个电力系统的电压从整体上看是会正常的,是可以达到额定值的,即便是如此,也是指整体上而已,实际上有些节点处的电压并不一定合格,如果无功不是处于平衡状态时,那么情况就更复杂了,当无功出力大于无功负荷时,电压普遍会高一些,但也会有个别地方可能低一些,反之,也是如此。
电力系统中的无功补偿与功率因数校正技术

电力系统中的无功补偿与功率因数校正技术电力系统作为现代社会不可或缺的基础设施,为各行各业提供了稳定、可靠的电能供应。
然而,在电力系统的运行过程中,我们经常会遇到一些问题,比如无功功率的产生和功率因数的失调。
这些问题既会对电力系统的运行产生不利影响,也会浪费大量的电能资源。
因此,在电力系统中,无功补偿与功率因数校正技术显得尤为重要。
一、无功补偿技术无功电流是一种与电压相位差90度的电流。
在电力系统中,无功功率的产生主要是由于电感性负载所引起的。
电感性负载包括电动机、变压器、电感性炉等。
这些负载对于电力系统的正常运行必不可少,但同时也会产生无功功率。
无功补偿技术可以通过各种方式来减少或消除无功功率的产生。
其中,最常见的无功补偿技术包括串联无功补偿和并联无功补偿。
串联无功补偿主要通过改变负载的电感性来减少无功功率的产生。
这可以通过在负载端串联一个电容器来实现。
电容器具有负电感性,可以与负载的电感性相抵消,从而减少或消除无功功率的产生。
并联无功补偿则是通过在电源端并联一个电容器或电抗器来实现。
这样可以改变电源的电流相位,使其与负载的电流相位基本一致,从而减少或消除无功功率的产生。
二、功率因数校正技术功率因数是衡量电力质量好坏的一个重要指标。
功率因数越高,说明电力系统对于电能的利用效率越高。
反之,功率因数越低,说明电力系统对于电能资源的浪费越严重。
功率因数的失调主要是由于负载的无功功率所引起的。
因此,通过减少或消除无功功率的产生,可以有效地提高功率因数。
功率因数校正技术主要包括有源功率因数校正和无源功率因数校正。
有源功率因数校正使用特殊的电力电子装置,如可控硅器件和功率电子变换器等,在电力系统中引入主动的有源功率因数校正装置。
这种装置可以通过实时监测负载的功率因数情况,并根据设定的目标来调节负载的无功功率,从而实现功率因数的校正。
无源功率因数校正则是利用电容器或电抗器对电力系统进行补偿,从而提高功率因数。
并联电抗器的作用

电抗器可以吸收操作过电压产生的多余无功功率,降低过电压的幅值。
03
改善电压分布
在变电站中,并联电抗器的合理配置可以改善系统的电压分布,提高供
电质量。
案例分析
某500kV变电站
该变电站采用了大量的并联电抗器来补偿线路的充电功率和吸收操作过电压产生的多余无功功率。通 过合理配置并联电抗器,成功地将系统电压控制在允许范围内,提高了供电质量和系统稳定性。
过热故障处理
改善并联电抗器的散热条件,如增加散热面积、提高通风 效果等;对过载运行的并联电抗器进行减载处理或更换容 量更大的设备。
振动和噪音处理
对并联电抗器内部元件进行检查和紧固,更换损坏的元件 ;对电磁力作用引起的振动和噪音,可以通过调整设备参 数或采取隔振措施来降低其影响。
故障处理措施和预防措施
某大型发电厂
该发电厂在发电机出口处配置了并联电抗器,以限制工频电压升高和降低发电机自励磁现象的发生。 同时,通过并联电抗器的合理配置,改善了系统的无功功率平衡,提高了系统的稳定性。
05
并联电抗器选型与设计要 点
选型原则及注意事项
01
02
03
04
额定电压和电流
选择并联电抗器时,其额定电 压和电流应与实际系统相匹配 ,以确保设备的安全运行。
故障处理措施和预防措施
加强设备的运行监测和故障诊断工作 ,利用现代技术手段实现远程监控和 智能化管理。
建立完善的设备管理制度和操作规范 ,加强人员培训和技术交流,提高设 备管理和维护水平。
07
并联电抗器在新能源领域 的应用前景
新能源接入对电力系统影响分析
01
02
03
电压波动与闪变
新能源发电的间歇性、随 机性特点可能导致电网电 压波动和闪变问题。
10千伏并联电抗器补偿

10千伏并联电抗器补偿是指将电抗器与10千伏的输电线路并联,通过调节电抗器的电感量来吸收或释放无功功率,从而达到改善输电系统的电压稳定性和降低线路损耗的目的。
在电力系统中,无功功率的平衡对于系统的电压稳定性和供电质量至关重要。
当系统缺乏无功功率时,电压会下降,导致设备无法正常运行。
因此,通过并联电抗器进行无功补偿是一种常见的措施。
10千伏并联电抗器补偿的原理是将电抗器与输电线路并联,通过调节电抗器的电感量来吸收或释放无功功率。
当系统缺乏无功功率时,电抗器可以释放出无功功率,以补充系统的不足,从而稳定系统电压。
同时,通过吸收无功功率,电抗器还可以降低线路损耗,提高输电效率。
在实际应用中,并联电抗器的补偿方式可以根据不同的需求和场景进行选择。
例如,可以在输电线路的起点或终点设置并联电抗器,或者在不同的电压等级之间进行交叉补偿。
此外,还可以采用动态无功补偿技术,根据系统的实时需求进行快速调节,以达到更好的电压稳定性和节能效果。
总之,10千伏并联电抗器补偿是一种有效的无功补偿技术,对
于提高电力系统的稳定性和供电质量具有重要意义。
什么叫无功补偿装置

什么叫无功补偿装置总的来说“无功补偿装置”就是个无功电源。
一般电业规定功率因数为低压以上,高压以上。
为了克服无功损耗,就要采用无功补偿装置来解决。
电力系统中现有的无功补偿设备有无功静止式补偿装置和无功动态补偿装置两类,前者包括并联电容器和并联电抗器,后者包括同步补偿机(调相机)和静止型无功动态补偿装置(SVS)。
并联电抗器的功能是:1)吸收容性电流,补偿容性无功,使系统达到无功平衡;2)可削弱电容效应,限制系统的工频电压升高及操作过电压。
其不足之处是容量固定的并联电抗器,当线路传输功率接近自然功率时,会使线路电压过分降低,且造成附加有功损耗,但若将其切除,则线路在某些情况下又可能因失去补偿而产生不能允许的过电压。
改进方法是采用可控电抗器,它借助控制回路直流的励磁改变铁心的饱和度(即工作点),从而达到平滑调节无功输出的目的。
工业上采用1.同步电机和同步调相机;2.采用移相电容器;目前大多数采用移相电容器为主。
无功补偿对于降低线损有哪些作用?电网的损耗分为管理线损和技术线损。
管理线损通过管理和组织上的措施来降低;技术线损通过各种技术措施来降低。
无功补偿是利用技术措施降低线损的重要措施之一,在有功功率合理分配的同时,做到无功功率的合理分布。
按照就近的原则安排减少无功远距离输送。
对各种方式进行线损计算制定合理的运行方式;合理调整和利用补偿设备提高功率因数。
1、提高负荷的功率因数提高负荷的功率因数,可以减少发电机送出的无功功率和通过线路、变压器传输的无功功率,使线损大为降低,而且还可以改善电压质量、提高线路和变压器的输送能力。
2、装设无功补偿设备应当根据电网中无功负荷及无功分布情况合理选择无功补偿容量和确定补偿容量的分布,以进一步降低电网损耗。
农村低压客户的用电现状以及无功补偿在低压降损中的作用有哪些?90年代以前,农村低压用电以居民生活用电为主,其负荷主要是照明用白炽灯,不仅用电量少而且负荷性质基本是纯电阻性(COSφ≈1),而低压动力用户的负荷功率因数虽然较低,但其用电量占总售电量的比例较小,故影响不大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并联电抗器
1.并联电抗器在电力系统中的作用
并联电抗器无功功率补偿装置常用于补偿系统电容。
它通过向超高压、大容量的电网提供可阶梯调节的感性无功功率,补偿电网的剩余容性充电无功功率控制无功功率潮流,保证电网电压稳定在允许范围内。
实践证明,对于一些电压偏高的电网,安装一定数量的并联电抗器是解决系统无功功率过剩,降低电压的有效措施,特别是限制由于线路开路或轻载负荷所引起的电压升高。
所以在一定的运行工况中,在超高压输电线路手段装设并联电抗器以吸收输电线路电容所产生的无功功率,称为并联电抗器补偿。
由于目前应用于电力系统的电抗器大都为固定容量的电抗器,其容量不能改变,无法随时跟踪运行工况的无功功率变化,造成电抗器容量的浪费,与目前节能减排的主题不相符合,所以,有必要研究可控电抗器这个热门话题,使得电抗器的容量可控可调,这也在一定程度上符合我国发展智能电网的要求。
2.可控并联电抗器的分类、基本原理和优缺点
图1可控并联电抗器的分类
2.1 传统机械式可调电抗器
调匝式和调气隙式是最早出现并广泛应用的可调电抗器。
其基本原理是通过调节线圈匝数或调节铁芯气隙的长度来改变电抗器的磁路磁导,从而改变电抗值。
调匝式可控电抗器较易实现,但是电抗值不能做的无级调整。
调气隙式由于机械惯性和电机的控制问题无法在工程上应用。
2.2 晶闸管可控电抗器(TCR)
晶闸管可控电抗器,是随着电力电子技术发展起来的一种新型的可控电抗器,它采用线性电抗器与反并联晶闸管串联的接线方式,通过控制晶闸管的触发角就可以控制电抗器的等效电抗值。
TCR的控制灵活,响应速度快,缺点是在调节时会产生大量的谐波,需要加装专门的滤波装置。
在高电压大容量的场合下,必须采用多个晶闸管串联的方式,造价昂贵,这使得它在超高压电网中的应用受到了相当大的限制,目前主要应用范围是35kV和10kV的配电
网中。
2.3 磁控电抗器
磁控电抗器是通过改变铁芯的磁阻来实现电感值可调。
磁阻大,电感小;磁阻小,电感大,改变磁阻的方法一般有两种:一种是外加直流助磁来改变磁路的饱和程度;另一种是在控制绕组外加交流电流调节电抗器铁芯中的来实现电抗值可调的目的。
2.3.1 直流可控电抗器
直流可控电抗器属于磁控电抗器的一种。
它包括直流助磁式可控电抗器、高漏抗变压器式可控电抗器、磁阀式可控电抗器和正交磁芯式可控电抗器。
(1)直流助磁式可控电抗器
直流助磁式可控电抗器是通过改变电抗器副边控制绕组的直接电流来改变磁路的饱和程度。
当直流电流增大时,磁路饱和程度加深,交流有效磁导率降低,有效电抗值减小;反之,直流电流减小时,有效电抗值增大。
由于直流控制绕组和交流工作绕组含有较大谐波分量,并且噪声问题比较严重,因此此类电抗器有一定的适用范围。
(2)磁阀式可控电抗器
“磁阀”的概念是前苏联学者在1986年提出的,使可控电抗器的理论向前发展了一大步。
磁阀式可控电抗器是借助控制回路直流控制电流的激磁改变铁心的磁饱和度,从而达到平滑调节感抗的目的。
磁阀式可控电抗器的铁心截面积具有减小的一段,在整个容量调节范围内,只有小面积的那一段饱和,其余段均处于未饱和线性状态,通过改变小截面段磁路的饱和程度来改变电抗器的容量,这就磁阀名称的由来。
磁阀式可控电抗器制造工艺简单,成本低廉,对于提高电网的输电能力,调整电网电压,补偿无功功率,以及限制过电压都有非常大的应用潜力。
图2(a)为磁阀式可控电抗器的结构原理图,(b)为相应的电路图。
(a)结构原理图(b)电路原理图
图2 磁阀式电抗器的原理图
当KP1,KP2均不导通时,由绕组结构的对称性可知,其与空载变压器作用相同。
当电源电压处于正半波时,晶闸管KP1承受正向电压,KP2承受反向电压。
此时,若触发KP1使之导通,电源通过变比为δ的“自耦变压器”,由匝数为N2的线圈向电路提供直流控制电压和电流。
当KP2在电源的负半波被触发导通时,同样也产生直流控制电压和电流,而且控制电流的方向与KP1导通时一致。
这样,KP1和KP2在一个工频周波内轮流导通,构成全波整流,二极管起续流作用,保证晶闸管在相应的正向电压过零时能够顺利关断。
改变KP1和KP2的导通角,便可改变被控电流的大小,从而改变铁心的饱和度,实现电抗值连续可变。
(3)高漏抗变压器式可控电抗器
高漏抗变压器式可控电抗器是在晶闸管可控电抗器(TCR)的基础上发展起来的,其一、二次绕组间的短路阻抗很大,二次绕组用晶闸管短路。
通过调节二次绕组中晶闸管的导通角来调节二次绕组的中的短路电流,可以实现电抗值的连续平滑可调。
此可控电抗器相对于TCR的优点是将可控硅元件转移到变压器低压侧,降低了设备的成本,但仍然存在谐波问题,需要增加滤波装置。
2.3.2 交流可控电抗器
(1)基于磁通控制式可控电抗器
基于磁通控制式可控电抗器是一种新的可控电抗器。
它通过在带气隙的变压器的二次侧采用有源的方式注入一个与一次侧电流侧成比例的电流,改变二次侧注入电流的大小即可实现变压器一次侧等效阻抗的连续可调。
此种电抗器铁芯不饱和,理论上不会产生谐波,但仍处于理论研究阶段。
(2)变压器式可控电抗器
变压器式可控电抗器是在高漏抗式可控电抗器基础上提出的一种拓扑结构。
其电路原理图如图3所示,通过分级控制各控制绕组的反并联晶闸管的导通和关断以达到分级平滑调节整个电抗器等效阻抗的目的。
由于晶闸管工作于全关断或导通,所以不会对系统产生谐波污染。
图3变压器式可控电抗器
(3)调电容式可控电抗器
调电容式可控电抗器原理电路图如图4所示。
在电抗器工作时,当有较大的感性电流时,利用晶闸管分组投入电容器,利用电容电流限制部分电感电流,通过改变接入其中电容组数,达到补偿电流的目的。
此种可控电抗不会产生谐波,但由于分级控制,不能做到无级调节,另外由于增加了电容器,所以增加了设备的容量,使成本增加。
图4调电容式可控电抗器
2.4 PWM控制电抗器
这种电抗器是近几年来发展起来的一种新型可调电抗器,它利用PWM技术来调节电抗器侧的电压的幅值和相位,从而调节其输入电网的电流的幅值和相位,这便可以等效的改变送入电网的无功功率,从而起到动态无功功率补偿的作用。
其优点是谐波含量少,电抗量可平滑调节,但缺点同样十分突出,电力电子器件的耐压水平限制了其在超高压电网中的应用,同时其控制相当复杂,成大非常大。
2.5 超导可控电抗器
尚不能实现,故在此不做讨论。
3.可控电抗器的国内外现状与发展
国内外可控电抗器在实际中应用得较多的是磁阀式可控电抗器,国际上磁阀式电抗器在110kV及以上高压系统的应用在前苏联国家,见表1所示。
表1 磁阀式电抗器在110kV及以上高压系统的应用情况
在国内,我国自主研发的首套500kV、100Mvar磁控式可控电抗器于2007年9月在湖北江陵换流站投运成功,是国际上首次将磁控式可控电抗器应用到500kV输电线路侧,并在系统运行中发挥了重要作用,为我国特高压可控电抗器的研制、运行与维护积累了宝贵经验。
2006年9月,由中国电力科学研究院设计的忻都500kV高阻抗变压器式可控并联电抗器示范工程成功投入运行,该装置通过运行方式的切换可分别作为母线并联电抗器和线路并联电抗器使用。
综上所述,在目前来看,磁阀式可控电抗器和高阻抗变压器式可控电抗器是发展的重点,也是今后应用于实际电网的重点。