2018-2019学年江西省抚州市临川一中九年级(上)第一次月考数学试卷

合集下载

2018—2019学年第一学期第一次月考试卷九年级数学(试卷+答案)2019.09.20

2018—2019学年第一学期第一次月考试卷九年级数学(试卷+答案)2019.09.20

捷 二、三两个月平均每月营业额的增长率是( )
迅A.25%
B.20%
C.15%
D.10%
6.小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,
若出现三个正面向上或三个反面向上,则小强赢;若出现 2 个正面向上一个反面
向上,则小亮赢;若出现一个正面向上 2 个反面向上,则小文赢.下面说法正确
7 种,
∴一个球为白球,一个球为红球的概率是 7 ; 12
器 (2)由(1)中树状图可知,P(甲获胜)= 2 = 1 ,P(乙获胜)= 3 = 1 ,
12 6
12 4
∵1 1 ,
辑 6 4
∴该游戏规则不公平.
F编 22.(9 分)(1)解:设经过 x 秒,△ CPQ 的面积等于 3cm2.则
1 x8 2x 3 ,
次摸到黄球,由此估计袋中的黄球有
个.
14.如图,将一个长为 10cm,宽为 8cm 的矩形纸片对折两次后,沿所得矩形两
邻边中点的连线(虚线)剪下,再打开,得到菱形的面积为
cm2.
第 14 题图
第 15 题图
器 15.如图,正方形 ABCD 中,AB=4,E 是边 AD 上一点,将△EDC 沿 EC 翻折,
点 D 的对应点 D′落在正方形内部,若 △ AD′E 恰是以 D′E 为腰的等腰三角形,
辑 那么 DE 的长为

编 三.解答题(共 75 分) F 16.(8 分)解方程
(1) 2x 1 x 3 6
(2) 2x 12 2 2x 1 0
迅捷PD 17.(9 分)已知关于 x 的方程 x2+ax+a 2=0.
2018—2019 学年上学期第一次月考 九年级数学试卷

2018-2019年人教版九年级上册数学第一次月考试卷及答案[1](K12教育文档)

2018-2019年人教版九年级上册数学第一次月考试卷及答案[1](K12教育文档)

2018-2019年人教版九年级上册数学第一次月考试卷及答案[1](word版可编辑修改)2018-2019年人教版九年级上册数学第一次月考试卷及答案[1](word版可编辑修改编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容望(2018-2019年人教版九年级上册数学第一次月考试卷及答案[1](word版可编辑修改))的内容能够给您议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为201 [1](word版可编辑修改)的全部内容。

--环县虎洞镇初级中学九年级上第二次月考数学试卷一、选择题(每题3 分,共 24 分)1.已知关于x的一元二次方程x22x a有两个相等的实数根,则 a 的值是()A. 4B .- 4 C . 1 D .- 12.如果x2x 10 ,那么代数式 x3 2 x27 的值是()A 、 6B 、8C、 -6D、—83.如图, 抛物线y ax 2bx c(a0)的对称轴是直线x=1,且经过点 P( 3,0),则abc的值为()--A. 4B. 3C. 2D. 17.在同一坐标系内,一次函数y=ax+b 与二次函数y=ax 2+8x+b 的图象可能是--支球队参赛,根据题意列出的方程是________________________________ .10.如图,二次函数yax2bx c 的图象开口向上,图象经过点(-1, 2)和( 1, 0),且与 y 轴相交于负半轴.给出四个结论:①abc 0 ;② 2a b 0 ;③ a c 1;④ a 1 ,其中正确结论的序号是 ___________----15.若二次函数 y 2x 2的图象向左平移 2 个单位长度后, 得到函数 y 2(xh)2 的图象, 则 h=三、解答题(共 55 分)x 1 3x ( )3 12x11( )16.当满足条件x( x 4) (x 时,求出方程4) 22317.关于 x 的方程 x 2- 2x + k - 1= 0 有两个不等的实数根.(1)求 k 的取值范围; ( 2)若 k + 1 是方程 x 2-2x + k -1= 418.解下列方程( 1)( 2x - 1) 2— 25 = 0 ; ( 2) y 2=2 x 4 0的根21.为落实国务院房地产调控政策,使“居者有其屋".某市加快了廉租房的建设力度,2013年市政府共投资 3 亿元人民币建设了廉租房12 万平租( 3) x( x +3 ) = 2— x .房,若在这两年--( 1)求( 2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.19.先化简,再求值:(+2﹣x)÷,其中 x 满足 x2﹣4x+3=0.20.已知关于 x 的一元二次方程x22k 1 x k2k0 .( 1)求证:方程有两个不相等的实数根;----参考答案1. D【解析】试题分析:根据题意得: 4- 4×1×(- a ) =0,解得: a=- 1. 考点:根的判别式. 2. C【解析】此题考查代数式的化简和求值、考查整体代换思想的应用;由已知 得 到 x 2x 1 , 所 以7. C .【解析】试题分析:函数值y=所以,两个同一点,故由 A 、C 选向向上,所以, a > 所以,一次 限,所以, A3232 222x 2 x7 xxx7( x x ) 故选 C .x 7 x,所以选 C ;此题不易把方程解出后代入求值, 因为次方程的根是无理数,且出现 3 次方的计算,比较麻烦;3. A. 【解析】试 题 分 析 : 因 为 抛 物 线y ax 2bx c (a 0) 的对称轴是 直线 x=1,且经过点 P ( 3, 0),所以 根据对称性得抛物线与 x 轴的另一个 交 点 是 ( —1,0 ) , 代入y ax 2bx c(a 0)得a b c =0,故选: A.考点:抛物线对称性 . 4. B【解析】试题分析:由图象的位置可设解析式为 y=a [x —(—1)](x —3) ,将( 0,—3 )代 入得,—3=a [0-(-1)](0—3) ,解得 a=1,所以解析式为 y=( x+1)(x-3)=x 2﹣2x﹣故考 5. 【 试边完合方配=5故考法6.【试点由--x||y |=6入,得 x ( —x+5 ) =± 6,22,则 x -5x+6=0 或 x —5x —6=0 ∴每个方程有两个不相等的实数根 故选 A .考点:一次函数综合题.考点: 1。

2018-2019学年度第一学期人教版九年级数学上 第一次月考题及答案

2018-2019学年度第一学期人教版九年级数学上 第一次月考题及答案

9.如果 䁰、 是一元二次方程 ‫ݔ‬ Ā 㔰 的两个实数根,则䁰 ‫ ݔ‬Ͷ䁰 ‫ ݔ‬Ā ________. 10.如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为 Ā 䁪 ‫ ݔ‬t ,小强骑 自行车从拱梁一端 匀速穿过拱梁部分的桥面 ,当小强骑自行车行驶 秒时和 Ͷ 秒时 拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面 共需________秒.


上, 且
Ā
Ā
24.我们知道: ⸷Ā ⸷
; ㌠ Ā ㌠ ‫ݔ‬ Ā ‫ ݔ‬㔰Ā ‫⸷ ݔ‬,这一种方法称为配方法,利用配方法请解以下各题:
㔰 ‫ݔ ⸷ ݔ‬
按上面材料提示的方法填空: 䁪 Ͷ䁪 Ā________Ā________. 䁪 ‫ ݔ‬䁪 Ā ________Ā________. 探究:当 䁪 取不同的实数时在得到的代数式䁪 Ͷ䁪 的值中是否存在最小值?说明理由. Ā ㌠, 是 Ā ,以 应用:如图.已知线段 上的一个动点,设 为一边作 h ,再以 h.问:当点 在 正方形 、 h 为一组邻边作长方形 上运动时, h 的面积是否存在最大值?若存在,请求出这个最大值;否则请说明理由. 长方形
的值是( ) D.
22.已知关于 的方程 䁰 Ā 㔰. 若 Ā 是方程的一个根,求 䁰 的值和方程的另一根;
当 䁰 为何实数时,方程有实数根; 若 , 是方程的两个根,且
‫ݔ‬
Ā
,试求实数 䁰 的值.
23.如图, 正方形 Ā Ā ,当
的边长为 , 、 、 、 分别在 , 为何值时,四边形 的面积最小?
2018-2019 学年度第一学期人教版九年级数学上 第一次月考试卷
一、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 ) 1.将二次函数 Ā Ͷ ‫ ݔ‬化为 Ā 䁪 ‫ ݔ‬䁰 ‫ ݔ‬的形式: Ā________. 2.某工厂一月份产值是 ⸷㔰 万元,受国际金融危机的影响,第一季度的产值是 㔰 万元, 设每月的产值的平均下降率为 ,则可列方程:________. 3.写出一个 关于 的二次函数 Ā________. 使得当 Ā 时, Ā 㔰; 当 Ā 时, 㔰. 4.方程 ‫ݔ‬ Ā 㔰 的解是________. 5.抛物线的图象如图,当 ________时, ᦙ 㔰.

2018-2019学年度九年级上册数学第一次月考试题

2018-2019学年度九年级上册数学第一次月考试题

班订座位号2018-2019学年度第一次月考试题(卷)九年级数学试卷(满分150分,时间120分钟)、细心选一选(每小题3分,共30分)题号12345678910答案1 .下列方程中是关于x的2 3A x 0A. x-2----若---关-=一2 是关于( )A . —1 或4C . 1 或一43•用配方法解一元二次方程元二次方程的是2A . (x—6) = —4 +366、在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为(.y2—2x + 1 = 0.x2— 2 = (x+ 1)2的一元二次方程x2亠3ax -a2 = 02的一个根,则a的值为x2- 6x —4=0,4.下列抛物线中,与x轴有两个交点的是A. y == Sx7— 5x +32C. y = x —2x + 3B.5.二次函数y= ax2+ bx + c的图象如图所示,F列变形正确的是2.(x—6) = 4 + 362.(x-3) =4 + 92y = 4x —12x +9y = 2x2+ 3x —4则一兀二次方程A.x1 = 1,x2 = —3B.x1 =—1,x2= 3C.x1 = x2=—1D.x1 = x2 = 3ax2 + bx + c= 0的两根分别为()场比赛,则这次参加比赛的队伍有()A. 12 支B. 11支C. 9支D. 10支&已知2是关于x的方程x2—2mx +3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为( )A . 10B . 14C.10 或14 D.8 或1029、二次函数y = x 2x-7的函数值是8, 那么对应的x的值是()A、5B、3C、3或一5D、一3 或57. “五一”期间,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了4510 .如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道. 若设人行道的宽度为x米,则可以列出关于x的方程是()ISmA.2x + 9 x—8 ==0B.x2—9x—8 = 0C.x2—9x + 8 ==0D2.2x —9x + 8 = 0、填空题(本大题共8个小题,每小题4分,共32分.)11.将方程x2—2x + 1 = 4 —3x化为一般形式为____________ .912 .关于x的方程kx2—4x—= 0有实数根,则k的取值范围是__________________213、若抛物线y= m-1 x m5开口向下,贝U m = _____________x _2x-314 .已知若分式 --------- 3的值为0,则x的值为X +115. 一元二次方程(a+1)x2- ax +a2- 1 = 0 的一个根为0,贝U a = ____________ .16•两个数的和是16,积是48,则这两个数分别为________________ .217、若二次函数y=2x的图象先向左平移2个单位长度,再向下平移5个单位长度后,得到的图象解析式为______________________________ . a2 118、如图,二次函数y =ax bx c 0图象的一部分,对称轴为直线x=且经过点(2, 0),下列说法:① abc ::: 0 :②a • b = 0 :③4a 2b 0 ;④若(—2, %),5(,y)是抛物线上的两点,则y v y,其中说法正确的有三、解答题(共88分)2 1 22. (6 分)已知二次函数y = a x 的图像经过A(—1,——)2 (1)求这个二次函数的解析式;(2 )请写出这个二次函数图像的顶点坐标、对称轴和开口方向。

江西省抚州市临川一中2018-2019学年高一上学期第一次月考数学试卷Word版含解析

江西省抚州市临川一中2018-2019学年高一上学期第一次月考数学试卷Word版含解析

江西省抚州市临川一中2018-2019学年高一上学期第一次月考数学试卷Word版含解析第一篇:江西省抚州市临川一中2018-2019学年高一上学期第一次月考数学试卷Word版含解析江西省抚州市临川一中2018-2019学年高一上学期第一次月考数学试卷一、选择题(共12小题,每题5分,共60分,每题只有一个选项是正确的)1.已知全集U=R,集合A={x|2<x≤3},集合B={x|2≤x≤4},则(∁UA)∩B等于()A.{x|3≤x≤4} B.{x|3<x≤4} C.{x|x=2或3<x≤4}2.已知集合A={x|x2﹣2x﹣3=0},集合B={﹣1,0,1,2,3},且集合M满足A⊆M⊆B,则M的个数为()A.32 B.16 C.8 3.下列四组函数中,f(x)与g(x)是同一函数的一组是()A.f(x)=|x|,g(x)= B.f(x)=x,g(x)=()2 D.7 D.{x|3<x<4} C.f(x)=4.函数f(x)=,g(x)=x+1D.f(x)=1,g(x)=x0 的定义域是()A.[﹣4,2] B.[﹣4,﹣1)∪(﹣1,2] C.(﹣4,2)D.(﹣4,﹣1)∪(﹣1,2)5.在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(2x﹣y,x+2y),则元素(1,﹣2)在f的作用下的原像为()A.(4,﹣3)B.(﹣,﹣)C.(﹣,)D.(0,﹣1)6.在同一个平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的可能是()A. B. C. D.7.下列函数中满足在(﹣∞,0)是单调递增的是()A.f(x)= B.f(x)=﹣(x+1)2 C.f(x)=1+2x2 D.f(x)=﹣|x| 8.已知函数f(x)=,其定义域是[﹣8,﹣4),则下列说法正确的是()B.f(x)有最大值,最小值 D.f(x)有最大值2,最小值 A.f (x)有最大值,无最小值 C.f(x)有最大值,无最小值9.已知函数y=f(1﹣x2)的定义域[﹣2,3],则函数g(x)=的定义域是()A.(﹣∞,﹣2)∪(﹣2,3] B.[﹣8,﹣2)∪(﹣2,1] C.[﹣,﹣2)∪(﹣2,0] D.[﹣,﹣2]10.已知A={a,b,c},B={1,2,3},从A到B建立映射f,使f(a)+f(b)+f(c)=4,则满足条件的映射共有()A.1个 B.2个 C.3个 D.4个11.若函数在R上为增函数,则a的取值范围为()A.1<a B.1<a≤3 C.1<a≤ D.a≥312.若函数f(x)=|mx2﹣(2m+1)x+m+3|恰有4个单调区间,则实数m的取值范围为()A.(﹣∞,)B.(﹣∞,0)∪(0,)二、填空题(共4小题,每题5分,共20分)13.已知函数是幂函数,则m=.C.(0,] D.(,1] 14.已知函数f(x)=﹣x2+2bx+c,任意的x1,x2∈(﹣∞,0)且x1≠x2时,都有0,则实数b的取值范围为.15.函数f(x)=2x﹣1+16.已知集合A=三、解答题(本大题共6题,共70分)17.设集合A={x|x+2≤0或x﹣3≥0},B={x|2a﹣1≤x≤a+2},若A∩B=B,求实数a的取值范围.18.已知集合A={x|ax2+2x+1=0}.(1)若A中只有一个元素,求a的值;(2)若A中至多只有一个元素,求a的取值范围.19.(1)已知﹣1,求f(x)的解析式.,则集合A=.的值域为.<(2)已知f(x)是二次函数,且满足f(2)=4,f(﹣3)=4,且f(x)的最小值为2,求f(x)的解析式.20.已知函数f(x)对任意a,b∈R,都有f(a+b)=f(a)+f (b)﹣3,并且当x>0时,f(x)>3.(1)求证:f(x)是R上的增函数.(2)若f(4)=2,解不等式f(3m2﹣m﹣2)>.21.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).22.已知函数f(x)=﹣x2+2ax+1.(1)若y=f(x)在(1,+∞)上单调递减,求a的取值范围.(2)若a=1时,y=f(x)在区间[m,n]上的值域为[2m,2n],求m,n的值.(3)记h(a)为y=f(x)在区间[﹣4,4]的最小值,求出y=h(a)江西省抚州市临川一中2018-2019学年高一上学期第一次月考数学试卷参考答案与试题解析一、选择题(共12小题,每题5分,共60分,每题只有一个选项是正确的)1.已知全集U=R,集合A={x|2<x≤3},集合B={x|2≤x≤4},则(∁UA)∩B等于()A.{x|3≤x≤4} B.{x|3<x≤4} C.{x|x=2或3<x≤4} 【考点】交、并、补集的混合运算.【专题】集合.【分析】由全集U=R,找出不属于A的部分,确定出A的补集,找出A补集与B的公共部分,即可确定出所求的集合【解答】解:∵全集U=R,集合A={x|2<x≤3},∴∁UA={x|x≤2,或x>3},∵集合B={x|2≤x≤4},∴(∁UA)∩B={x|x=2或3<x≤4},故选:C.【点评】此题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.2.已知集合A={x|x2﹣2x﹣3=0},集合B={﹣1,0,1,2,3},且集合M满足A⊆M⊆B,则M的个数为()A.32 B.16 C.8 【考点】子集与真子集.【专题】集合.【分析】先求出集合A={﹣1,3},根据A⊆M⊆B便知M中一定含有元素﹣1,3,而0,1,2可能为集合M的元素,从而便可得到M 的个数为【解答】解:A={﹣1,3},A⊆M;∴﹣1∈M,3∈M;又M⊆B;∴0,1,2,可能是M的元素;∴M的个数为:.,这样便可得出M的个数. D.7D.{x|3<x<4} 故选:C.【点评】考查一元二次方程的解法,列举法、描述法表示集合,子集的概念,组合数的概念,以及二项式定理.3.下列四组函数中,f(x)与g(x)是同一函数的一组是()A.f(x)=|x|,g(x)= B.f(x)=x,g(x)=()2C.f(x)=,g(x)=x+1D.f(x)=1,g(x)=x0【考点】判断两个函数是否为同一函数.【专题】函数的性质及应用.【分析】根据两个函数的定义域相同,对应关系也相同,判断它们是同一函数即可.【解答】解:对于A,f(x)=|x|(x∈R),与g (x)=∴是同一函数;对于B,f(x)=x(x∈R),与g(x)==x(x≥)的定义域不同,∴不是同一函数;=|x|(x∈R)的定义域相同,对应关系也相同,对于C,f(x)==x+1(x≠1),与g(x)=x+1(x∈R)的定义域不同,∴不是同一函数;对于D,f(x)=1(x∈R),与g(x)=x0=1(x≠0)的定义域不同,∴不是同一函数.故选:A.【点评】本题考查了判断两个函数是否为同一函数的问题,是基础题目.4.函数f(x)=的定义域是()A.[﹣4,2] B.[﹣4,﹣1)∪(﹣1,2] C.(﹣4,2)D.(﹣4,﹣1)∪(﹣1,2)【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】由0指数幂的底数不等于0,分母中根式内部的代数式大于0联立不等式组得答案.【解答】解:要使原函数有意义,则,解得﹣4<x<2且x≠﹣1.∴函数f(x)=故选:D.的定义域是(﹣4,﹣1)∪(﹣1,2).【点评】本题考查函数的定义域及其求法,考查了一元二次不等式的解法,是基础题.5.在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(2x﹣y,x+2y),则元素(1,﹣2)在f的作用下的原像为()A.(4,﹣3)B.(﹣,﹣)C.(﹣,)D.(0,﹣1)【考点】映射.【专题】函数的性质及应用.【分析】设元素(1,﹣2)在f的作用下的原像为:(x,y),则2x﹣y=1,x+2y=﹣2,解得答案.【解答】解:设元素(1,﹣2)在f的作用下的原像为:(x,y),则2x﹣y=1,x+2y=﹣2,解得:x=0,y=﹣1,即元素(1,﹣2)在f的作用下的原像为:(0,﹣1),故选:D.【点评】本题考查的知识点是映射,由原象求象是求代数式的值,由象求原象是解方程(组).6.在同一个平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的可能是()A. B. C. D.【考点】函数的图象.【专题】函数的性质及应用.【分析】题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致【解答】解:A、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b<0,正确;B、由抛物线可知,a<0,由直线可知,a>0,错误.C、由抛物线可知,a>0,由直线可知,a<0,错误;D、由抛物线可知,a <0,x=﹣故选:A.>0,得b>0,由直线可知,a<0,b>0,错误;【点评】本题考查了函数图象的识别,以及抛物线和直线的性质,属于基础题.7.下列函数中满足在(﹣∞,0)是单调递增的是()A.f(x)= B.f(x)=﹣(x+1)2 C.f(x)=1+2x2 D.f(x)=﹣|x| 【考点】函数单调性的判断与证明.【专题】函数思想;定义法;函数的性质及应用.【分析】根据函数单调性的性质进行判断即可.【解答】解:A.函数的定义域为(﹣∞,﹣2)∪(﹣2,+∞),则在(﹣∞,0)上不是单调函数,不满足条件.B.f(x)=﹣(x+1)2的对称轴是x=﹣1,在(﹣∞,0)上不是单调函数,不满足条件.C.f(x)=1+2x2的对称轴是x=0,在(﹣∞,0)上是单调递减函数,不满足条件. D.当x<0时,f(x)=﹣|x|=x为增函数,满足条件.故选:D 【点评】本题主要考查函数单调性的判断,要求熟练掌握常见函数的单调性的性质.8.已知函数f(x)=,其定义域是[﹣8,﹣4),则下列说法正确的是()B.f(x)有最大值,最小值 D.f(x)有最大值2,最小值 A.f (x)有最大值,无最小值 C.f(x)有最大值,无最小值【考点】函数的最值及其几何意义.【专题】函数的性质及应用.【分析】将f(x)化为2+【解答】解:函数f(x)=,判断在[﹣8,﹣4)的单调性,即可得到最值. =2+即有f(x)在[﹣8,﹣4)递减,则x=﹣8处取得最大值,且为,由x=﹣4取不到,即最小值取不到.故选A.【点评】本题考查函数的最值的求法,注意运用单调性,考查运算能力,属于基础题和易错题.9.已知函数y=f(1﹣x2)的定义域[﹣2,3],则函数g(x)=的定义域是()A.(﹣∞,﹣2)∪(﹣2,3] B.[﹣8,﹣2)∪(﹣2,1] C.[﹣,﹣2)∪(﹣2,0] D.[﹣,﹣2] 【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】函数y=f(1﹣x2)的定义域[﹣2,3],可得﹣2≤x≤3,可得﹣8≤1﹣x2≤1.由解出即可.【解答】解:∵函数y=f(1﹣x2)的定义域[﹣2,3],∴﹣2≤x≤3,∴﹣8≤1﹣x2≤1 由解得故选:C.【点评】本题考查了函数的定义域的求法,考查了推理能力与计算能力,属于中档题.10.已知A={a,b,c},B={1,2,3},从A到B建立映射f,使f(a)+f(b)+f(c)=4,则满足条件的映射共有()A.1个 B.2个 C.3个 D.4个【考点】映射.【专题】计算题;函数的性质及应用.【分析】从f(a)+f(b)+f(c)=4分析,可知f(a),f (b),f(c)三个数应为1,1,2的不同排列.【解答】解:∵f(a)+f(b)+f(c)=4,∴①f(a)=1,f(b)=1,f(c)=2;②f(a)=1,f(b)=2,f(c)=1;③f(a)=2,f(b)=1,f(c)=1.,且x≠﹣2.,故选:C.【点评】函数是特殊的映射,函数与映射对于对应关系的要求是一样的,属于基础题目.11.若函数在R上为增函数,则a的取值范围为()A.1<a B.1<a≤3 C.1<a≤ D.a≥3 【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】由题意可得≤0,a﹣1>0,且1≥2a﹣4,由此求得a的范围.【解答】解:根据函数且1≥2a﹣4,求得1<a≤,故选:C.在R上为增函数,可得≤0,a﹣1>0,【点评】本题主要考查函数的单调性的性质,体现了转化的数学思想,属于基础题.12.若函数f(x)=|mx2﹣(2m+1)x+m+3|恰有4个单调区间,则实数m的取值范围为()A.(﹣∞,)B.(﹣∞,0)∪(0,)【考点】函数的单调性及单调区间.【专题】函数的性质及应用.【分析】根据二次函数的单调性的性质进行求解即可.【解答】解:若f(x)=|mx2﹣(2m+1)x+m+3|恰有4个单调区间,则等价为函数y=mx2﹣(2m+1)x+m+3与x轴有两个不同的交点,即m≠0且判别式△=(2m+1)2﹣4m(m+3)>0,即4m2+4m+1﹣4m2﹣12m>0,即﹣8m+1>0,解得m<且m≠0,C.(0,] D.(,1] 即实数m的取值范围为(﹣∞,0)∪(0,),故选:B.【点评】本题主要考查函数单调性的应用,根据一元二次函数的性质转化为判别式△的关系是解决本题的关键.二、填空题(共4小题,每题5分,共20分)13.已知函数是幂函数,则m= 4 .【考点】幂函数的概念、解析式、定义域、值域.【专题】函数的性质及应用.【分析】利用幂函数的定义即可得出.【解答】解:∵函数∴m2﹣m﹣11=1,解得m=4.故答案为:4.【点评】本题考查了幂函数的定义,考查了推理能力与计算能力,属于基础题.14.已知函数f(x)=﹣x2+2bx+c,任意的x1,x2∈(﹣∞,0)且x1≠x2时,都有0,则实数b的取值范围为b≥0 .【考点】二次函数的性质.【专题】转化思想;数学模型法;函数的性质及应用.【分析】若任意的x1,x2∈(﹣∞,0)且x1≠x2时,都有∞,0)上为增函数,结合二次函数的图象和性质,可得实数b的取值范围.【解答】解:∵任意的x1,x2∈(﹣∞,0)且x1≠x2时,都有∴函数f(x)在(﹣∞,0)上为增函数,又∵函数f(x)=﹣x2+2bx+c的图象是开口朝下,且以直线x=b为对称轴的抛物线,<0,<0,则函数f(x)在(﹣<≠0,m+3≠0,是幂函数,故b≥0,故答案为:b≥0【点评】本题考查的知识点是二次函数的图象图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.15.函数f(x)=2x﹣1+【考点】函数的值域.【专题】函数的性质及应用.【分析】可令,t≥0,可解出x=1﹣t2,并设y=f(x),从而可以得到,的值域为(] .这样由t的范围便可得出y的范围,即得出原函数的值域.【解答】解:令∴y=﹣2t2+t+1=∵t≥0;∴;].(t≥0),则x=1﹣t2,设y=f(x);;∴函数f(x)的值域为(故答案为:(].【点评】考查函数值域的概念,换元法求函数的值域,以及配方法求二次函数的值域.16.已知集合A=【考点】集合的表示法.【专题】集合.【分析】通过讨论a的范围,结合二次函数的性质求出关于a的取值即可.【解答】解:集合A={a|=1},=1有唯一实数解.,则集合A= {﹣,﹣1,1} .(1)若a=﹣1,则==1,符合.(2)若a=1,则==1,符合.(3)若a≠±1,=1有唯一实数解,等价于x2﹣x﹣1﹣a=0有唯一实数解,那么△=(﹣1)2﹣4×1×(﹣1﹣a)=0 即a=﹣.故答案为:{﹣,﹣1,1}.【点评】本题考查集合的表示法,解题时要认真审题,仔细解答,注意分类讨论思想的灵活运用.三、解答题(本大题共6题,共70分)17.设集合A={x|x+2≤0或x﹣3≥0},B={x|2a﹣1≤x≤a+2},若A∩B=B,求实数a的取值范围.【考点】集合的包含关系判断及应用.【专题】计算题;集合.【分析】由题意知B⊆A,从而讨论B是否是空集即可.【解答】解:∵A∩B=B,∴B⊆A,当B=∅时,2a﹣1>a+2,∴a>3;当B≠∅时,2a﹣1≤a+2,即a≤3;∴a+2≤﹣2或2a﹣1≥3,解得,a≤﹣4或2≤a≤3,综上所述,a≤﹣4或a≥2.【点评】本题考查了集合的运算及集合的关系应用.18.已知集合A={x|ax2+2x+1=0}.(1)若A中只有一个元素,求a的值;(2)若A中至多只有一个元素,求a的取值范围.【考点】元素与集合关系的判断.【专题】计算题.【分析】(1)A中只有一个元素包含两种情况:一次方程或二次方程只有一个根,二次方程根的个数通过判别式为0.(2)A中至多只有一个元素包含只有一个根或无根,只有一个根的情况在(1)已解决;无根时,判别式小于0,解得.【解答】解:(1)当a=0时,A={x|2x+1=0}=,符合条件;当a≠0时,方程ax2+2x+1=0为一元二次方程,要使A中只有一个元素,则方程ax2+2x+1=0只有一个实数解,所以△=4﹣4a=0⇒a=1.所以,a的值为0或1.(2)若A中至多只有一个元素,则A中只有一个元素,或A=∅.由(1)知:若A中只有一个元素,a的值为0或1;若A=∅,则方程ax2+2x+1=0无实数解,所以△=4﹣4a<0⇒a >1.所以,a≥1或a=0.【点评】本题考查分类讨论的数学方法、考查通过判别式解决二次方程根的个数问题.19.(1)已知﹣1,求f(x)的解析式.(2)已知f(x)是二次函数,且满足f(2)=4,f(﹣3)=4,且f(x)的最小值为2,求f(x)的解析式.【考点】二次函数的性质;函数解析式的求解及常用方法.【专题】转化思想;换元法;函数的性质及应用.【分析】(1)令t=,t≠1,则x=,利用换法法,先求出f(t),进而可得f(x)的解析式.(2)由已知可得f(x)的图象关于直线x=﹣对称,结合f(x)的最小值为2,可设出函数的顶点式方程,求出a值后,可得答案.【解答】解:(1)令t=∵﹣1,t≠1,则x=,∴=t2﹣2t,∴f(x)=x2﹣2x,x≠1,(2)∵f(x)是二次函数,且满足f(2)=4,f(﹣3)=4,故f(x)的图象关于直线x=﹣对称,又∵f(x)的最小值为2,∴设f(x)=a(x+)2+2,(a>0),则f(2)=a(2+)2+2=4,解得:a=∴f(x)=,(x+)2+2=x2+x+【点评】本题考查的知识点是换元法求函数解析式,待定系数法求函数解析式,二次函数的图象图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.20.已知函数f(x)对任意a,b∈R,都有f(a+b)=f(a)+f (b)﹣3,并且当x>0时,f(x)>3.(1)求证:f(x)是R上的增函数.(2)若f(4)=2,解不等式f(3m2﹣m﹣2)>.【考点】抽象函数及其应用.【专题】函数的性质及应用;不等式的解法及应用.【分析】(1)先任取x1<x2,x2﹣x1>0.由当x>0时,f(x)>3.得到f(x2﹣x1)>3,再对f(x2)按照f(a+b)=f(a)+f (b)﹣3变形得到结论;(2)由f(4)=2,再将f(3m2﹣m﹣2)>转化为f(3m2﹣m ﹣2)>f(2),由(1)中的结论,利用单调性求解.【解答】解:(1)证明:任取x1<x2,∴x2﹣x1>0,∴f(x2﹣x1)>3.∴f(x2)=f[x1+(x2﹣x1)]=f(x1)+f(x2﹣x1)﹣3>f (x1),∴f(x)是R上的增函数;(2)∵f(4)=f(2)+f(2)﹣3=2,可得f(2)=,∴f(3m2﹣m﹣2)>=f(2),又由(1)的结论知,f(x)是R上的增函数,∴3m2﹣m﹣2>2,3m2﹣m﹣4>0,∴m<﹣1或m>,即不等式的解集为{m|m<﹣1或m>}.【点评】本题主要考查抽象函数的单调性证明和利用单调性定义解抽象不等式,利用定义法以及转化法是解决本题的关键.属于中档题.21.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【专题】应用题.【分析】(Ⅰ)根据题意,函数v(x)表达式为分段函数的形式,关键在于求函数v(x)在20≤x≤200时的表达式,根据一次函数表达式的形式,用待定系数法可求得;(Ⅱ)先在区间(0,20]上,函数f(x)为增函数,得最大值为f (20)=1200,然后在区间[20,200]上用基本不等式求出函数f(x)的最大值,用基本不等式取等号的条件求出相应的x值,两个区间内较大的最大值即为函数在区间(0,200]上的最大值.【解答】解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b 再由已知得,解得故函数v(x)的表达式为.(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200 当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为.,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.【点评】本题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力,属于中等题.22.已知函数f(x)=﹣x2+2ax+1.(1)若y=f(x)在(1,+∞)上单调递减,求a的取值范围.(2)若a=1时,y=f(x)在区间[m,n]上的值域为[2m,2n],求m,n的值.(3)记h(a)为y=f(x)在区间[﹣4,4]的最小值,求出y=h(a)【考点】二次函数的性质.【专题】函数的性质及应用.【分析】函数f(x)=﹣x2+2ax+1的图象是开口朝下,且以直线x=a为对称轴的抛物线;(1)若y=f(x)在(1,+∞)上单调递减,则a≤1;(2)若a=1时,y=f(x)在区间[m,n]上的值域为[2m,2n],则m,n为方程f(x)=﹣x2+2x+1=2x,即﹣x2+1=0的两根,解得m,n的值.(3)分段讨论,y=f(x)在区间[﹣4,4]的最小值h(a)的表达式,综合讨论结果,可得答案.【解答】解:函数f(x)=﹣x2+2ax+1的图象是开口朝下,且以直线x=a为对称轴的抛物线;(1)若y=f(x)在(1,+∞)上单调递减,则a≤1;(2)若a=1时,y=f(x)在区间[m,n]上的值域为[2m,2n],由函数在x=1时,取最大值2,故2m<2n≤2,即m<n≤1,故函数y=f(x)在区间[m,n]上为增函数,即,即m,n为方程f(x)=﹣x2+2x+1=2x,即﹣x2+1=0的两根,解得:m=﹣1,n=1,(3)当a≤﹣4时,函数y=f(x)在区间[﹣4,4]为减函数,此时h(a)=f(4)=8a﹣15;当﹣4<a<4时,函数y=f(x)在区间[﹣4,a]为增函数,[a,4]为减函数,此时h(a)=f(a)=a2+1;当a≥4时,函数y=f(x)在区间[﹣4,4]为增函数,此时h(a)=f(﹣4)=﹣8a﹣15;综上所述:h(a)=【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.第二篇:江西省抚州市临川十中2013-2014学年高一上学期期中考试语文试题高一上学期期中语文试卷第Ⅰ卷(选择题共36分)出卷人:谢艳红本卷12小题,每小题3分,共36分。

2018-2019初三数学第一次月考试卷

2018-2019初三数学第一次月考试卷

2018~2019学年度第一学期第一次质量调研测试初 三 数 学 试 卷( 时间:120分钟 分值:150分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上........) 1.下列方程中是关于x 的一元二次方程的是••••••••••••••••••••••••••••••••••( ▲ )A .2210x x+= B.20ax bx c ++= C .(1)(2)1x x -+= D .223250x xy y --=2.下列说法正确的是••••••••••••••••••••••••••••••••••••••••••••••••••••••( ▲ )A .相等的圆心角所对的弧相等B .平分弦的直径垂直于弦C .等弧所对的圆心角相等D .三角形的外心到三角形三边的距离相等3.判断关于x 的方程20(0)ax bx c a ++=≠的一个解x 的范围是••••••••••••••••••( ▲ )A.x <3.24B.3.24<x <3.25C.3.25<x <3.26D.3.25<x <3.284.在同圆中,若则AB 与2CD 的大小关系是•••••••••••••••••••••••••••( ▲ )A .AB >2CD B .AB=2CDC . AB <2CD D .不能确定 5.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛 程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为••••( ▲ ) A.x (x +1)=28B .x (x ﹣1)=28C .x (x +1)=28D .x (x ﹣1)=28学校 班级 姓名 考试号 考场……………………………装………………………………………订………………………………线……………………………………………………6.如图,CD 是⊙O 的直径,∠EOD=84°,AE 交⊙O 于点B,且AB=OC,则∠A 的度数为••••( ▲ )A .28°B . 42°C .21°D .20°(第6题) (第8题) 7.关于x 的一元二次方程22(1)0x a x a +-+=的两个实数根互为倒数,则a 的值为( ▲ )A .1B .-1C .1或-1D .-1或28.如图, 在⊙O 中,直径AB =8,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ .当点P 在BC 上移动时,则PQ 长的最大值是••••••••••••( ▲ )A .2B .4C .D .2二、填空题(本大题共有10小题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题纸的相应位置....上) 9. 写出一个以-2, 1为解的一元二次方程 ▲ .10.⊙O 的半径为R ,圆心O 到点A 的距离为d ,且R 、d 分别是方程x 2﹣4x+4=0的两根,则点A 与⊙O 的位置关系是 ▲ .11.关于x 的方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则k 的最小整数值为 ▲ 12.已知直角三角形两直角边分别为3和4,则这个直角三角形的外接圆半径为 ▲ . 13.如图,邻边不相等.....的矩形花圃ABCD.它的一边AD 利用已有的围墙,围成另外三边的栅栏的总长是6m 若矩形的面积为42m ,则AB 的长是 ▲ m .(可利用的围墙长度超过6m )14已知关于x 的方程26+0x x k +=的两个根分别是1x 、2x ,且12113x x +=,则k 的值 ▲ . 15. 如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则所列的方程为 ▲(第13题) (第15题) (第16题) 16.把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则的度数是▲ .17. 关于x 的方程2()0a x m b ++=的解是13x =-,25x =,(a ,m ,b 均为常数,a ≠0),则方程2(2)0a x m b +++=的解是 ▲ .18.对于实数p ,q ,我们用符号{}max ,p q 表示p ,q 两数中较大的数,如{}max 1,22=,若{}22max (1),9x x -=,则x = ▲ .三 、 解答题(本大题共有10小题,共72分.请在答题纸的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分12分)解方程:2(1)870x x -+= 2(2)13(1)x x -=+ 2(2)341x x -=-20. (本题满分10分)已知关于x 的方程(1)求证:无论k 取何实数,方程总有实数根.(2)若等腰三角形的一边长a=1,另两边长b 、c 恰好是这个方程的两个根,求△ABC 的周长.2(2)20x k x k -++=CAB21. (本题满分10分)如图,在半径为5的四分之一圆中,∠AOB=90°,点C 是弧AB 上的一个动点(不与点A 、B 重合)OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E . (1)当BC=6时,求线段OD 的长; (2)连接AB ,求DE 的长.22.(本题满分10分)如图,直线y =﹣x +5与双曲线y =k x(x >0)相交于A ,B 两点,与x 轴相交于C 点,△BOC 的面积是52 .(1)求双曲线的函数关系式.(2)若将直线y =﹣x +5向下平移1个单位,则平移后的直线与双曲线y=k x(x >0)是否有公共点?若没有请说明理由,若有请求出公共点坐标.23. (本题满分10分)今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动.现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2015年单价为200元,2017年单价为162元.(1)求2015年到2017年该品牌足球单价平均每年降低的百分率; (2)选购期间发现该品牌足球在两个文体用品商店有不同的促销方案:试问去哪个商场购买足球更优惠?24.(本题满分10分)有一个面积为30平方米的长方形ABCD 的鸡场,鸡场的一边靠墙(墙长8米),墙的对面有一个1米宽的门,另三边用竹篱笆围成,篱笆总长15米,求鸡场的宽AB 是多少米?25. (本题满分10分) 阅读下面的例题: 解方程022=--m m 的过程如下:解:①当0≥m 时,原方程化为022=--m m .解得:1m =2 , 2m = -1 (舍去). ②当0<m 时,原方程化为022=-+m m .解得:1m =-2 ,2m = 1 (舍去). 综合得,原方程的解:1m =2,2m =-2. 请参照例题解方程:2330m m ---=.26. (本题满分12分)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为16元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?27. (本题满分12分)如图:在矩形ABCD 中,AB=6cm, BC=12cm,点P 从点A 出发沿AB 以1cm/s 的速度向点B 移动;同时,点Q 从点B 出发沿BC 以2cm/s 的速度向点C 移动.(1).如图1,几秒后△DPQ 的面积等于28cm 2? (2).如图1,求证:四边形PBQD 的面积是定值.(3).如图2,以Q 为圆心,PQ 为半径作⊙Q .在运动过程中,是否存在这样的t 值,使⊙Q 正好经过点D ?若存在,求出t 值;若不存在,请说明理由;2018~2019学年度第一学期第一次质量调研测试初 三 数 学 答 题 纸考试时间:120分钟 试卷分值:150分考场………………………………………ABC23.(本题10分)24.(本题10分)25.(本题10分)初三数学参考答案27.(本题12分)26.(本题12分)二、填空题9. 220x x +-= 10. 点A 在⊙O 上 11. 1 12. 2.513. 1 14. -2 15. (322)(20)570x x --= 16.150017. 13x =,25x =- 18. -2或3三、解答题19. 【解答】解方程:(每小题4分,共12分)(1)11x =,27x = ••••••••••••••••••••••••••••(4分)(2)11x =-,24x = ••••••••••••••••••••••••••••(4分)(3)11x =,213x = ••••••••••••••••••••••••••••(4分) 20. 【解答】解:(1)证明:因为224(2)0b ac k -=-≥无论k 取何实数,方程总有实数根.••••••••••••••••••(5分)(2) 由题意的1x k =,22x = ,因为1,1,2或1,2,2,当1,1,2构不成三角形,1,2,2构成三角形的周长为2+2+1=5 ••••••••••••••••••••••••••••(10分)21. 【解答】解:(1)4 •••••••••••••••••••••••••••(5分)(2)•••••••••••••••••••••••••••(10分) . 22. 【解答】解:(1) 4y x= •••••••••••••••••••••••••••(5分) (2) 有。

江西省抚州市临川一中九年级(上)第一次月考数学试卷 卷

江西省抚州市临川一中九年级(上)第一次月考数学试卷 卷

九年级(上)第一次月考数学试卷一、选择题(本大题共6小题,共18.0分)1.准备两组相同的牌,每组两张且大小相同,两张牌的牌面数字分别是0,1,从每组牌中各摸出一张牌,两张牌的牌面数字和为1的概率为()A. 34B. 13C. 12D. 142.某商品经过两次连续提价,每件售价由原来的35元提到了55元.设平均每次提价的百分率为x,则下列方程中正确的是()A. 55 (1+x)2=35B. 35(1+x)2=55C. 55(1−x)2=35D. 35(1−x)2=553.若5k+20<0,则关于x的一元二次方程x2+4x-k=0的根的情况是()A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 无法判断4.对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为()A. 7B. 6C. 5D. 45.如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为()A. 5B. 4C. 342D. 346.如图,矩形ABOC的顶点A的坐标为(-4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A. (0,43)B. (0,53)C. (0,2)D. (0,103)二、填空题(本大题共6小题,共18.0分)7.若关于x的一元二次方程的两个根分别为x1=1,x2=2,则这个方程是______.8.如图,矩形ABCD中,点E,F分别是AB,CD的中点,连接DE和BF,分别取DE,BF的中点M,N,连接AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为_____.9.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为______10.如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB=______.11.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B n的坐标是______.12.如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE:S△COD=2:3.其中正确的结论有______.(填写所有正确结论的序号)三、解答题(本大题共11小题,共84.0分)13.解下列方程:(1)3x(x-1)=2(1-x)(2)(3x-1)2-4(x+1)2=014.如图,在矩形ABCD中,AC,BD交于点O,延长BC到点E,使CE=BC,连接AE交CD于点F.若AD=10,求OF的长.15.图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.16.已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.17.如图,有一转盘中有A、B两个区域,A区域所对的圆心角为120°,让转盘自由转动两次.利用树状图或列表求出两次指针都落在A区域的概率.18.如今网上购物已经成为一种时尚,某网店“双十一”全天交易额逐年增长,2016年交易额为40万元,2018年交易额为48.4万元,求2016年至2018年“双十一”交易额的年平均增长率?19.今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是______事件,“小悦被抽中”是______事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为______;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.20.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.21.某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.1()如果批发商希望通过销售这批恤获利9000元,那么第二个月的单价应是多少元?22.如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(-3,0).动点M,N同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动的时间记为t秒,连接MN.(1)求直线BC的解析式;(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处.①请说明四边形AMDN为菱形;②此时已知点N的纵坐标为45t,试求点D的坐标;23.对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,求CDAD的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)答案和解析1.【答案】C【解析】解:根据题意列得:所有的情况有4种,其中两张牌的牌面数字和为1的有2种,所以两张牌的牌面数字和为1的概率==,故选:C.根据题意列出表格,得到所有的可能情况,找到两张牌的牌面数字和为1的情况个数,即可求出所求的概率.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.2.【答案】B【解析】解:设平均每次提价的百分率为x,第一次提价后的价格为35(1+x),两次连续提价后售价在第一次提价后的价格的基础上提高x,为35(1+x)×(1+x),则列出的方程是35(1+x)2=55.故选:B.可先表示出第一次提价后的价格,那么第一次提价后的价格×(1+提价的百分率)=55,把相应数值代入即可求解.此题主要考查了由实际问题抽象出一元二次方程,掌握求平均变化率的方法:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b是解决问题的关键.3.【答案】A【解析】解:∵5k+20<0,即k<-4,∴△=16+4k<0,则方程没有实数根.故选:A.根据已知不等式求出k的范围,进而判断出根的判别式的值的正负,即可得到方程解的情况.此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.4.【答案】D【解析】【分析】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了菱形的性质.连接AC、BD,如图,利用菱形的性质得OC=AC=3,OD=BD=4,∠COD=90°,再利用勾股定理计算出CD=5,接着证明△OBM≌△ODN得到DN=BM,然后根据折叠的性质得BM=B'M=1,从而有DN=1,于是计算CD-DN即可.【解答】解:连接AC、BD,如图,∵点O为菱形ABCD的对角线的交点,∴OC=AC=3,OD=BD=4,∠COD=90°,在Rt△COD中,CD==5,∵AB∥CD,∴∠MBO=∠NDO,在△OBM和△ODN中,∴△OBM≌△ODN,∴DN=BM,∵过点O折叠菱形,使B,B′两点重合,MN是折痕,∴BM=B'M=1,∴DN=1,∴CN=CD-DN=5-1=4.故选:D.5.【答案】D【解析】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴DC=6,∵AD=BC=10,∴AC==2,∴BO=AC=,故选:D.已知OM是△ADC的中位线,再结合已知条件则DC的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO的长即可求出.本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC的长.6.【答案】B【解析】【分析】此题主要考查轴对称--最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是三角形两边之和大于第三边.作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,根据A的坐标为(-4,5),得到A′(4,5),B(-4,0),D(-2,0),求出直线DA′的解析式即可得到结论.【解析】解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,∵四边形ABOC是矩形,∴AC∥OB,AC=OB,∵A的坐标为(-4,5),∴A′(4,5),B(-4,0),∵D是OB的中点,∴D(-2,0),设直线DA′的解析式为y=kx+b,∴,∴,∴直线DA′的解析式为y=x+,当x=0时,y=,∴E(0,),故选B.7.【答案】x2-3x+2=0【解析】解:∵关于x的一元二次方程的两个根分别为x1=1,x2=2,∴x1+x2=-=3,x1x2==2,∴这个方程是x2-3x+2=0.故答案为:x2-3x+2=0.由于关于x的一元二次方程的两个根分别为x1=1,x2=2,则x1+x2=-=3,x1x2==2,根据此条件即可求出方程.本题考查的是一元二次方程根与系数的关系,解答此题的关键是熟知x1+x2=-,x1x2=.8.【答案】26【解析】解:∵点E、F分别是AB、CD的中点,M、N分别为DE、BF的中点,∴矩形绕中心旋转180°阴影部分恰好能够与空白部分重合,∴阴影部分的面积等于空白部分的面积,∴阴影部分的面积=×矩形的面积,∵AB=2,BC=2,∴阴影部分的面积=×2×2=2.故答案为:2.根据矩形的中心对称性判定阴影部分的面积等于空白部分的面积,从而得到阴影部分的面积等于矩形的面积的一半,再根据矩形的面积公式列式计算即可得解.本题考查了矩形的性质,主要利用了矩形的中心对称性,判断出阴影部分的面积等于矩形的面积的一半是解题的关键.9.【答案】23【解析】解:根据题意列表得:由表可知所有可能结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字之积大于9的有8种,所以两个小球上的数字之积大于9的概率为=,故答案为:.列表或树状图得出所有等可能的情况数,找出数字之积大于9的情况数,利用概率公式即可得.此题考查的是用列表法或树状图法求概率,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.10.【答案】75°【解析】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH-∠EGB=∠EBC-∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH-∠EGB=∠EBC-∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.【答案】(2n-1,2n-1)(n为正整数)【解析】解:当x=0时,y=x+1=1,∴A1(0,1).∵四边形A1B1C1O为正方形,∴B1(1,1),A2(1,2).同理可得:B2(3,2),A3(3,4),B3(7,4),A4(7,8),…,∴A n(2n-1-1,2n-1),B n(2n-1,2n-1)(n为正整数).故答案为:(2n-1,2n-1)(n为正整数).根据一次函数图象上点的坐标特征结合正方形的性质可找出部分点A、B的坐标,根据坐标的变化找出变化规律是解题的关键.(亦可利用等腰直角三角形的性质结合一次函数图象上点的坐标特征找出点A n的坐标,进而得出点B n的坐标)本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型中点的坐标,根据点的坐标的变化找出变化规律“A n(2n-1-1,2n-1),B n(2n-1,2n-1)(n 为正整数)”是解题的关键.12.【答案】①②④【解析】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=AB=DC,CD⊥CE,∵OA∥DC,∴===,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四边形ACBE是平行四边形,∵AB⊥EC,∴四边形ACBE是菱形,故①正确,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠BAE,故②正确,∵OA∥CD,∴==,∴==,故③错误,设△AOF的面积为a,则△OFC的面积为2a,△CDF的面积为4a,△AOC的面积=△AOE的面积=3a,∴四边形AFOE的面积为4a,△ODC的面积为6a∴S:S△COD=2:3.故④正确,四边形AFOE故答案为①②④.根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可;本题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考常考题型.13.【答案】解:(1)3x(x-1)+2(x-1)=0,(x-1)(3x+2)=0,x-1=0或3x+2=0∴x1=1,x2=-23.(2)(3x-1)2-[2(x+1)]2=0[3x-1+2(x+1)][3x-1-2(x+1)]=0(5x+1)(x-3)=05x+1=0或x-3=0,∴x1=-15,x2=3.【解析】(1)把(1-x)写成-(x-1)的形式,移项后运用因式分解法求解;(2)直接运用平方差公式,因式分解方程的左边后求解.本题考查了一元二次方程的解法,掌握一元二次方程的解法是解决此类问题的关键.14.【答案】解:∵四边形ABCD是矩形,∴BC=AD,OA=OB=OC=OD,∠ADF=∠BCF=∠BAD=∠ABC=90°,∴∠ECF=90°,∵CE=BC,AD=10,∴EC=BC=AD=10,在△ADF和△ECF中,∠AFD=∠EFC∠ADF=∠ECFAD=BC∴△ADF≌△ECF(AAS),∴AF=EF,即F为AE的中点,、∴OF为△ACE的中位线,∴OF=12CE=5.【解析】首先根据矩形的性质证得△ADF≌△ECF,然后判定OF为△ACE的中位线,从而求得OF的值.本题考查了矩形的性质,解题的关键是根据矩形的性质判定三角形全等并证得OF为△ACE的中位线,难度不大.15.【答案】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;【解析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;本题考查作图-应用与设计、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】解:(1)∵关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2,∴△=(2k-1)2-4(k2-1)=-4k+5≥0,解得:k≤54,∴实数k的取值范围为k≤54.(2)∵关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2,∴x1+x2=1-2k,x1•x2=k2-1.∵x12+x22=(x1+x2)2-2x1•x2=16+x1•x2,∴(1-2k)2-2×(k2-1)=16+(k2-1),即k2-4k-12=0,解得:k=-2或k=6(不符合题意,舍去).∴实数k的值为-2.【解析】(1)根据方程的系数结合根的判别式,即可得出△=-4k+5≥0,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x1+x2=1-2k、x1•x2=k2-1,将其代入x12+x22=(x1+x2)2-2x•x2=16+x1•x2中,解之即可得出k的值.1本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=-4k+5≥0;(2)根据根与系数的关系结合x12+x22=16+x1x2,找出关于k的一元二次方程.17.【答案】解:如图,将B区域平分成两部分,画树状图得:∵总共有9种等可能的结果,其中两次指针都落在A区域的有1种,∴两次指针都落在A区域的概率P=19.【解析】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.先将B区域平分成两部分,然后根据题意画树状图,由树状图求得所有等可能的结果与两次指针都落在A区域的情况,再利用概率公式即可求得答案.18.【答案】解:设2016年至2018年“双十一”交易额的年平均增长率为x,根据题意得:40(1+x)2=48.4,解得:x1=0.1=10%,x2=-2.1.答:2016年至2018年“双十一”交易额的年平均增长率为10%.【解析】设2016年至2018年“双十一”交易额的年平均增长率为x,根据2016年及2018年该网店“双十一”全天交易额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.【答案】不可能随机14【解析】解:(1)该班男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取卡片“小悦被抽中”的概率为,故答案为:不可能、随机、;(2)记小悦、小惠、小艳和小倩这四位女同学分别为A、B、C、D,由表可知,共有12种等可能结果,其中小惠被抽中的有6种结果,所以小惠被抽中的概率为=.(1)根据随机事件和不可能事件的概念及概率公式解答可得;(2)列举出所有情况,看所求的情况占总情况的多少即可.此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.【答案】证明:(1)∵正方形ABCD,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中AB=AD∠ABE=∠ADFBE=DF,∴△ABE≌△ADF(SAS);(2)连接AC,四边形AECF是菱形.理由:∵正方形ABCD,∴OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.【解析】(1)根据正方形的性质和全等三角形的判定证明即可;(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断;本题考查正方形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.)(2)根据题意,得200×(80-50)+(200+10x)×(80-x-50)+(400-10x)(40-50)=9000整理得10x2-200x+1000=0,即x2-20x+100=0,解得x1=x2=10当x=10时,80-x=70>50答:第二个月的单价应是70元.【解析】(1)根据题意直接用含x的代数式表示即可;(2)利用“获利9000元”,即销售额-进价=利润,作为相等关系列方程,解方程求解后要代入实际问题中检验是否符合题意,进行值的取舍.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.有关销售问题中的等量关系一般为:利润=售价-进价.22.【答案】解:(1)设直线BC的解析式为y=kx+b,则b=4−3k+b=0,解得k=43b=4,∴直线BC的解析式为y=43x+4.(2)①如图,由题意:AM=AN=t,由翻折可知:AN=DN,AM=DM,∴AM=AN=DN=DM,∴四边形AMDN是菱形.②如图,连接AD交MN于点O′.由题意:四边形AMDN是菱形,M(3-t,0),N(3-35t,45t),∴O′(3-45t,25t),D(3-85t,45t),∵点D在BC上,∴45t=43×(3-85t)+4,解得t=3011.∴t=3011s时,点A恰好落在BC边上点D处,此时D(-1511,2411).【解析】(1)利用待定系数法即可解决问题;(2)①根据四边相等即可证明;②如图1中,连接AD交MN于点O′.想办法求出点D坐标,利用待定系数法即可解决问题;本题是一次函数综合题,考查翻折变换、待定系数法、菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会利用参数构建方程解决问题,属于中考常考题型.23.【答案】解:(1)由图①,可得∠BCE=12∠BCD=45°,又∵∠B=90°,∴△BCE是等腰直角三角形,∴BCEC=cos45°=22,即CE=2BC,由图②,可得CE=CD,而AD=BC,∴CD=2AD,∴CDAD=2;(2)①设AD=BC=a,则AB=CD=2a,BE=a,∴AE=(2-1)a,如图③,连接EH,则∠CEH=∠CDH=90°,∵∠BEC=45°,∠A=90°,∴∠AEH=45°=∠AHE,∴AH=AE=(2-1)a,设AP=x,则BP=2a-x,由翻折可得,PH=PC,即PH2=PC2,∴AH2+AP2=BP2+BC2,即[(2-1)a]2+x2=(2a-x)2+a2,解得x=a,即AP=BC,又∵PH=CP,∠A=∠B=90°,∴Rt△APH≌Rt△BCP(HL),∴∠APH=∠BCP,又∵Rt△BCP中,∠BCP+∠BPC=90°,∴∠APH+∠BPC=90°,∴∠CPH=90°;②折法:如图,由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;折法:如图,由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,又∵∠DCH=∠ECH,∴∠BCP=∠PCE,即CP平分∠BCE,故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.【解析】(1)依据△BCE是等腰直角三角形,即可得到CE=BC,由图②,可得CE=CD,而AD=BC,即可得到CD=AD,即=;(2)①由翻折可得,PH=PC,即PH2=PC2,依据勾股定理可得AH2+AP2=BP2+BC2,进而得出AP=BC,再根据PH=CP,∠A=∠B=90°,即可得到Rt△APH≌Rt△BCP(HL),进而得到∠CPH=90°;②由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,进而得到CP平分∠BCE,故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.本题属于折叠问题,主要考查了等腰直角三角形的性质,矩形的性质,全等三角形的判定与性质的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.第21页,共21页。

2018--2019学年度第一学期人教版九年级月考第一次数学试卷

2018--2019学年度第一学期人教版九年级月考第一次数学试卷

绝密★启用前2018--2019学年度第一学期人教版九年级月考第一次数学试卷考试时间:100分钟;满分120分题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.做题时要平心静气,不要漏做。

评卷人得分一、单选题(计30分)1.(本题3分)下列方程中,是一元一次方程的是()A .21x y -=;B .20y+=;C .2210x x ++=;D .24y =;2.(本题3分)关于的一元二次方程x 2﹣2x+k=0有两个相等的实数根,则k 的值为()A .1B .﹣1C .2D .﹣23.(本题3分)如果一个等腰三角形的两边长分别为方程x 2﹣5x+4=0的两根,则这个等腰三角形的周长为()A .6B .9C .6或9D .以上都不正确4.(本题3分)抛物线y =ax 2+bx 和直线y =ax +b 在同一坐标系的图象可能是()5.(本题3分)(3分)某同学在用描点法画二次函数2y ax bx c =++的图象时,列出了下面的表格:由于粗心,他算错了其中一个y 值,则这个错误的数值是()A .﹣11B .﹣2C .1D .﹣5A.y=(x -2)2B.y=x 2C.y=x 2+6D.y=(x -2)2+67.(本题3分)汽车刹车距离s (m)与速度v (km/h)之间的函数关系是21100S V =,一辆车速为100km/h 的汽车,刹车距离是()A .1mB .10mC .100mD .200m8.(本题3分)抛物线的对称轴为x=1,它与x 轴的一个交点的坐标为(-3,0),则它与x 轴另一个交点的坐标为()A.(-2,0)B.(-1,0)C.(2,0)D.(5,0)9.(本题3分)用一根细铁丝可以折成边长为10cm 的等边三角形,也可以折成面积为50cm 2的长方形.设所折成的长方形的一边长为xcm ,可列方程为()A .x (10﹣x )=50B .x (30﹣x )=50C .x (15﹣x )=50D .x (30﹣2x )=5010.(本题3分)已知三角形的两边长为4和5,第三边的长是方程x 2﹣5x+6=0的一个根,则这个三角形的周长是()A .11B .12C .11或12D .15评卷人得分二、填空题(计32分)11.(本题4分)抛物线21y x =+的顶点坐标是_____________.12.(本题4分)一元二次方程x 2+kx -3=0的一个根是x =1,则另一个根是________.13.(本题4分)设x 1、x 2是方程2x 2﹣x﹣1=0的两个根,则x 1+x 2=,x 1•x 2=.14.(本题4分)(2016秋•简阳市月考)某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查发现,售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个.为实现平均每月10000元的销售利润,则这种台灯的售价应定为___元.15.(本题4分)二次函数y=一x 2+ax+b 图象与x 轴交于1(,0)2A -,(2,0)B 两点,且与y 轴交于点C .、、、四点为顶点的四边形是梯形,则P点的坐标(2)在此抛物线上一动点P,使得以A C B P为.16.(本题4分)如果关于x的方程x2+2ax﹣b2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_____.17.(本题4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是_____(用“>”“<”或“=”连接).18.(本题4分)二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①abc<0;②方程ax2+bx+c=0的根为x1=﹣1、x2=3;③当x>1时,y随x值的增大而减小;④当y>0时,﹣1<x<3.其中正确的说法是_____.A.①;B.①②;C.①②③;D.①②③④评卷人得分三、解答题(计58分)19.(本题8分)选用合适的方法解下列方程:(1)(x+4)2=5(x+4)(2)2x2﹣5x=3.20.(本题8分)某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.市场调研表明:当销应为多少元?这时应进台灯多少个?21.(本题8分)已知关于x 的方程()()22140.50x k x k -++-=(1)求证:不论k 取什么实数值,这个方程总有实数根;(2)若等腰三角形ABC 的一边长为4a =,另两边的长b 、c 恰好是这个方程的两个根,求△ABC 的周长.22.(本题8分)如图,有一块矩形纸板,长为20cm ,宽为14cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分沿虚线折起,就能制作一个无盖的长方体盒子,如果这个无盖的长方体底面积为160cm 2,那么该长方体盒子体积是多少?23.(本题8分)直线y=﹣3x+3与x 轴交于点A,与y 轴交于点B,抛物线y=a(x﹣2)2+k 经过点A、B,与x 轴的另一交点为C.(1)求a,k 的值;(2)若点M、N 分别为抛物线及其对称轴上的点,且以A,C,M,N 为顶点的四边形为平行四边形,请直接写出点M 的坐标.24.(本题9分)如图,在平面直角坐标系xOy 中,顶点为M 的抛物线()2y ax bx a 0>=+经过点A 和x 轴正半轴上的点B ,AO=OB=2,∠AOB=1200.(1)求这条抛物线的表达式;(2)连接OM ,求∠AOM 的大小;25.(本题9分)浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?参考答案1.B【解析】A.方程含有两个未知数,故本选项错误;B.符合一元一次方程的定义,故本选项正确;C.未知数的最高次数是2,是一元二次方程,故本选项错误;D.未知数的最高次数是2,是一元二次方程,故本选项错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年江西省抚州市临川一中九年级(上)第一次月考
数学试卷
一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)准备两组相同的牌,每组两张且大小相同,两张牌的牌面数字分别是0,1,从每组牌中各摸出一张牌,两张牌的牌面数字和为1的概率为()
A.B.C.D.
2.(3分)某商品经过两次连续提价,每件售价由原来的35元提到了55元.设平均每次提价的百分率为x,则下列方程中正确的是()
A.55 (1+x)2=35B.35(1+x)2=55
C.55(1﹣x)2=35D.35(1﹣x)2=55
3.(3分)若5k+20<0,则关于x的一元二次方程x2+4x﹣k=0的根的情况是()A.没有实数根B.有两个相等的实数根
C.有两个不相等的实数根D.无法判断
4.(3分)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O 折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为()
A.7B.6C.5D.4
5.(3分)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM =3,BC=10,则OB的长为()
A.5B.4C.D.
6.(3分)如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的
一点,当△ADE的周长最小时,点E的坐标是()
A.(0,)B.(0,)C.(0,2)D.(0,)
二、填空题(本大题共6小题,每小题3分,共18分)
7.(3分)若关于x的一元二次方程的两个根分别为x1=1,x2=2,则这个方程是.8.(3分)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为.
9.(3分)在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为
10.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB=.
11.(3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…
和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B n的坐标是.
12.(3分)如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:
①四边形ACBE是菱形;
②∠ACD=∠BAE;
③AF:BE=2:3;
④S四边形AFOE:S△COD=2:3.
其中正确的结论有.(填写所有正确结论的序号)
三、(本大题共5小题,每小题6分,共30分)
13.(6分)解下列方程:
(1)3x(x﹣1)=2(1﹣x)
(2)(3x﹣1)2﹣4(x+1)2=0
14.(6分)如图,在矩形ABCD中,AC,BD交于点O,延长BC到点E,使CE=BC,连接AE交CD于点F.若AD=10,求OF的长.
15.(6分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.
(1)在图①中,画出∠MON的平分线OP;
(2)在图②中,画一个Rt△ABC,使点C在格点上.
16.(6分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.
17.(6分)如图,有一转盘中有A、B两个区域,A区域所对的圆心角为120°,让转盘自由转动两次.利用树状图或列表求出两次指针都落在A区域的概率.
四、(本大题共3小题,每小题8分,共24分)
18.(8分)如今网上购物已经成为一种时尚,某网店“双十一”全天交易额逐年增长,2015年交易额为40万元,2017年交易额为48.4万元,求2015年至2017年“双十一”交易额的年平均增长率?
19.(8分)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.
(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”
或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;
(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.
20.(8分)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.
(1)求证:△ABE≌△ADF;
(2)试判断四边形AECF的形状,并说明理由.
五、(本大题共2小题,每小题9分,共18分)
21.(9分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.
(1)填表:(不需化简)
时间第一个月第二个月清仓时单价(元)8040
销售量(件)200
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?22.(9分)如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(﹣3,0).动点M,N同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动的时间记为t秒,连接MN.
(1)求直线BC的解析式;
(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处.
①请说明四边形AMDN为菱形;
②此时已知点N的纵坐标为t,试求点D的坐标;
六、(本大题共12分)
23.(12分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD 边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)
(1)根据以上操作和发现,求的值;
(2)将该矩形纸片展开.
①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸
片展开.求证:∠HPC=90°;
②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只
有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)
2018-2019学年江西省抚州市临川一中九年级(上)第一
次月考数学试卷
参考答案
一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.C;2.B;3.A;4.D;5.D;6.B;
二、填空题(本大题共6小题,每小题3分,共18分)
7.x2﹣3x+2=0;8.2;9.;10.75°;11.(2n﹣1,2n﹣1)(n为正整数);12.①②④;
三、(本大题共5小题,每小题6分,共30分)
13.;14.;15.;16.;17.;
四、(本大题共3小题,每小题8分,共24分)
18.;19.不可能;随机;;20.;
五、(本大题共2小题,每小题9分,共18分)
21.;22.;
六、(本大题共12分)
23.;。

相关文档
最新文档