2015年全国卷2高考文科数学试题附答案

合集下载

2015年全国新课标2卷高考文科数学答案

2015年全国新课标2卷高考文科数学答案

2015年全国新课标2卷高考文科数学答案2015普通高等学校招生全国统一考试?卷文科数学第一卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A= ,,,,x,1,x,2,B,x0,x,3,则A:B,A.(-1,3)B.(-1,0 )C.(0,2)D.(2,3)1、选A2,ai(2)若a实数,且,3,i,则a, 1,iA.-4B. -3C. 3D. 4 2、解:因为故选D 2,ai,(3,i)(1,i),2,4i,所以a,4.(3)根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是27002600250024002300220021002000 1900A.逐年比较,2008年减少二氧化碳排放量的效果最显著;2013(年)B.2007年我国治理二氧化碳排放显现成效;C.2006年以来我国二氧化碳排放量呈减少趋势;D.2006年以来我国二氧化碳年排放量与年份正相关。

3、选D(4)已知向量 a,(0,,1),b,(,1,2),则(2a,b),a,A. -1B. 0C. 1D. 2 、选B 4,,S是等差数列a的前n项和,a,a,a,3,则S,(5)设若 nn1355A. 5B. 7C. 9D. 11 5、解:在等差数列中,因为(a,a),515a,a,a,3,所以a,1,S,,5a,5,故选A. 1353532(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为- 1 -1111A. B. C. D. 87656、解:如图所示,选D.,ABC(7)已知三点,则外接圆的A(1,0),B(0,3),C(2,3)圆心到原点的距离为542125A. B. C. D. 33337、解:根据题意,三角形ABC是等边三角形,设外接圆的23圆心为D,则D(1,)所以, 34721OD,1,,,.故选B. 333(8)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。

2015年全国新课标2卷高考文科数学及答案详解

2015年全国新课标2卷高考文科数学及答案详解

2015年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}30|,21|<<=<<-=x x B x x A ,则=⋃B A ( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3)2.若a 为实数,且i iai +=++312,则=a ( ) A .-4 B .-3 C .3 D .43.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关4.向量()1,1-=a ,()2,1-=b ,则()=⋅+a b a 2 ( )A .-1B .0C .1D .25.设n S 是等差数列{}n a 的前n 项和,若3531=++a a a ,则=5S ( )A .5B .7C .9D .11 6.第6题图一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A.18 B.17 C.16 D.157.已知三点()01,A ()30,B ,()32,C ,则ABC ∆外接圆的圆心到原点的距离为( )A.53B.213C.253D.438.第8题图右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的=a ( )A .0B .2C .4D .149.已知等比数列{}n a 满足411=a ,()14453-=a a a ,则=2a ( ) A .2 B .1 C.12 D.1810.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ­ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B .64π C.144π D.256π11.如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x ,将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )12.设函数()()2111ln x x x f +-+=,则使得()()12->x f x f 成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1B.()∞+⋃⎪⎭⎫ ⎝⎛∞,,131- C.⎝ ⎛⎭⎪⎫-13,13 D.⎪⎭⎫ ⎝⎛∞+⋃⎪⎭⎫ ⎝⎛∞,,3131-- 第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数()x ax x f 23-=的图象过点()4,1-,则=a ________.14.若x ,y 满足约束条件⎩⎨⎧ x +y -5≤0,2x -y -1≥0,x -2y +1≤0,则y x z +=2的最大值为________. 15.已知双曲线过点()34,,且渐近线方程为x y 21±=,则该双曲线的标准方程为________.16.已知曲线x x y ln +=在点()1,1处的切线与曲线()122+++=x a ax y 相切,则=a ________. 三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分) ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,DC BD 2=(1)求CB sin sin (2)若︒=∠60BAC ,求B ∠18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.图①B地区用户满意度评分的频数分布表满意度评分[50,60)[60,70)[70,80)[80,90)[90,100] 分组频数281410 6 2015·新课标Ⅱ卷第4页(1)在图②中作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分 低于70分 70分到89分 不低于90分满意度等级 不满意 满意 非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(本小题满分12分)如图,长方体1111D C B A ABCD -中,16=AB ,10=BC ,81=AA ,点E ,F 分别在11B A ,11C D 上,411==F D E A .过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.20.(本小题满分12分)已知椭圆C :12222=+by a x ()0.>>b a 的离心率为22,点()22,在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.21.(本小题满分12分)已知函数()()x a x x f -+=1ln .(1)讨论()x f 的单调性;(2)当()x f 有最大值,且最大值大于22-a 时,求a 的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22. (本小题满分10分)选修4-1:几何证明选讲如图O 是等腰三角形AB C 内一点, ⊙O 与△ABC 的底边BC 交于M ,N 两点,与底边上的高交于点G ,且与AB ,AC 分别相切于E ,F 两点.(I )证明EF ∥BC .(II )若AG 等于⊙O 的半径,且23AE MN == ,求四边形EDCF 的面积23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ== (I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值24.(本小题满分10分)选修4-5:不等式选讲设a ,b ,c ,d 均为正数,且a +b =c +d .证明:(1)若ab >cd ,则a +b >c +d ;N M G OFE D C B A(2)a+b>c+d是|a-b|<|c-d|的充要条件.2015·新课标Ⅱ卷第8页1、选A2、故选D3、选D4、选B5、解:在等差数列中,因为.,5525)(,1,335153531A a a a S a a a a 故选所以==⨯+===++6、解:如图所示,选D.7、选B.8、故选B.9、解:因为{}),1(4,414531-==a a a a a n 满足所以, .21241,2,2),1(4123144424=⨯=====-=q a a q q a a a a a 所以,所以又解得故选C.10、解:因为A,B 都在球面上,又为该球面上动点,C AOB ,90︒=∠所以 三棱锥的体积的最大值为3661213132==⨯⨯R R R ,所以R=6,所以球的表面积为 S=14442=R ππ,故选C.11、解:如图,当点P 在BC 上时, ,tan 4tan ,tan 4,tan ,22x x PB PA x PA x PB x BOP ++=+∴+===∠ 当4π=x 时取得最大值51+,以A,B 为焦点C,D 为椭圆上两定点作椭圆,显然,当点P 在C,D 之间移动时PA+PB<51+. 又函数)(x f 不是一次函数,故选B.xP O DC B A12、解:因为函数时函数是增函数是偶函数,),0[,11)1ln()(2+∞∈+-+=x x x x f .131,)12(,12)12()(22<<->∴->∴->x x x x x x f x f 解得 故选A.第二卷一、填空题:本大题共4个小题,每小题5分 13、答:a=-214、解:当x=3,y=2时,z=2x+y 取得最大值8.15、解:设双曲线的方程为.43,4),0(422=≠=-k k k y x )代入方程,解得,点(1422=-∴y x 双曲线的标准方程为16、解:.122,11'-=∴+=x y xy ,切线方程为切线的斜率为 .8120.08,08,021)2(12222=+=====-=∆=+++++=-=a x y a a a a a ax ax x a ax y x y 所以与切线平行,不符。

2015年普通高等学校招生全国统一考试数学文试题(新课标2卷,含答案)

2015年普通高等学校招生全国统一考试数学文试题(新课标2卷,含答案)

2015年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。

写在本试卷上无效。

3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷一、 选择题:本大题共12小题。

每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。

1.已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则A ∪B=A. )3,1(-B. )0,1(-C. )2,0(D. )3,2( 2.若a 为实数,且i iai+=++312,则=a A. 4- B. 3- C. 3 D. 43. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是A.逐年比较,2008年减少二氧化碳排放量的效果显著B.2007年我国治理二氧化碳排放显现成效C.2006年以来我国二氧化碳年排放量呈逐渐减少趋势D.2006年以来我国二氧化碳年排放量与年份正相关 4.向量a=(1,-1) b=(-1,2),则(2a +b ).a=A. 1-B. 0C. 1D.2 5. 设n S 是数列}{n a 的前n 项和,若3531=++a a a ,则=5S A. 5 B. 7 C. 9 D. 116. 一个正方体被一个平面截取一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为 A.81 B. 71 C. 61 D. 517.已知三点)0,1(A ,)3,0(B ,)3,2(C ,则ABC ∆外接圆的圆心到原点的距离为 A.35 B. 321 C. 352 D. 34 8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a 、b 分别为14、18,则输出的=aA. 0B. 2C. 4D. 149.已知等比数列}{n a 满足411=a ,)1(4453-=a a a ,则=2a A. 2 B. 1 C.21 D. 8110.已知A 、B 是球O 的球面上两点,90=∠AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为A. π36B. π64C. π144D. π25611.如图,长方形ABCD 的边2=AB ,1=BC ,O 是AB 的中点,点P 沿着BC 、CD 与DA 运动,记x BOP =∠.将动点P 到A 、B 两点距离之和表示为x 的函数)(x f ,则)(x f y =的图象大致为12. 设函数211|)|1ln()(xx x f +-+=,则使得)12()(->x f x f 成立的x 的取值范围是 A. )1,31( B. ),1()31,(+∞-∞U C. )31,31(- D. ),31()31,(+∞--∞U 二.填空题:共4小题,每小题5分.13. 已知函数x ax x f 2)(3-=的图象过点)4,1(-,则=a .14.若x 、y 满足约束条件⎪⎩⎪⎨⎧≤+-≥--≤-+01201205y x y x y x ,则y x z +=2的最大值为 .15.已知双曲线过点)3,4(,且渐近线方程为x y 21±=,则该双曲线的标准方程为 . 16.已知曲线x x y ln +=在点)1,1(处的切线与曲线1)2(2+++=x a ax y 相切,则=a .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17、(本小题满分12分)ΔABC 中,D 是BC 上的点,AD 平分∠BAC ,BD=2DC.(I)求sinsinBC∠∠;(II)若∠BAC=60°,求∠B.18、(本小题满分12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得分A地区用户满意评分的频率分布直方图和B地区用户满意度评分的频数分布表.B地区用户满意度评分的频数分布表度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(II)根据用户满意度评分,将用户的满意度分为三个等级;19、(本小题满分12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,分别在A1B1, D1C1上,A1E= D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(I ) 在图中画出这个正方形(不必说明画法和理由) (II )求平面α把该长方体分成的两部分体积的比值.20、(本小题满分12分)已知椭圆C :22221x y a b +=(a >b >0)的离心率为2,点(2C 上.(I ) 求C 的方程.(II )直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M.直线OM 的斜率与直线l 的斜率的乘积为定值. 21、(本小题满分12分) 已知函数f (x )=ln x +a (1- x ) (I ) 讨论f (x )的单调性;(II ) 当f (x )有最大值,且最大值大于2a-2时,求a 的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号。

(完整word版)2015年全国新课标2高考数学文科试题及答案,推荐文档

(完整word版)2015年全国新课标2高考数学文科试题及答案,推荐文档

2015年普通高等学校招生全国统一考试文科数学能力测试一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 已知集合A={x|-1<x<2},B={x|0<x<3},则A ∪B=(A )(-1,3) (B )(-1,0) (C )(0,2) (D )(2,3)(2)若a 为实数且231aii i+=++,则a= (A )-4 (B )-3 (C )3 (D )4(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是 (A ) 逐年比较,2008年减少二氧化硫排放量的效果最显著 (B ) 2007年我国治理二氧化硫排放显现 (C ) 2006年以来我国二氧化硫年排放量呈减少趋势(D ) 2006年以来我国二氧化硫年排放量与年份正相关(4)=⋅+-=-=→→→→→a b a b a )2(),2,1(),1,1(则(A )-1 (B )0 (C )1 (D )2(5)n S 是等差数列{a n }的前n 项和,若a 1+ a 3+ a 5=3,则=5S(A )5 (B )7 (C )9 (D )11(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A )81 (B )71 (C )61(D )51 (7)过三点A (1,0),B (0, 3),C (2,3)则ABC ∆外接圆的圆心到原点的距离为(A )35 (B )321(C )352 (D )34(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。

执行该程序框图,若输入a,b 分别为14,18,则输出的a= A.0 B.2 C.4 D.14 (9)已知等比数列{}n a 满足114a =,()35441a a a =-,则2a = (A )2 (B )1 (C )21 (D )81(10)已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为A .36π B.64π C.144π D.256π(11).如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,∠BOP=x 。

2015年普通高等学校招生全国统一考试(全国新课标II卷)数学试题 (文科)解析版

2015年普通高等学校招生全国统一考试(全国新课标II卷)数学试题 (文科)解析版

2015年普通高等学校招生全国统一考试全国新课标 II 卷文 科 数 学一、选择题:本大题共12道小题,每小题5分,共60分. 1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3【答案】A考点:集合运算.2. 若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .4【答案】D【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D.考点:复数运算.3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】 D考点:柱形图4. 已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( )A .1-B .0C .1D .2【答案】C 【解析】试题分析:由题意可得22=a ,3,⋅=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C.考点:向量数量积.5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6D.15【答案】D【解析】试题分析:截去部分是正方体的一个角,其体积是正方体体积的16,所以截去部分体积与剩余部分体积的比值为15 ,故选D.考点:三视图7. 已知三点(1,0),A B C ,则△ABC 外接圆的圆心到原点的距离为( )5A.3 3 4D.3【答案】B考点:直线与圆的方程.8. 右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( )A.0B. 2C.4D.14【答案】B 【解析】试题分析:由题意输出的a 是18,14的最大公约数2,故选B. 考点:1. 更相减损术;2.程序框图.9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1C.12 1D.8【答案】C【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q ==,选C.考点:等比数列.10. 已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A.π36B. π64C.π144D. π256【答案】C考点:球与几何体的切接.11. 如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠= ,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .【答案】B考点:函数图像12. 设函数21()ln(1||)1f x x x =+-+,则使得()(21)f x f x >-成立的x 的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】试题分析:由21()ln(1||)1f x x x=+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以 ()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔<< .故选A.考点:函数性质二、填空题:本大题共4小题,每小题5分,共20分13. 已知函数()32f x ax x =-的图像过点(-1,4),则a = .【答案】-2 【解析】试题分析:由()32f x ax x =-可得()1242f a a -=-+=⇒=- .考点:函数解析式14. 若x ,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z =2x +y 的最大值为 .【答案】8考点:线性规划15. 已知双曲线过点(,且渐近线方程为12y x =±,则该双曲线的标准方程为 .【答案】2214x y -=考点:双曲线几何性质16. 已知曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a = . 【答案】8 【解析】试题分析:由11y x'=+可得曲线ln y x x =+在点()1,1处的切线斜率为2,故切线方程为21y x =-,与()221y ax a x =+++ 联立得220ax ax ++=,显然0a ≠,所以由2808a a a ∆=-=⇒=.考点:导数的几何意义.三、解答题17(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(I )求sin sin BC∠∠ ;(II )若60BAC ∠=,求B ∠.【答案】(I )12;30.考点:解三角形试题解析:(I )由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠ 因为AD 平分∠BAC ,BD =2DC ,所以sin 1.sin 2B DC C BD ∠==∠.(II )因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2sin sin B C ∠=∠,所以tan 30.B B ∠=∠= 考点:解三角形18. (本小题满分12分)某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A 地区用户满意度评分的频率分布直方图(I )在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B 地区用户满意度评分的频率分布直方图(II)根据用户满意度评分,将用户的满意度评分分为三个等级:估计那个地区的用户的满意度等级为不满意的概率大,说明理由.【答案】(I)见试题解析(II)A地区的用户的满意度等级为不满意的概率大.考点:1.频率分布直方图;2.概率估计.19. (本小题满分12分)如图,长方体1111ABCD A B C D -中AB =16,BC =10,18AA =,点E ,F 分别在1111,A B D C 上,11 4.A E D F ==过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(I )在图中画出这个正方形(不必说明画法与理由); (II )求平面α把该长方体分成的两部分体积的比值. 【答案】(I )见试题解析(II )97 或79考点:1.几何体中的截面问题;2.几何体的体积20. (本小题满分12分)已知椭圆()2222:10x y C a b a b +=>> ,点(在C 上.(I )求C 的方程; (II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值.【答案】(I )2222184x y +=(II )见试题解析考点:直线与椭圆21. (本小题满分12分)已知()()ln 1f x x a x =+-. (I )讨论()f x 的单调性;(II )当()f x 有最大值,且最大值大于22a -时,求a 的取值范围. 【答案】(I )0a ≤,()f x 在()0,+∞是单调递增;0a >,()f x 在10,a ⎛⎫⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减;(II )()0,1. 【解析】考点:导数的应用.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图O是等腰三角形AB C内一点,圆O与△ABC的底边BC交于M,N两点,与底边上的高交于点G,且与AB,AC分别相切于E,F两点.(I)证明EF BC;(II)若AG等于圆O半径,且AE MN【答案】(I)见试题解析;(II考点:1.几何证明;2.四边形面积的计算.23. (本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,在以O为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:.C C ρθρθ== (I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.【答案】(I )()30,0,2⎫⎪⎪⎭;(II )4. 【解析】试题分析:(I )把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,220x y +-=,联立解考点:参数方程、直角坐标及极坐标方程的互化.24. (本小题满分10分)选修4-5:不等式证明选讲 设,,,a b c d 均为正数,且a b c d +=+.证明:(I )若ab cd > ,+>;(II )>是a b c d -<-的充要条件. 【答案】【解析】试题分析:(I )由a b c d +=+及ab cd >,可证明22>,开方即得>(II )本小题可借助第一问的结论来证明,但要分必要性与充分性来证明. 试题解析:解:(I )因为22a b c d =++=++考点:不等式证明.。

2015年全国新课标2卷高考文科数学试题及答案

2015年全国新课标2卷高考文科数学试题及答案

2015年全国新课标2卷高考文科数学试题及答案2015普通高等学校招生全国统一考试II卷文科数学第一卷一、选择题:本大题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 $A=x-1<x<2$,$B=x<x<3$,则 $A\cup B=$A。

$(-1,3)$ B。

$(-1,0)$ C。

$(0,2)$ D。

$(2,3)$2.若 $a$ 是实数,且 $\frac{2+ai}{1+i}=3+i$,则 $a=$A。

$-4$ B。

$-3$ C。

$3$ D。

$4$3.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是此处删除明显有问题的段落)4.已知向量 $a=(1,-1)$,$b=(-1,2)$,则 $(2a+b)\cdot a=$A。

$-1$ B。

$0$ C。

$1$ D。

$2$5.设 $S_n$ 是等差数列 $\{a_n\}$ 的前 $n$ 项和。

若$a_1+a_3+a_5=3$,则 $S_5=$A。

$5$ B。

$7$ C。

$9$ D。

$11$6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为A。

$\frac{1}{1111}$ B。

$\frac{1}{8576}$ C。

$\frac{2}{1254}$ D。

$\frac{1}{333}$7.已知三点 $A(1,-1)$,$B(2,3)$,$C(2,3)$,则 $\triangle ABC$ 外接圆的圆心到原点的距离为A。

$\sqrt{5}$ B。

$3$ C。

$2\sqrt{5}$ D。

$3\sqrt{2}$8.右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。

执行该程序框图,若输入的$a,b$ 分别为14,18,则输出的 $a$ 为开始输入a,ba>b是a≠b 否输出a是否结束a=a-b b=b-aA。

2015年高考新课标Ⅱ卷文数试题+解析

2015年高考新课标Ⅱ卷文数试题+解析

2015年普通高等学校招生全国统一考试(全国卷2)文科数学一、 选择题:本大题共12小题。

每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。

1.已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则A ∪B=( )A. )3,1(-B. )0,1(-C. )2,0(D. )3,2(2.若a 为实数,且i iai+=++312,则=a ( ) A. 4- B. 3- C. 3 D. 43. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化碳排放量的效果显著B.2007年我国治理二氧化碳排放显现成效C.2006年以来我国二氧化碳年排放量呈逐渐减少趋势D.2006年以来我国二氧化碳年排放量与年份正相关 4.向量a =(1,-1) b =(-1,2),则(2a +b ).a = ( ) A. 1- B. 0 C. 1 D.2 5. 设n S 是数列}{n a 的前n 项和,若3531=++a a a ,则=5S ( )A. 5B. 7C. 9D. 116. 一个正方体被一个平面截取一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( ) A.81 B. 71 C. 61 D. 51 7.已知三点)0,1(A ,)3,0(B ,)3,2(C ,则ABC ∆外接圆的圆心到原点的距离为( ) A.35 B. 321 C. 352 D. 348.右边程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a 、b 分别为14、18,则输出的=a ( )A. 0B. 2C. 4D. 149.已知等比数列}{n a 满足411=a ,)1(4453-=a a a ,则=2a ( ) A. 2 B. 1 C. 21 D. 8110.已知A 、B 是球O 的球面上两点, 90=∠AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A. π36B. π64C. π144D. π256 11.如图,长方形ABCD 的边2=AB ,1=BC ,O 是AB 的中点,点P 沿着BC 、CD 与DA 运动,记x BOP =∠.将动点P 到A 、B 两点距离之和表示为x 的函数)(x f ,则)(x f y =的图象大致为( )12. 设函数211|)|1ln()(xx x f +-+=,则使得)12()(->x f x f 成立的x 的取值范围是( ) A. )1,31( B. ),1()31,(+∞-∞U C. )31,31(- D. ),31()31,(+∞--∞U二.填空题:共4小题,每小题5分.13. 已知函数x ax x f 2)(3-=的图象过点)4,1(-,则=a .14.若x 、y 满足约束条件⎪⎩⎪⎨⎧≤+-≥--≤-+01201205y x y x y x ,则y x z +=2的最大值为 .15.已知双曲线过点)3,4(,且渐近线方程为x y 21±=,则该双曲线的标准方程为 . 16.已知曲线x x y ln +=在点)1,1(处的切线与曲线1)2(2+++=x a ax y 相切,则=a .三、解答题:解答应写出文字说明,证明过程或演算步骤.17、(本小题满分12分)ΔABC中,D是BC上的点,AD平分∠BAC,BD=2DC.(1)求sinsinBC∠∠;(2)若∠BAC=60°,求∠B.18、(本小题满分12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得分A地区用户满意评分的频率分布直方图和B地区用户满意度评分的频数分布表.B地区用户满意度评分的频数分布表(1)在答题卡上作出B地区用户满意度评分的频数分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)19、(本小题满分12分)如图,长方体ABCD ﹣A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,分别在A 1B 1, D 1C 1上,A 1E= D 1F=4.过点E,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由) (2)求平面α把该长方体分成的两部分体积的比值. 20、(本小题满分12分)已知椭圆C :22221x y a b+=(a >b >0,点(2)在C 上.(1)求C 的方程.(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M.直线OM 的斜率与直线l 的斜率的乘积为定值.21、(本小题满分12分)已知函数f (x )=ln x +a (1- x ) (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 22、(本小题满分10分)选修4-4:坐标系与参数方程在直线坐标系xOy 中,曲线C 1:cos sin x t y t ==αα{(t 为参数,t ≠0)其中0≤α≤π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:p=2sin θ,C 3:cos θ。

【推荐】2015年全国新课标2卷高考文科数学真题及答案

【推荐】2015年全国新课标2卷高考文科数学真题及答案

2015普通高等学校招生全国统一考试Ⅱ卷文科数学第Ⅰ卷一选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={}{}=<<=<<-B A x x B x x 则,30,21 A.(-1,3) B.(-1,0 ) C.(0,2) D.(2,3) 1.选A (2)若a 实数,且=+=++a i iai则,312 A.-4 B. -3 C. 3 D. 42.解:因为.4,42)1)(3(2=+=++=+a i i i ai 所以故选D(3)根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下 结论中不正确的是2700260025002400210020001900)A.逐年比较,2008年减少二氧化碳排放量的效果最显著;B.2007年我国治理二氧化碳排放显现成效;C.2006年以来我国二氧化碳排放量呈减少趋势;D.2006年以来我国二氧化碳年排放量与年份正相关。

3.选DA. -1B. 0C. 1D. 24.选B(5)设{}项和,的前是等差数列n a S n n 若==++5531,3S a a a 则A. 5B. 7C. 9D. 115.解:在等差数列中,因为1353,a a a ++=所以15353()51,55,2a a a S a +⨯====故选A (6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为A.81B.71C. 61D. 51 6.解:如图所示,选D.(7)已知三点)32()30(),01(,,,,C B A ,则ABC ∆外接圆的圆心到原点的距离为A.35B. 321C. 352D. 34 7.解:根据题意,三角形ABC 是等边三角形,设外接圆的圆心为D ,则(1,3D 所以,.32137341==+=OD 故选B. (8)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∠AOB = x。将动点 P 到 A,B 两点距离之和表示为 x 的函数 f (x) ,则 y f (x) 的图象大致为
y
y
y
y
2
2
2
2
3 x 42 4
A
3 x 42 4
B
3 x 42 4
C
3 x 42 4
D
12.设函数
f
(x)
ln(1 |
x
|)
1
1 x2
,则使得
f
(x)
C.2006 年以来我国二氧化硫年排放量呈减少年排放量与年份正相关
4.向量 a (1, 1) , b (1, 2) ,则 (2a b) a
A.-1
B.0
C.1
D.3
5.设 Sn 等差数列{an} 的前 n 项和。若 a1 + a3 + a5 = 3,则 S5 =
2015 年全国卷 2 高考文科数学试题
1.已知集合 A {x | 1 x 2}, B {x | 0 x 3},则 A B
A. (1,3)
B. (1,0)
2.若 a 为实数,且 2 ai 3 i ,则 a = 1 i
A.-4
B.-3
C. (0, 2)
C.3
D. (2,3)
D.4
3.根据下面给出的 2004 年至 2013 年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的
O
50 60 70 80 90 100 满意度评分
(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
满意度评分
低于 70 分
70 分到 89 分
不低于 90 分
满意度等级
不满意
满意
非常满意
估计哪个地区的满意度等级为不满意的概率大?说明理由
19.(本小题满分 12 分)
D1 F
如图,长方体 ABCD—A1B1C1D1 中,AB = 16,BC = 10,AA1 A1 E
(1)求 sin B ; sin C
(2)若 AD = 1, DC 2 ,求 BD 和 AC 的长。 2
18.(本小题满分 12 分)
某公司为了解用户对其产品的满意度,从 A,B 两地区分别随机调查了 40 个用户,根据用户对产品的
满意度评分,得到 A 地区用户满意度评分的频率分布直方图和 B 地区用户满意度评分的频数分布表。
频数
2
8
14
10
6
(1)在答题卡上作出 B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分
的平均值及分散程度(不要求计算出具体值,给出结论即可);
B 地区用户满意度评分的频率分布直方图
频率/组距
0.040 0.035 0.030 0.025 0.020 0.015 0.010 0.005
A.5
B.7
C.9
D.11
6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去
部分体积与剩余部分体积的比值为
A. 1 8
C. 1 6
B. 1 7
D. 1 5
7.已知三点 A(1, 0) , B(0, 3) , C(2, 3) ,则ΔABC 外接圆的圆心到原点的距离为
A. 5 3
B. 21 3
f
(2x
1)
成立的
x
的取值范围是
A. (1 ,1) 3
B. (, 1) (1, ) 3
C. ( 1 , 1) 33
D. (, 1) (1 , ) 33
第 II 卷(非选择题,共 90 分)
本卷包括必考题和选考题两部分。第 13 题 ~ 第 21 题为必考题,每个试题考生都必须作答。第 22
题 ~ 第 24 题为选考题,考生根据要求作答。
a1
1 4
,a3a5
=
4(a4 1) ,则 a2 =
A.2
B.1
C. 1 2
D. 1 8
10.已知 A,B 是球 O 的球面上两点,∠AOB = 90°,C 为
D
P
C
该球面上的动点。若三棱锥 O—ABC 体积的最大值为 36,
则球 O 的表面积为
A
x
O
B
A.36π
B.64π
C.144π
D.256π
11.如图,长方形 ABCD 的边 AB = 2,BC = 1,O 是 AB 的中点,点 P 沿着边 BC,CD 与 DA 运动,记
D
= 8,点 E,F 分别在 A1B1,D1C1 上,A1E = D1F = 4,过点 E,F
A
C1
B1 C
B
的平面α与此长方体的面相交,交线围成一个正方形。
(1)在图中画出这个正方形(不必说明画法和理由);
8.右边程序框图的算法思路源于我国古代数学名
著《九章算术》中的“更相减损术”。执行该程序框
图,若输入的 a,b 分别为 14,18,则输出的 a =
A.0
B.2
C. 2 5 3
D. 4 3
开始
输入 a,b


a≠b


a>b
输出 a
a=a-b
b=b-a
结束
C.4
D.14
9.已知等比数列 {an} 满足
二、填空题:本大题共 4 小题,每小题 5 分。
13.已知函数 f (x) ax3 2x 的图象过点 (1, 4) ,则 a = _________。
x y 5 0 14.若 x,y 满足约束条件 2x y 1 0 ,则 z 2x y 的最大值为__________。
x 2 y 1 0 15.已知双曲线过点 (4, 3) ,且渐近线方程为 y 1 x ,则该双曲线的标准方程为__________。
2
16.已知曲线 y x ln x 在点 (1,1) 处的切线与曲线 y ax2 (a 2)x 1相切,则 a = __________。
三、解答题:解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分 12 分)
ΔABC 中,D 是 BC 上的点,AD 平分∠BAC,ΔABD 面积是ΔADC 面积的 2 倍。
A 地区用户满意度评分的频率分布直方图
频率/组距
0.040 0.035 0.030 0.025 0.020 0.015 0.010 0.005
O
40 50 60 70 80 90 100 满意度评分
B 地区用户满意度评分的频数分布表
满意度评分分组 [50,60) [60,70) [70,80) [80,90) [90,100]

2700 2600 2500 2400 2300 2200 2100 2000 1900
2004 年 2005 年 2006 年 2007 年 2008 年 2009 年 2010 年 2011 年 2012 年 2013 年
A.逐年比较,2008 年减少二氧化硫排放量的效果最显著
B.2007 年我国治理二氧化硫排放显现成效
相关文档
最新文档