2001年小学数学奥林匹克竞赛试卷汇总
2001年小学奥林匹克竞赛试题以及答案

2001小学数学奥林匹克试题预赛(A)卷______________。
2.有三个不同的数(都不为0)组成的所有的三位数的和是1332,这样的三位数中最大的是________。
3.四个连续的自然数的倒数之和等于19/20,则这四个自然数两两乘积的和等于________。
4.黑板上写着从1开始的若干个连续自然数,擦去其中的一个后,其余各数的平均数是,擦去的数是________。
5.图中的每个小正方形的面积都是2平方厘米,则图中阴影部分的面积是____平方厘米。
6.一梯形面积为1400平方米,高为50米,若两底的米数都是整数且可被8整除,求两底。
此问题解的组数是______________。
7.在1000和9999之间由四个不同的数字组成,而且个位数和千位数的差(以大减小)是2,这样的整数共有___________个。
8.有32吨货物,从甲城运往乙城,大卡车的载重量是5吨,小卡车的载重量是3吨,每种大小卡车的耗油量分别是10升和7.2升,将这批货物运完,最少需要耗油_________升。
9.今年小刚年龄的3倍与小芳年龄的5倍相等。
10年后小刚的年龄的4倍与小芳年龄的5倍相等,则小刚今年的年龄是_____岁。
10.某校五年级参加数学竞赛的同学约有二百多人,考试成绩是得90-100的恰好占参赛总人数的1/7,得80-89分的占参赛总人数的1/5,得70-79分的恰好占参赛总人数的1/3,那么70分以下的有________人。
11.某人射击8枪,命中4枪,命中4枪中恰好有3枪连在一起的情况的种数是_____。
12.有若干人的年龄的和是4476岁,其中年龄最大的不超过79岁;最小的不低于30岁,而年龄相同的人不超过3个人,则这些人中至少有_____位老年人(年龄不低于60岁的为老年人)。
预赛(B)卷1.计算: =_________。
2.右式中相同字母代表相同数字,不同字母代表不同数字,则EFCBH代表的五位数是_________.3.已知2不大于A,A小于B,B不大于7,A和B都是自然数,那么的最小值是_____4.A、B两城相距60千米,甲、乙两人都骑自行车从A城同时出发,甲比乙每小时慢4千米,乙到B城当即折返,于距B城12千米处与甲相遇,那么甲的速度是______。
(共8套)世界少年奥林匹克数学竞赛真题附答案 六年级至四年级专版(全)

(共8套)世界少年奥林匹克数学竞赛真题 六年级至四年级专版(全)绝密★启用前世界少年奥林匹克数学竞赛(中国区)选拔赛地方海选赛(2016年10月)选手须知:1、本卷共三部分,第一部分:填空题,共计50分;第二部分:计算题,共计12分;第三部分:解答题,共计58分。
2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置。
3、比赛时不能使用计算工具。
4、比赛完毕时试卷和草稿纸将被收回。
六年级试题(A卷)(本试卷满分120分 ,考试时间90分钟 )一、填空题。
(每题5分,共计50分)1、有甲、乙两个两位数,甲数的27等于乙数的 23,这个两位数的差最多是 。
2、如果15111111111111111*=++++,242222222222*=+++,33*=3+33+333,那么7*4= 。
3、由数字0,2,8(既可全用也可不全用)组成的非零自然数,按照从小到大排列,2008排在第 个。
4、如图,正方形的边长是2(a+b ),已知图中阴影部分B 的面积是7平方厘米,则阴影部分A 和C 面积的和是 平方厘米。
5、一辆出租车与一辆货车同时从甲地出发,开往乙地出租车4小时到达,货车6小时到达,已知出租车 比货车每小时多行35千米。
甲乙两地相距 千米6、一个长方体铁块,被截成两个完全相同的正方体铁块,两个正方体铁块的棱长之和比原来长方体铁块的棱长之和增加了16厘米,则原来长方体铁块的长是 。
7、四袋水果共46个,如果第一袋增加1个,第二袋减少2个,第三袋增加1倍,第四袋减少一半,那么四袋水果的个数就相等了,则第四袋水果原先有 个。
8、有23个零件,其中有一个次品,不知它比正品轻还是重,用天平最少 次可以找出次品。
9、123A5能被55整除,则A= 。
10、在一次数学游戏中,每一次都可将黑板上所写的数加倍或者擦去它的末位数,假定一开始写的数是458,那么经过 次上述变化得到14.二、计算题。
(每题6分,共计12分)11、123200112320012002200220022002++++12、6328862363278624⨯-⨯省 市 学校 姓名 赛场 参赛证号∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕∕〇∕∕∕∕∕∕ 密 〇 封 〇 装 〇 订 〇 线 ∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕密 封 线 内 不 要 答 题a +六年级 第3页 六年级 第4页三、解答题。
2001年中国数学奥林匹克

$ ’%(% % & ’)%( % ) ’)! 正 $ 边形中三角形总数为
( $ *($ $ ’((% % & ’)%(% % ) ’)! 因为
% ) ’ + ’((% % ) ’)
#( % ) ( + % % ) ’ #% + () ’$ %! 后者显然成立,故知引理成立 ! 由引理可知,当 $ $ % % & ’,% !( 时,总存在 ( 只喜鹊,它们飞落前后所在的 ( 个顶点都构成钝角 三角形 ! 这表明不小于 , 的所有奇数都满足题中的 要求 ! 综上可知,满足题中要求的所有自然数是
!""# 年第 ! 期
$#
!竞赛之窗!
!""# 年中国数学奥林匹克
第一天
(!""#!"#!#$ % & $"!#’ & "" 香港)
一、给定 !,"! ( ! ( ! ) 内接于单位圆 ! 的凸四边形 "#$% 适合以下条件:
(#)圆心在这凸四边形内部;
(!)最大边长是 !,最小边长是"’ * !! )
’四边形"+ #+$+ %+ , 643"# - 643"! - 643"$ - 643"’ ,
’四边形"#$% , #!(723!"# - 723!"! - 723!"$ - 723!"’ )) 所以有
’ 四边形"+ #+ $+ %+ ’ 四边形"#$%
2001年国际数学奥林匹克试题

Washington, DC, United States of AmericaJuly 8–9, 2001ProblemsEach problem is worth seven points.Problem 1Let ABC be an acute-angled triangle with circumcentre O . Let P on BC be the foot of the altitude from A .Suppose that BCA ABC 30 .Prove that CAB COP 90 .Problem 2Prove thata a 2 8b cb b 2 8c a c c 2 8 a b 1for all positive real numbers a ,b and c .Problem 3Twenty-one girls and twenty-one boys took part in a mathematical contest.• Each contestant solved at most six problems.• For each girl and each boy, at least one problem was solved by both of them.Prove that there was a problem that was solved by at least three girls and at least three boys.Problem 4Let n be an odd integer greater than 1, and let k 1,k 2,…,k n be given integers. For each of the n permutationsa a 1,a 2,…,a n of 1,2,…,n , letS a i 1nk i a i .Prove that there are two permutations b and c , b c , such that n is a divisor of S b S c .2IMO 2001 Competition ProblemsProblem 5In a triangle ABC, let AP bisect BAC, with P on BC, and let BQ bisect ABC, with Q on CA.It is known that BAC 60 and that AB BP AQ QB.What are the possible angles of triangle ABC?Problem 6Let a,b,c,d be integers with a b c d 0. Suppose thata cb d b d ac bd a c .Prove that a b c d is not prime.。
1991—XX年小学数学奥林匹克参考答案

1991—XX年小学数学奥林匹克参考答案001年小学数学奥林匹克参考答案预赛A1、7又256分之12、3213、1194、75、186、37、8408、67.29、1010、68人11、XX、6预赛B1、101/22、106523、13/424、85、186、167983207、1088、319、11/4510、10911、2/312、23决赛A1、2又1024分之10112、013、434、38165472905、46、187、小于8、3.279、1410、1XX1、2212、185决赛B1、5/22、15/333、五4、1205、4XX、2又5分之27、162.58、759、5.810、3011、812、20XX年小学数学奥林匹克参考答案预赛A1、51512、893、1304、2505、196、487、180008、6429、24.0510、9/1011、812、34预赛B1、0.52、343、1094、星期一5、86、1047、12时8又29分之8分8、1379、8010、4711、100212、225决赛A1、2又8分之52、1703、194、985、10246、47、168、699、9710、7611、912、3/8决赛B1、1002、19963、7154、4885、356、257、188、89、610、5111、2497.512、91999年小学数学奥林匹克参考答案预赛A:1、0.342、29又280分之XX、124、405、50平方厘米6、11比77、32或368、29、199910、22.5411、3512、上午12时预赛B:1、495.312、16又20分之93、94、205、856、7或287、38、1:29、11.810、8211、3312、12又9分之2千米决赛A:1、702、84分之53、134、365、1986、4个阴影面积相等7、548、5:19、1710、星期五11、142.5度12、a=5,b=1决赛B:1、850.852、1又4分之13、64、1005、486、647、78、179、810、411、2312、2.51998年小学数学奥林匹克参考答案预赛A:1、102、158053、1又8分之14、81提示:9828等于2的平方乘3的立方乘7乘13,三个连续自然数是26、27、285、168提示:97+71=89+796、9987、36个8、192把9、7套10、152个11、11:912、62.5%预赛B:1、10.2、194253、3又8分之14、215、306、1407、528、333棵9、49元10、12人11、12分12、840米决赛A:1、3.782、18623、39.25平方厘米4、213545、7276、23个7、571个8、197359、25%10、8点15分11、15只12、24%决赛B:1、3.782、18623、50平方厘米4、34215、256、16个7、18个8、862409、450元10、315千米11、20只12、50%1997年小学数学奥林匹克参考答案预赛A:1、8888871111122、7/10>2/3>19/29>17/263、13种4、11935、8914376、172807、153页8、二9、5/2410、15元11、6天12、10.75元预赛B:1、0.5462、3又3分之13、66本4、46245、60人6、179/3607、同A卷第5题。
2001-2012中国西部数学奥林匹克CWMO试题与解答

24
中等数学
从而
,
1 2
PA·PB sin
∠A PB = 1 ,
即 PA·PB
= sin
2 ∠A PB
≥2.
等号仅当 ∠A PB = 90°时成立. 这表明点 P 在以 AB 为
直径的圆上 ,该圆应与 CD 有公共点.
于是
,
PA·PB
取最小值时
,应有
BC
≤AB 2
,即
AB ≥2 BC.
(2) 设 △A PB 的内切圆半径为 r ,则
b<
a
≤
4 3
b.
(冷岗松)
参考答案
第一天
1. 用 数 学 归 纳 法 证 明 : 对 任 意 n ∈N, 均 有
xn
≤n 2
.
①
当 n = 1 时 ,由条件知 ①成立.
设
n
=
k
时
①成立
,即
xk
≤k 2
.当
n
=
k
+1
时
,有
xk +1
=
xk
+
x2k k2
≤k 2
+
1 k2
k2 2
=
k 2
+
1 4
<
k
+ 2
PA·PB 的值随着长方形ABCD及点 P 的变化而变化 ,
当 PA·PB 取最小值时 ,
(1) 证明 : AB ≥2 BC ;
(2) 求 AQ·BQ 的值.
(罗增儒)
3. 设 n 、m 是具有不同奇偶性的正整数 ,且 n >
m. 求所有的整数
x
小学数学奥林匹克竞赛真题集锦及解答

小学数学奥林匹克竞赛真题集锦及解答一、填空题1.三个连续偶数,中间这个数是m,则相邻两个数分别是___m-2____和___m+2_ __。
2.有一种三位数,它能同时被2、3、7整除,这样的三位数中,最大的一个是____966___,最小的一个是____126____。
解题过程:2×3×7=42;求三位数中42的倍数126、168、 (966)3.小丽发现:小表妹和读初三哥哥的岁数是互质数,积是144,小表妹和读初三哥哥的岁数分别是_____9____岁和____16____岁。
解题过程:144=2×2×2×2×3×3;(9、16)=14.一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,那么这个四位数是____1210___。
5.2310的所有约数的和是__6912____。
解题过程:2310=2×3×5×7×11;约数和=(1+2)×(1+3)×(1+5)×(1+7)×(1+11)6.已知2008被一些自然数去除,得到的余数都是10,这些自然数共有____11____个。
解题过程:2008-10=1998;1998=2×33×37;约数个数=(1+1)×(1+3)×(1+1)=16(个)其中小于10的约数共有1,2,3,6,9;16-5=11(个)7.从1、2、3、…、1998、1999这些自然数中,最多可以取多少个数,才能使其中每两个数的差不等于4?__ 1000 __。
解题过程:1,5,9,13,……1997(500个)隔1个取1个,共取250个2,6,10,14,……1998(500个)隔1个取1个,共取250个3,7,11,15,……1999(500个)隔1个取1个,共取250个4,8,12,16,……1996(499个)隔1个取1个,共取250个8.黑板上写有从1开始的若干个连续的奇数:1,3,5,7,9,11,13…擦去其中的一个奇数以后,剩下的所有奇数之和为1998,那么擦去的奇数是____27____。
全国小学生数学奥林匹克竞赛真题及答案收集

全国小学生数学奥林匹克竞赛真题及答案收集目录2006年小学数学奥林匹克预赛试卷及答案 (1)2006年小学数学奥林匹克决赛试题 (4)2007年全国小学数学奥林匹克预赛试卷 (7)2008年小学数学奥林匹克决赛试题 (8)2008年小学数学奥林匹克预赛试卷 (10)2006年小学数学奥林匹克预赛试卷及答案1、计算4567-3456+1456-1567=__________。
2、计算5×4+3÷4=__________。
3、计算12345×12346-12344×12343=__________。
4、三个连续奇数的乘积为1287,则这三个数之和为__________。
5、定义新运算a※b=a b+a+b (例如3※4=3×4+3+4=19)。
计算(4※5)※(5※6)=__________。
6、在下图中,第一格内放着一个正方体木块,木块六个面上分别写着A、B、C、D、E、F六个字母,其中A与D,B与E,C与F相对。
将木块沿着图中的方格滚动,当木块滚动到第2006个格时,木块向上的面写的那个字母是__________。
7、如图:在三角形ABC中,BD=BC,AE=ED,图中阴影部分的面积为250.75平方厘米,则三角形ABC面积为__________平方厘米。
8、一个正整数,它与13的和为5的倍数,与13的差为3的倍数。
那么这个正整数最小是__________。
9、若一个自然数中的某个数字等于其它所有数字之和,则称这样的数为“S数”,(例:561,6=5+1),则最大的三位数“S数”与最小的三位数“S数”之差为__________。
10、某校原有男女同学325人,新学年男生增加25人,女生减少5%,总人数增加16人,那么该校现有男同学__________人。
11、小李、小王两人骑车同时从甲地出发,向同一方向行进。
小李的速度比小王的速度每小时快4千米,小李比小王早20分钟通过途中乙地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太原康大培训学校教材·六年级·总结册2001年小学数学奥林匹克竞赛试卷考生注意:本试卷共12道题,每题10分,满分120分,前10道题为填空题,只写答案;最后两道题为解答题,必须写出解题过程,只写答案不得分。
1.计算:1⨯3⨯5+2⨯6⨯10+3⨯9⨯15+4⨯12⨯20+5⨯15⨯251⨯2⨯3+2⨯4⨯6+3⨯6⨯9+4⨯8⨯12 +5⨯10⨯15=2.有一个分数约成最简分数是5,约分前分子分母的11和等于48,约分前的分数是()200120013.76+25的末两位数字是()4.甲、乙、丙、丁四人去买电视,甲带的钱是另外三人所带钱总数的一半,乙带的钱是另外三人所带钱总数的11,丙带的钱是另外三人所带钱总数的,丁带了910元,34四人所带的总钱数是()元。
5.若2836,4582,6522四个自然数都被同一个自然数相除,所得余数相同且为两位数,那么除数与余数的和为()6.两人从甲地到乙地,同时出发,一人用匀速3小时走完全程,另一个用匀速4小时走完全程,经过()小时,其中一人所剩路程的长是另一人所剩路程的长的2倍。
康大教材第1页太原康大培训学校教材·六年级·总结册7.设A=29293031,B=,比较大小:A(<)B。
626261608.今有桃95个,分给甲、乙两班学生吃,甲班分到的桃有23是坏的,其它是好的;乙班分到的桃有是坏的,916其它是好的,甲、乙两班分到的好桃共有()个。
9.如下图示:ABCD是平行四边形,AD=8cm,AB=10cm,0∠DAB=30,高CH=4cm1,弧BE、DF分别以AB、CD为半径,弧DM、BN 分别以AD、CB为半径,那么阴影部分的面积为()平方厘米(取π=3)。
10.假设某星球的一天只有6小时,每小时36分钟,那么3点18分时,时针和分针所形成的锐角是()度。
11.已知AB、C、D、E、F、G、H、I、K代表十个互不康大教材第2页太原康大培训学校教材·六年级·总结册相同的大于零的自然数,要使下列等式成立,A最小是()。
A +=+ H + H + I I + K故A=G+3H+3I+K12.从A市到B市有一条笔直的公路,从A到B共有三段,第一段的长是第三段的长的2倍,甲汽车在第一段公路上以每小时40千米的速度行进,在第二段公路上速度提高了125%,乙汽车在第三段公路上以每小时50千米的速度前进时,在第二段上把速度提高了80%,甲、乙两汽车分别从A、B两市同时出发,相向而行,1小时20分钟后,甲汽车在走了第二段公路的1处与从B市而来的乙汽车相遇,那么3A、B两市相距()千米。
康大教材第3页太原康大培训学校教材·六年级·总结册2000年小学数学奥林匹克竞赛试卷考生注意:本试卷共12道题,每题10分,满分120分。
前10道题为填空题,只写答案;后两道题为解答题,必须写出解题过程,只写答案不得分。
1.计算:361941443 +63⨯0.125+⨯63+63⨯=。
23232232382.有两个三位数,它们的和是999,如果把较大数放在小数的左边,点一个小数点在两数之间所在的数,正好等于把小数放在较大数的左边,中间点一个小数点所成的数的6倍,那么这两个数的差(大减小)为。
3.一千个体积为1立方厘米的小立方体合在一起成为一个边长为10厘米的大立方体,表面涂上油漆后再分开为原来的小立方体,那么这些小立方体中至少有一面被油漆过的数目是个。
4.一块冰,每小时失去其重量的一半,八小时后其重量为5千克,那么一开始这块冰的重量是千克。
165.甲、乙两人进行百米赛跑,当甲到达终点时,乙在甲后面20米处;如果两人各自速度不变,要使甲、乙两人同时到达终点,甲的起跑线应比原起跑线后移米。
6.原有男女同学325人,新学年男生增加25人,女生减少5%,总人数增加16人,那么现在男同学人。
7,在除13511,13903和14589时能剩下相同余数的最康大教材第4页太原康大培训学校教材·六年级·总结册大整数是。
8.一商店以每3盘16元钱的价格购进一批录像带,又从另一处以每4盘21元的价格购进比前一批加倍的录像带,那么以每3盘元的价格全部出售可得到所投资的20%的收益。
9.一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行,每秒钟分别爬行5.5厘米和3.5厘米,它们每爬行1秒,3秒,5秒……(连续的奇数),就调头爬行,那么,它们相遇时,已爬行的时间是秒。
10.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%。
那么,这堆糖果有奶糖块。
11.十个连续的自然数,上题的答数是其中第三大数。
把这10个数填到下图方格中,每格填一个数,要求图中三个2×2的正方形中四数之和相等。
那么,这个和数的最小值是。
12.某种考试已举行的次数恰好是上题的答数,共出了426道题,每次出的题数,有25题,或者16题,或者20题,那么,其中考25题的有次。
康大教材第5页太原康大培训学校教材·六年级·总结册一九九九年小学数学奥林匹克竞赛试卷1.计算:714.285÷0.37÷2.7×1.7×0.7=() 2.11+2+11x+148=,求x=() 113.某库房有一批货物,第一天运走20吨,第二天运的67吨数比第一天多,此时还剩这批货物总重量的,这批1717货物有()吨。
4.一项工程,甲乙合作8天完成,乙丙合作9天完成,丙甲合作18天完成,那么,丙一人()天完成这项工程。
5.用10 元钱买4角、8角、一元的画片15张,最多可以买1元的画片()张。
6.如图,一个矩形被分成8个小矩形,其中5个小矩形的面积如图所示,那么这个大矩形的面积是() 7.甲乙两艘舰,由相距418千米的两个港口同时出发,甲舰每小时航行36千米,乙舰每小时行34千米,开出1小时后甲舰因有紧急任务,返回原港,之后又立即航行与乙舰继续相对开出,那么经过()小时两舰相遇。
康大教材第6页太原康大培训学校教材·六年级·总结册8.1999名学生从前往后排成一列,按下列的规则报数,如果某一个同学报的数是一位数,后面的同学就要报出这个数与9的和,如果某一个同学报的数是两位数,后面的同学就要报出这个数的个位数与6的和,现在第一个同学报一,最后一同学报的是()。
9.某学习小组有4名女生,两名男生,在一次考试中,他们做对的试题各不相同,最多对10题,最少对4题,男生中做对的比女生做对最少的多4题,女生中做对最多的比男生中做对最少的多4题,则男生中做对最多的人对了()题。
10.张阳拿着50元钱买回4本书,(书的定价最少单位3是角),回家一算,数学书用去一半其余的一半中有是买1010字典的,用于买语文书,他最后剩下()元。
2311.一水箱,用甲乙丙三个水管往里注水,若只开甲丙两管,甲管注入18吨水时,水箱已满,若只开乙丙两管,乙注入27吨时,水箱才满,又知乙管每分钟注水量是甲管每分钟注入水量的2倍,则该水箱最多可容()吨水。
12.赵强每天上学步行10分钟以后,跑步2分钟,恰好到校,有一天,他步行6分钟后,开始跑步,结果早到了2分24秒,那么他跑步的速度是步行速度的()倍。
康大教材第7页太原康大培训学校教材·六年级·总结册1998年3月小学数学奥林匹克预赛1.计算:1998⨯3÷43⨯559÷37= 19.7⨯13+169⨯22.在左下图的乘法算式中,每个口表示一个数字,那么计算所得的乘积应该是5H3题 2题3.在右上图中,已知矩形GHCD的面积是矩形ABCD11面积的,矩形MHCF的面积是矩形ABCD面积的,矩46形BCFE的面积等于3平方米。
矩形AEMG的面积等于平方米。
4.三个连续的自然的最小公倍数是9828,这三个自然数和等于。
5.如果四个两位质数a、b、c、d两两不同,并且满足等式a+b=c+d,那么a +b的最大可能值是6.某数除以11余8,除以13余10,除以17余12,那么这个数的最小可能值是康大教材第8页太原康大培训学校教材·六年级·总结册7.一个长方体,表面全部涂上红色后,被分割成若干个体积都等于1立方厘米的小正方体。
如果在这些小正方体中,不带红色的小正方体的个数等于7,那么两面带红色的小正方体的个数等于8.甲、乙两个车间共有94个工人,每天共生产1998把竹椅。
由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅。
甲车间每天竹椅的产量比乙车间多9.一个运输队包运1998套玻璃茶具。
运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元。
结果这个运输队实际得运费3059.6元。
在运输过程中被损坏的茶具套数是10.买来一批苹果,分给幼儿园大班的小朋友。
如果每人分5个苹果,那么剩余32个;如果每人分8个苹果,那么还有5个小朋友分不到苹果。
这批苹果的个数是11.某司机开车从A城到B城。
如果按原定速度前进,可准时到达。
当路程走了一半时,司机发现前一半行程中,11实际平均速度只达到原定速度的。
现在司机想准时到达B13城,在后一半的行程中,实际平均速度与原速度的比是12.某店原来将一批苹果按100%的利润定价出售,由于定价过高,无人购买,不得不按38%的利润重新定价,这样售出了其中的40%。
此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果。
结果,实际获得的总利润是原定利润的30.2%,那么第二次降价后的价格是原康大教材第9页太原康大培训学校教材·六年级·总结册定价的 %(注:“按100%的利润定价”指的是“利润=成本×100%)普及卷1.计算:1998÷17⨯119÷54= 129⨯+5.7⨯222.在左下图的乘法算式中,每个□表示一个数字,那么计算所得的乘积应该是3.下图中有六个正方形,较小的正方形都由较大的正方形的四边中点连接而成。
已知最大的正方形的边长为10593题 2题4.三个连续的自然数的最小公倍数是168,那么这三个自然数的和等于5.如果四个两位质数a、b、c、d两两不同,并且满足等于a+b=c+d,那么a +b的最小可能值是6.一个小于200的数,它除以11余8,除以13余10,康大教材第10页太原康大培训学校教材·六年级·总结册那么这个数是7.一个长方体的长、宽、高都是整数厘米,它的体积是1998立方厘米,那么它的长、宽、高的和的最小可能值是厘米。