以下代码实现了最简单的Roberts算子边缘检测

合集下载

基于Matlab的图像边缘检测算法的实现及应用汇总

基于Matlab的图像边缘检测算法的实现及应用汇总

目录摘要 (1)引言 (2)第一章绪论 (3)1.1 课程设计选题的背景及意义 (3)1.2 图像边缘检测的发展现状 (4)第二章边缘检测的基本原理 (5)2.1 基于一阶导数的边缘检测 (8)2.2 基于二阶导的边缘检测 (9)第三章边缘检测算子 (10)3.1 Canny算子 (10)3.2 Roberts梯度算子 (11)3.3 Prewitt算子 (12)3.4 Sobel算子 (13)3.5 Log算子 (14)第四章MATLAB简介 (15)4.1 基本功能 (15)4.2 应用领域 (16)第五章编程和调试 (17)5.1 edge函数 (17)5.2 边缘检测的编程实现 (17)第六章总结与体会 (20)参考文献 (21)摘要边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而又重要的内容。

该课程设计具体考察了5种经典常用的边缘检测算子,并运用Matlab进行图像处理结果比较。

梯度算子简单有效,LOG 算法和Canny 边缘检测器能产生较细的边缘。

边缘检测的目的是标识数字图像中灰度变化明显的点,而导函数正好能反映图像灰度变化的显著程度,因而许多方法利用导数来检测边缘。

在分析其算法思想和流程的基础上,利用MATLAB对这5种算法进行了仿真实验,分析了各自的性能和算法特点,比较边缘检测效果并给出了各自的适用范围。

关键词:边缘检测;图像处理;MATLAB仿真引言边缘检测在图像处理系统中占有重要的作用,其效果直接影响着后续图像处理效果的好坏。

许多数字图像处理直接或间接地依靠边缘检测算法的性能,并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。

但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合,并且在实际图像中存在着不同程度的噪声,各种类型的图像边缘检测算法不断涌现。

早在1965 年就有人提出边缘检测算子,边缘检测的传统方法包括Kirsch,Prewitt,Sobel,Roberts,Robins,Mar-Hildreth 边缘检测方法以及Laplacian-Gaussian(LOG)算子方法和Canny 最优算子方法等。

数字图像处理matlab代码

数字图像处理matlab代码

一、编写程序完成不同滤波器的图像频域降噪和边缘增强的算法并进行比较,得出结论。

1、不同滤波器的频域降噪1.1 理想低通滤波器(ILPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4)); %将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40; %初始化d0for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 if d<=d0 %点(i,j)在通带内的情况h=1; %通带变换函数else %点(i,j)在阻带内的情况h=0; %阻带变换函数ends(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('ILPF滤波后的图像(d=40)');运行结果:1.2 二阶巴特沃斯低通滤波器(BLPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n=2; %对n赋初值n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40; %初始化d0for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 h=1/(1+(d/d0)^(2*n)); %BLPF滤波函数s(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('BLPF滤波后的图像(d=40)');实验结果:1.3 指数型低通滤波器(ELPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40;for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 h=exp(log(1/sqrt(2))*(d/d0)^2);s(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('ELPF滤波后的图像(d=40)');运行结果:1.4 梯形低通滤波器(TLPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=10;d1=160;for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 if (d<=d0)h=1;else if (d0<=d1)h=(d-d1)/(d0-d1);else h=0;endends(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('TLPF滤波后的图像'); %为图像添加标题运行结果:1.5 高斯低通滤波器(GLPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40;for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 h=1*exp(-1/2*(d^2/d0^2)); %GLPF滤波函数s(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('GLPF滤波后的图像(d=40)');运行结果:1.6 维纳滤波器[B,Cmap]=imread('eight.tif'); %读取MATLAB中的名为eight的图像I1=im2double(B);I2=imnoise(I1,'gaussian',0.01);I3=imnoise(I2,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I1) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I3) %加入混合躁声后显示图像title('加噪后的图像');I4=wiener2(I3);subplot(1,3,3);imshow(I4); %显示wiener滤波后的图像title('wiener滤波后的图像');运行结果:结论:理想低通滤波器,虽然有陡峭的截止频率,却不能产生良好的效果,图像由于高频分量的滤除而变得模糊,同时还产生振铃效应。

边缘检测

边缘检测

边缘检测算子图像配准的方法7.4.1 基于特征的图像配准基于特征的图像配准首先提取图像信息的特征,然后以这些特征为模型进行配准。

特征提取的结果是一含有特征的表和对图像的描述,每个特征由一组属性表示,对属性的进一步描述包括边缘的定向和弧度、区域的大小等。

局部特征之间存在着相互关系,如几何关系、辐射度量关系、拓扑关系等。

可以用这些局部特征之间的关系描述全局特征。

通常基于局部特征配准大多都是基于点、线或边缘的,而全局特征的配准则是利用局部特征之间的关系进行配准的方法。

由于图像的特征点比图像的像素点要少很多,因此大大减少了配准过程的计算量,但特征提取方法的计算代价通常较大,不便于实时应用。

特征点的配准度量值对位置的变化比较敏感,可以大大提高配准的精确程度。

对于纹理较少的图像区域提取的特征的密度通常比较稀少,局部特征的提取就比较困难。

特征点的提取过程可以减少噪声的影响,对灰度变化、图像形变和遮挡等都有较好的适应能力。

因此,在图像配准领域得到了广泛应用。

基于特征的图像配准方法有两个重要环节:特征提取和特征配准。

7.4.2 基于互信息的图像配准医学图像配准技术从基于特征的配准方法发展到基于统计的配准方法有其突破性的意义。

与基于特征的配准方法相比,基于统计的配准方法的突出优点为鲁棒性好、配准精度高、人工干预少。

基于统计的配准方法通常是指最大互信息的图像配准方法。

基于互信息的图像配准是用两幅图像的联合概率分布与完全独立时的概率分布的广义距离来估计互信息,并作为多模态医学图像配准的测度。

当两幅基于共同的解剖结构的图像达到最佳配准时,它们的对应像素的灰度互信息应为最大。

由于基于互信息的配准对噪声比较敏感,首先,通过滤波和分割等方法对图像进行预处理。

然后进行采样、变换、插值、优化从而达到配准的目的。

基于互信息的配准技术属于基于像素相似性的方法。

它基于图像中所有的像素进行配准,基于互信息的图像配准引入了信息论中的概念,如熵、边缘熵、联合熵和互信息等,可使配准精度达到亚像素级的高精度。

(完整版)基于数字图像处理的车牌识别本科毕业论文

(完整版)基于数字图像处理的车牌识别本科毕业论文

本科生毕业论文(设计)题目:基于数字图像处理的车牌识别设计**: ***学院: 数理与信息工程学院专业: 电子信息工程班级: 111学号:指导教师:刘纯利职称: 教授2014 年12 月24 日安徽科技学院教务处制目录摘要 ....................................................................关键词 ..................................................................1、设计目的 .............................................................2、设计原理: ............................................................3、设计步骤: ............................................................4、实行方案 .............................................................4.1. 总体实行方案:...................................................4.2. 各模块的实现:...................................................4.2.1输入待处理的原始图像: .......................................4.2.2图像的灰度化并绘制直方图: ...................................4.2.3 边缘检测....................................................4.2.4图像的腐蚀操作:............................................4.2.5平滑图像....................................................4.2.6除去二值图像的小对象 ........................................4.3车牌定位 .........................................................4.4字符的分割与识别..................................................4.4.1.车牌的再处理................................................4.4.2字符分割....................................................4.5车牌识别:........................................................5、总结: ................................................................6、致谢 .................................................................7、参考文献: ............................................................基于数字图像处理的车牌识别设计电子信息工程专业学生周金鑫指导教师刘纯利摘要:车牌识别在人类社会交通系统中担当重要角色,一个设计优良的车牌识别系统会给人们生活带来极大的方便,本文通过运用matlab和数字图像处理的一些知识简单通过图像预处理,车牌定位,字符分割,采用模板匹配法实现车牌字符的识别。

Python图像处理OpenCV(12):Roberts算子、Prewitt算子、Sobe。。。

Python图像处理OpenCV(12):Roberts算子、Prewitt算子、Sobe。。。

Python 图像处理OpenCV (12):Roberts 算⼦、Prewitt 算⼦、Sobe。

前⽂传送门:引⾔前⽂介绍了 Canny 算⼦边缘检测,本篇继续介绍 Roberts 算⼦、 Prewitt 算⼦、 Sobel 算⼦和 Laplacian 算⼦等常⽤边缘检测技术。

Roberts 算⼦Roberts 算⼦,⼜称罗伯茨算⼦,是⼀种最简单的算⼦,是⼀种利⽤局部差分算⼦寻找边缘的算⼦。

他采⽤对⾓线⽅向相邻两象素之差近似梯度幅值检测边缘。

检测垂直边缘的效果好于斜向边缘,定位精度⾼,对噪声敏感,⽆法抑制噪声的影响。

1963年, Roberts 提出了这种寻找边缘的算⼦。

Roberts 边缘算⼦是⼀个 2x2 的模版,采⽤的是对⾓⽅向相邻的两个像素之差。

Roberts 算⼦的模板分为⽔平⽅向和垂直⽅向,如下所⽰,从其模板可以看出, Roberts 算⼦能较好的增强正负 45 度的图像边缘。

dx =−1001dy =0−11Roberts 算⼦在⽔平⽅向和垂直⽅向的计算公式如下:d x (i ,j )=f (i +1,j +1)−f (i ,j )d y (i ,j )=f (i ,j +1)−f (i +1,j )Roberts 算⼦像素的最终计算公式如下:S =d x (i ,j )2+dy (i ,j )2今天的公式都是⼩学⽣⽔平,千万别再说看不懂了。

实现 Roberts 算⼦,我们主要通过 OpenCV 中的 filter2D() 这个函数,这个函数的主要功能是通过卷积核实现对图像的卷积运算:def filter2D(src, ddepth, kernel, dst=None, anchor=None, delta=None, borderType=None)src: 输⼊图像ddepth: ⽬标图像所需的深度kernel: 卷积核接下来开始写代码,⾸先是图像的读取,并把这个图像转化成灰度图像,这个没啥好说的:# 读取图像img = cv.imread('maliao.jpg', cv.COLOR_BGR2GRAY)[][]√rgb_img = cv.cvtColor(img, cv.COLOR_BGR2RGB)# 灰度化处理图像grayImage = cv.cvtColor(img, cv.COLOR_BGR2GRAY)然后是使⽤ Numpy 构建卷积核,并对灰度图像在 x 和 y 的⽅向上做⼀次卷积运算:# Roberts 算⼦kernelx = np.array([[-1, 0], [0, 1]], dtype=int)kernely = np.array([[0, -1], [1, 0]], dtype=int)x = cv.filter2D(grayImage, cv.CV_16S, kernelx)y = cv.filter2D(grayImage, cv.CV_16S, kernely)注意:在进⾏了 Roberts 算⼦处理之后,还需要调⽤convertScaleAbs()函数计算绝对值,并将图像转换为8位图进⾏显⽰,然后才能进⾏图像融合:# 转 uint8 ,图像融合absX = cv.convertScaleAbs(x)absY = cv.convertScaleAbs(y)Roberts = cv.addWeighted(absX, 0.5, absY, 0.5, 0)最后是通过 pyplot 将图像显⽰出来:# 显⽰图形titles = ['原始图像', 'Roberts 算⼦']images = [rgb_img, Roberts]for i in range(2):plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray') plt.title(titles[i])plt.xticks([]), plt.yticks([])plt.show()最终结果如下:Prewitt 算⼦Prewitt 算⼦是⼀种⼀阶微分算⼦的边缘检测,利⽤像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘,去掉部分伪边缘,对噪声具有平滑作⽤。

roberts梯度算子的matlab程序

roberts梯度算子的matlab程序

在机器学习和图像处理领域,Roberts梯度算子是一种常用的边缘检测算法。

它可以帮助我们在图像中快速准确地找到边缘位置,对于图像分割和特征提取等任务非常有用。

在本文中,我将重点介绍Roberts梯度算子的matlab程序,以及它在图像处理中的应用。

1. Roberts梯度算子的原理Roberts梯度算子是一种基于差分的边缘检测方法,它利用了图像中像素点的灰度值之间的变化来检测边缘。

具体来说,Roberts算子使用了两个3x3的卷积核:$$\begin{bmatrix}1 & 0 & 0\\0 & -1 & 0\\0 & 0 & 0\end{bmatrix}和\begin{bmatrix}0 & 1 & 0\\-1 & 0 & 0\\0 & 0 & 0\end{bmatrix}$$分别对图像进行卷积运算,然后将它们的平方和再开方得到边缘检测结果。

这种方法可以很好地捕捉到图像灰度值的变化,从而找到图像中的边缘。

2. Roberts梯度算子的matlab程序下面是一个简单的Roberts梯度算子的matlab程序示例:```matlabfunction [edge_image] = roberts_edge_detection(image)[m, n] = size(image);edge_image = zeros(m, n);for i = 1 : m - 1for j = 1 : n - 1% 对图像进行卷积运算edge_image(i, j) = abs(image(i, j) - image(i+1, j+1)) + abs(image(i, j+1) - image(i+1, j));endendend```这段matlab代码实现了对图像的Roberts边缘检测。

首先读入图像,然后对每个像素点进行Roberts算子的卷积运算,最后得到一个边缘图像。

Canny边缘检测

Canny边缘检测

Canny边缘检测图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值。

图象的边缘部分集中了图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与理解是非常重要的,同时也是图象分割所依赖的重要特征,边缘检测主要是图象的灰度变化的度量、检测和定位,自从1959提出边缘检测以来,经过五十多年的发展,已有许多中不同的边缘检测方法。

根据作者的理解和实践,本文对边缘检测的原理进行了描述,在此基础上着重对Canny检测算法的实现进行详述。

本文所述内容均由编程验证而来,在实现过程中,有任何错误或者不足之处大家共同讨论(本文不讲述枯燥的理论证明和数学推导,仅仅从算法的实现以及改进上进行原理性和工程化的描述)。

1、边缘检测原理及步骤在之前的博文中,作者从一维函数的跃变检测开始,循序渐进的对二维图像边缘检测的基本原理进行了通俗化的描述。

结论是:实现图像的边缘检测,就是要用离散化梯度逼近函数根据二维灰度矩阵梯度向量来寻找图像灰度矩阵的灰度跃变位置,然后在图像中将这些位置的点连起来就构成了所谓的图像边缘(图像边缘在这里是一个统称,包括了二维图像上的边缘、角点、纹理等基元图)。

在实际情况中理想的灰度阶跃及其线条边缘图像是很少见到的,同时大多数的传感器件具有低频滤波特性,这样会使得阶跃边缘变为斜坡性边缘,看起来其中的强度变化不是瞬间的,而是跨越了一定的距离。

这就使得在边缘检测中首先要进行的工作是滤波。

1)滤波:边缘检测的算法主要是基于图像强度的一阶和二阶导数,但导数通常对噪声很敏感,因此必须采用滤波器来改善与噪声有关的边缘检测器的性能。

常见的滤波方法主要有高斯滤波,即采用离散化的高斯函数产生一组归一化的高斯核(具体见“高斯滤波原理及其编程离散化实现方法”一文),然后基于高斯核函数对图像灰度矩阵的每一点进行加权求和(具体程序实现见下文)。

毕业设计论文-基于蚁群算法的图像边缘检测-附代码

毕业设计论文-基于蚁群算法的图像边缘检测-附代码

毕业设计论文-基于蚁群算法的图像边缘检测-附代码上海工程技术大学毕业设计(论文) 基于蚁群算法的图像边缘检测目录摘要 ...............................................................1 ABSTRACT .............................................................2 1 绪论 (3)1.1 研究背景 ...........................................................31.2 研究现状和发展方向 (4)6 1.3 研究目的和意义 .....................................................2 图像边缘检测概述 ..................................................... 7 2.1 边缘的定义及类型 ................................................... 8 2.2 常用的边缘检测方法 (10)2.3 其他边缘检测方法 .................................................. 15 2.3.1 基于小波变换的边缘检测 .......................................... 15 2.3.2 基于数学形态学的边缘检测 (16)17 2.4 传统边缘检测的不足 ................................................3 蚁群算法 ............................................................ 17 3.1蚁群算法的基本原理 (18)3.2 基于蚁群算法的图像边缘检测 ........................................21 4 实验结果及分析 ...................................................... 22 4.1 基于蚁群算法的图像边缘检测流程 .................................... 22 4.2 实验结果与性能分析 (26)4.2.1 参数对边缘检测的影响 ............................................ 294.2.2 与传统方法的比较 ................................................ 35 5 总结与展望 .......................................................... 37 参考文献 .............................................................. 39 附录 ................................................. 错误~未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档