功率晶体管(GTR)的特性

合集下载

SCR、GTO、MOSFET、GTR、IGBT特性实验

SCR、GTO、MOSFET、GTR、IGBT特性实验

SCR、GTO、MOSFET、GTR、IGBT特性
实验
一、实验目的
(1)掌握各种电力电子器件的工作特性。

(2)掌握各器件对触发信号的要求。

二、实验所需挂件及附件
(略)
三、实验线路及原理
将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R串联后接至直流电源的两端, 给定电压从零开始调节, 直至器件触发导通, 从而可测得在上述过程中器件的V/A特性。

实验线路的具体接线如下图所示:
图3-26 新器件特性实验原理图
四、实验内容
(1)晶闸管(SCR)特性实验。

(2)可关断晶闸管(GTO)特性实验。

(3)功率场效应管(MOSFET)特性实验。

(4)大功率晶体管(GTR)特性实验。

(5)绝缘双极性晶体管(IGBT)特性实验。

五、思考题
各种器件对触发脉冲要求的异同点?
七、实验方法
给定电压, 监视电压表、电流表的读数, 当电压表指示接近零(表示管子完全导通), 停止调节, 记录给定电压Ug调节过程中回路电流Id以及器件的管压降Uv。

(1) SCR测试
(2) GTO测试
(3) MOSFET测试
(4)GTR测试
(5)IGBT测试
八、实验结论
根据得到的数据, 绘出各器件的输出特性。

全控型电力电子器件

全控型电力电子器件

GTO 的 外 形
电路符号
阳阳A
☞GTO的导通过程与普通 晶闸管是一样的,只不 过导通时饱和程度较浅。 ☞而关断时,给门极加负脉 冲,即从门极抽出电流, 器件退出饱和而关断。 ☞GTO的多元集成结构使 得其比普通晶闸管开通 过程更快,承受di/dt的 能力增强。
阳阳G 阳阳A
2018/12/13
2
1.3.1可关断晶闸管GTO——主要参数
2018/12/13
0.01ms 1ms
另外安全工作区与导通控制 脉冲有关系,如左图,给出不同 宽度的脉冲对应的安全工作区
C D BUCE UCE
11
1.3.3 功率场效应管MOSFET——外型和电路符号和特点
外 型
电 路 符 号
2018/12/13
阳阳D
阳阳G 阳阳S
■分为结型和绝缘栅型,但通常主要指绝缘栅型 中的MOS型(Metal Oxide Semiconductor FET),简称电力MOSFET(Power MOSFET)。 ■电力MOSFET是用栅极电压来控制漏极电流的, 它的特点有: ◆驱动电路简单,需要的驱动功率小。 ◆开关速度快,工作频率高(可达106)。 ◆热稳定性优于GTR。 ◆电流容量小,耐压低,多用于功率不超过 10kW的电力电子装置。 比较: GTO一般可以做到几KA/KV(功率最大);开关 速度几百HZ; GTR一般可以做到几百A/KV,速度稍慢,几K到 几百K, MOSFET一般可以做到几十A/KV(速度最快), 可达106 ;
关断过程
从开始施加反向基极电流到集电极电流开始下降 (下降到90%ICO)对应的时间叫做存储时间ts。接 着是下降时间tf,定义为集电极电流从90%ICO下降 到10%ICO对应的时间。关断时间toff=ts+tf。 GTR的开关时间在几微秒以内,比晶闸管和 GTO都短很多。

GTR (2)

GTR (2)

理想的基极 驱动电流波形
3、GTR驱动电路实例
1)抗饱和电路
3、具有自保护功能的基极驱动电路
(1)信号隔离电路 :V1、B (2)工作状态检测与信号综合电路 :VD、LM311 (3)输出级: V4 、 V5 、 V6 、VD7
4.GTR的双电源驱动电路
图1.9.8 双电源驱动电路
UAA4002组成的GTR驱动电路
四、 GTR驱动电路
1、驱动电路的基本任务:
• 将信息电子电路传来的信号按控制目标的要求,转换 为加在电力电子器件控制端和公共端之间、可以使其开通 或关断的信号。 对半控型器件只需提供开通控制信号。 对全控型器件则既要提供开通控制信号,又要提供关
断控制信号。
在高压变换电路中,需要在控制系统和主电路之间进 行电气隔离,这可以通过脉冲变压器或光耦来实现。
电力电子器件分类
不控型器件
按开关控制性能分 半控型器件 全控型器件 单极型 功率MOSFET SIT(静电感应晶体管) GTR 按参与导电的载流子不同 双极型 混合型 GTO SITH(静电感应晶闸管) IGBT
MCT(MOS控制晶闸管)
一、电力晶体管及其工作原理

与普通的双极结型晶体管基本原理是一样的。 主要特性是耐压高、电流大、开关特性好。 通常采用至少由两个晶体管按达林顿接法组成的单元结构。 采用集成电路工艺将许多这种单元并联而成 。
GTR的主要参数 GTR的主要参数有:电流放大倍数b、直流电流增益hFE、集射极间漏电流Iceo、集射极 间饱和压降Uces、开通时间ton和关断时间toff。 此外还有: 1\最高工作电压 :GTR上电压超过规定值时会发生击穿。击穿电压不仅和晶体管本身特性 有关,还与外电路接法有关: BUcbo> BUcex> BUces> BUcer> Buceo 实际使用时,为确保安全,最高工作电压要比BUceo低得多。 2\集电极最大允许电流IcM :通常规定为hFE下降到规定值的1/2~1/3时所对应的Ic。实际使 用时要留有裕量,只能用到IcM的一半或稍多一点。 3\集电极最大耗散功率PcM :最高工作温度下允许的耗散功率GTR的二次击穿现象与安全 工作区。 1)一次击穿 集电极电压升高至击穿电压时,Ic迅速增大,出现雪崩击穿。只要Ic不超过限度,GTR一 般不会损坏,工作特性也不变。 2)二次击穿 一次击穿发生时Ic增大到某个临界点时会突然急剧上升,并伴随电压的陡然下降。常常立 即导致器件的永久损坏,或者工作特性明显衰变。 3)安全工作区(Safe Operating Area——SOA) 最高电压UceM、集电极最大电流IcM、最大耗散功率PcM、二次击穿临界线限定。

1.2门极可关断晶闸管GTO 4.2 大功率晶体管GTR

1.2门极可关断晶闸管GTO 4.2 大功率晶体管GTR

直流负载线
9
2. GTO的特定参数
1. 最大可关断阳极电流IATO
IATO也是GTO的额定电流。 GTO的阳极电流 IA过大时,管子饱和加深,
导致门极关断失败,因此,GTO必须规定一个最
大可关断阳极电流IATO,也就是管子的铭牌电流。
IATO与管子电压上升率、工作频率、反向门极电
流峰值和缓冲电路参数有关,在使用中应予以 注意。
能控制较大的电流和较高的电压;
电力三极管由于结构所限其耐压难于超过1500V,现今商品 化的电力三极管的额定电压、电流大都不超过1200V、 800A; 逐步被其他全控型电力电子器件(特别是IGBT和 MOSFET),趋于淘汰
22
1.
GTR的极限参数
(1).集电极最大电流ICM(最大电流额定值)
(MOSFET) 、绝缘栅双极晶体管(IGBT)
2
电力电子器件的分类
按照器件能够被控制的程度,分为以下三类:
半控型器件
——通过控制信号可以控制其导通而不能控制
其关断,晶闸管是典型的半控型电力电子器件。 全控型器件 ——通过控制信号既可控制其导通又可控制其关 断,又称自关断器件,GTO、GTR等。
不能自关断与开关速度慢的缺点。其电气符号与普通晶
体管相同。
GTR是一种双极型大功率高反压晶体管,具有自关
断能力,控制方便,开关时间短,高频特性好,价格低
廉。可用于不停电电源、中频电源和交流电机调速等电
力变流装臵中。
20
图4-5 1300系列GTR的外观
21
电力三极管的主要特点
是电流驱动器件,控制基极电流就可控制电力三极管的开通 和关断; 开关速度较快; 饱和压降较低; 有二次击穿现象;

第5章-电力晶体管GTR

第5章-电力晶体管GTR

0
I b3
t
图5.4 理想的基极驱动电流波形
5.4
GTR的驱动电路
2、贝克钳位电路.
为了提高GTR的工作速度,都以抗饱和的贝克钳位电路作为基本电路。
它使GTR工作在准饱和状态,提高了器件开关过程的快速性能,因此成为一
1)控制开通GTR时,驱动电流前沿要陡(小于1 s),
并有一定的过冲电流,以缩短开通时间,减小开通损耗。 2)GTR导通后,应相应减小驱动电流,使GTR处于准饱
和导通状态,且使之不进入放大区和深饱和区,以降低 驱动功率,缩短储存时间。 3)GTR关断时,应迅速加上足够大的反向基极电流,迅速 抽取基区的剩余载流子,确保GTR快速关断,并减小关 断损耗。 5)GTR的驱动电路要具有自动保护功能,以便在故障状态
• 在电力电子技术的范围内,GTR与BJT这两个名称 等效。
应用
• 20世纪80年代以来,在中、小功率范围内取代晶闸 管,但目前又大多被IGBT和电力MRSFET取代。
5.1
GTR的结构和工作原理
基极b 发射极c 基极b
P+
N+
P+
P基区
N漂移区
N+衬底
c b
e
集电极c
空穴流 ib
Eb
ic=ib
极间漏电流IceR、集射极间饱和压降Uces、开通时间tRn和关 断时间tRff (此外还有): 1) 最高工作电压
GTR上电压超过规定值时会发生击穿
击穿电压不仅和晶体管本身特性有关,还与外电路接法有关。
实际使用时,为确保安全,最高工作电压要比UceR低得多。
5.3
GTR的主要参数
2) 集电极最大允许电流IcM

四种典型的全控型器件

四种典型的全控型器件

四种典型的全控型器件班级学号:********* 姓名:***日期:2013.10.3四种典型的全控型器件全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件被称为全控型器件,又称为自关断器件。

四种典型全控型器件:只在汽车点火装置和电视机行扫描电路中进行试用。

自70年代中期开始,GTO的研制取得突破,相继出世了1300V/600A、2500V/1000A、4500V/2400A的产品,目前已达9kV/25kA/800Hz及6Hz/6kA/1kHz的水平。

(2)大功率晶体管(GTR)GTR是一种电流控制的双极双结电力电子器件,产生于本世纪70年代,其门极可关断晶闸管(Gate-Turn-Off Thyristor—GTO),电力晶体管(Giant Transistor-GTO),电力场效应晶体管(Power MOSFET),绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor—IGBT)。

容量比较:(1)1964年,美国第一次试制成功了500V/10A的GTO。

在此后的近10年内,GTO的容量一直停留在较小水平,额定值已达1800V/800A/2kHz、1400v/600A/5kHz、600V/3A/100kHz。

(3)功率MOSFET目前制造水平大概是1kV/2A/2MHz和60V/200A/2MHz。

(4)绝缘门极双极型晶体管(IGBT)IGBT是由美国GE公司和RCA公司于1983年首先研制的,当时容量仅500V/20A,且存在一些技术问题。

目前,其研制水平已达4500V/1000A。

开关频率:GTO的延迟时间一般为1~2us;下降时间一般小于2us。

GTR的开关时间一般在几微秒以内,比晶闸管短很多,也短于GTO。

MOSFET的开关时间一般在10--100ns之间。

IGBT的开关时间要低于电力MOSFET。

驱动方式和驱动功率:GTO:电流驱动型,驱动功率大。

城市轨道交通车辆电气控制项目二 城轨车辆主传动系统【拓展任务】

城市轨道交通车辆电气控制项目二 城轨车辆主传动系统【拓展任务】

②动态特性:
描述GTR开关过程的瞬态性能,又称开关特性。
图2-72 开关过程中ib和ic的波形
GTR在导通和关断状 态下损耗都很小。
在关断和导通的转换 过程中,电流和电压都较 大,随意开关过程中损耗 也较大。
当开关频率较高时, 开关损耗是总损耗的主要 部分。
(2)GTR的极限参数
①最高工作电压 ②集电极最大允许电流IcM ③集电极最大耗散功率PcM ④最高工作结温TJM
电力牵引控制
定义:在轨道交通车辆中,用电动机驱动实现车辆牵引的传动控制方式(电传 动系统)。
作用:它是以牵引电机作为控制对象,通过控制系统对电动机的速度和牵引力 进行调节,满足车辆牵引和制动特性的要求。
类型:直流传动系统:采用直流(脉流)牵引电动机。 交流传动系统:采用交流(同步、异步)牵引电动机。
项目导入:
项目内容:
主要介绍城轨交通车辆各种牵引传动系统组成及控制原理。全 面介绍了主传动设备——直流牵引电动机、三相异步牵引电机和直 线牵引电机的结构、工作原理及其特性。简要介绍了单轨牵引传动 系统的组成特点及应用案例。
详细分析了主传动系统牵引、制动、保护电路。
知识拓展:
介绍城轨交通车辆使用的主要电力电子器件的类型、工作原理 及应用场合,分析城轨车辆整流、斩波和逆变电路的工作原理。
在使GTR关断时,应向基极提供足够大的反向基极电流。
应有较强的抗干扰能力,并有一定的保护功能。
②基极驱动电路
图2-75 实用的GTR驱动电路
③集成化驱动
态。 给GTR的基极施加幅度足够大的脉冲驱动信号,它将工作
于导通和截止的开关工作状态。
2.GTR的特性与主要参数
(1)GTR的基本特性: ① 静态特性

电力电子电源技术及应用1.2 电力晶体管GTR

电力电子电源技术及应用1.2 电力晶体管GTR
一般情况下,IB3≈IB1或更大一些。 GTR的驱动电路已经基本模块化。模块化的驱动 电路一般具有电流波形优化、过流保护、电源电压 监测以及过热保护等功能。
驱动电路举例
D2 A
I
C D1
B
D3
IB
GTR
D4 E
贝克箝位电路
C
D1为箝位二极管,保证GTR始 终处于准饱和状态。
D1
D2
D2和D3用来调整GTR的基极电
4.动态参数
开关时间:GTR的开关时间通常在几毫秒 之内。 电压上升率du/dt:为了抑止过高的du/dt 对GTR的危害,一般在集射极间并联一个 (RCD)缓冲网络。 开关损耗:GTR的开关损耗由开关过程中 集电极电流与电压的乘积决定。它的大小 与负载性质有关。
5.二次击穿与安全工作区
二次击穿特性:集射极间最高工作电压BUCEO,又 称为一次击穿电压值,发生一次击穿时不一定引起 晶体管特性变坏。所谓二次击穿是指器件发生一次 击穿后,集电极电流继续增加,在某电压电流点产 生向低阻抗区高速移动的负阻现象。二次击穿用符 号SB表示。二次击穿时间在纳秒至微秒数量级之内, 即使在这样短的时间内,它也能使器件内出现明显 的电流集中和过热点。
6.驱动电路举例
iB
3
2 IB1
1 IB2
-1
2us
-2 -3
5us t(us)
IB3
比较理想的基极驱动电流波形
IB1为过驱动电流,作用是保证GTR快速开通; IB2是GTR维持导通的驱动电流,应使GTR恰好维 持准饱和状态,以便缩短存储时间tS; 一般情况下,IB1≈3 IB2 IB3为快速抽走基区中载流子的电流,作用是缩短 关断时间,减小关断损耗。
3.极限参数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

功率晶体管(GTR)的特性
功率晶体管(GTR)具有控制方便、开关时间短、通态压降低、高频特性好、安全工作区宽等优点。

但存在二次击穿问题和耐压难以提高的缺点,阻碍它的进一步发展。

—、结构特性
1、结构原理
功率晶体管是双极型大功率器件,又称巨型晶体管或电力勗体管,简称GTR。

它从本质上讲仍是晶体管,因而工作原理与一般晶体管相同。

但是,由于它主要用在电力电子技术领域,电流容量大,耐压水平高,而且大多工作在开关状态,因此其结构与特性又有许多独特之处。

对GTR的要求主要是有足够的容量、适当的增益、较高的速度和较低的功耗等。

由于GTR电流大、功耗大,因此其工作状况出现了新特点、新问题。

比如存在基区大注入效应、基区扩展效应和发射极电流集边效应等,使得电流增益下降、特征频率减小,导致局部过热等,为了削弱这种影响,必须在结构上采取适当的措施。

目前常用的GTR器件有单管、达林顿管和模块三大系列。

三重扩散台面型NPN结构是单管GTR的典型结构,其结构和符号如图1所示。

这种结构的优点是结面积较大,电流分布均匀,易于提高耐压和耗散热量;缺点是电流增益较低,一般约为10~20g。

图1、功率晶体管结构及符号
图2、达林顿GTR结构
(a)NPN-NPN型、(b)PNP-NPNxing
达林顿结构是提高电流增益的一种有效方式。

达林顿GTR由两个或多个晶体管复合而成,可以是PNP或NPN型,如图2所示,其中V1为驱动管,可饱和,而V2为输出管,不会饱和。

达林顿GTR的电流增益β大大提高,但饱和压降VCES也较高且关断速度较慢。

不难推得
IC=ΒIB1.VCES= VCES1+VCES2(其中β≈β1β2)
目前作为大功率开关应用最多的是GTR模块。

它是将单个或多个达林顿结构GTR及其辅助元件如稳定电阻、加速二极管及续流二极管等,做在一起构成模块,如图3所示。

为便于改善器件的开关过程或并联使用,有些模块的中间基极有引线引出。

GTR模块结构紧凑、功能强,因而性能价格比大大提高。

图3、GTR模块的等效电路
2、特性参数
1)输出特性与电流增益
GTR的共射极输出特性如图4所示。

可分为四个区,即:阻断区、线性区、准饱和区及深饱和区。

用作开关时,应尽量避免工作于线性区,否则功耗很大。

进入深饱和区,虽功耗小,但关断时间长且安全工作区变窄.因此一般工作于准饱和区。

饱和压降VCES是一重要参数,它越小,GTR的功耗越小。

VCES随IC和温度的增加而增大。

图4、共射极电路输出特性
GTR的共射极电流增益β随集电极电流IC和结温Ti变化,如图5所示。

可见,大电流时沒下降,限制了 GTR的电流容量。

图5、β~IC关系曲线
2)开关特性
开关过程可分四个阶段:开通过程、导通状态、关断过程、阻断状态。

GTR开关过程的电流波形如图6所示。

其中,开通时间ton包括延迟时间td和上升时间tc,关断时间toff 包括存储时间ts和下降时间ti。

一般开关时间越短,工作频率越高。

为缩短开通时间,可选
结电容小的管子或提高驱动电流的幅值和陡度。

为缩短关断时间,可选β小的管子,防止深饱和,增加反偏电流等。

图6、GTR开关过程的电流波形
电压上升率dv/dt和电流上升率di/dt会影响开关过程。

为防止过高的dv/dt或di/dt对GTR造成危害,一般应加接缓冲电路。

3)二次击穿与安全工作区
二次击穿是集-射电压突然变低而电流激增的现象。

GTR的二次击穿特性如图7所示,包括发射结正偏、开路和反偏三种情况。

其中正偏二次击穿对GTR的威胁最大。

图7、GTR的二次击穿特性
安全工作区SOA是指GTR能够安全运行的电流、电压、功耗的极限范围,分为正偏安全工作区和反偏安全工作区,如图8所示。

其中正偏安全工作区受最大集电极电流ICM、最大耐压BVCEO、最大允许功耗PCM和二次击穿触发功率PS/B的限制。

DC为直流情况,虚线为脉冲情况,反向偏置安全工作区受最大集电极电流、集-射维持电压和二次击穿功率的限制。

来自海洋兴业仪器。

图8、正偏安全工作区
4)其他特性参数
主要有集电极电压最大值、发射极电压最大值、集电极电流最大值ICM、基极电流最大值IBM、最大功耗PCM、最高结温TIM等。

由干各参数均受温度影响,因此应采取有效散热措施,确保GTR结温不超过规定值。

(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档