功率晶体管(GTR)的特性电子教案
电力电子实验指导书功率场效应晶体管(MOSFET)特性与驱动电路研究

实验三功率场效应晶体管(MOSFET)特性与驱动电路研究一.实验目的:1.熟悉MOSFET主要参数的测量方法2.掌握MOSEET对驱动电路的要求3.掌握一个实用驱动电路的工作原理与调试方法二.实验内容1.MOSFET主要参数:开启阀值电压V GS(th),跨导g FS,导通电阻R ds输出特性I D=f(Vsd)等的测试2.驱动电路的输入,输出延时时间测试.3.电阻与电阻、电感性质载时,MOSFET开关特性测试4.有与没有反偏压时的开关过程比较5.栅-源漏电流测试三.实验设备和仪器1.MCL-07电力电子实验箱中的MOSFET与PWM波形发生器部分2.双踪示波器(自配)3.毫安表4.电流表5.电压表4、实验线路见图2—2五.实验方法1.MOSFET主要参数测试(1)开启阀值电压V GS(th)测试开启阀值电压简称开启电压,是指器件流过一定量的漏极电流时(通常取漏极电流I D=1mA)的最小栅源电压。
在主回路的“1”端与MOS 管的“25”端之间串入毫安表,测量漏极电流I D ,将主回路的“3”与“4”端分别与MOS 管的“24”与“23”相连,再在“24”与“23”端间接入电压表, 测量MOS 管的栅源电压Vgs ,并将主回路电位器RP 左旋到底,使Vgs=0。
将电位器RP 逐渐向右旋转,边旋转边监视毫安表的读数,当漏极电流I D =1mA 时的栅源电压值即为开启阀值电压V GS (th )。
读取6—7组I D 、Vgs ,其中I D =1mA 必测,填入表2—6。
(2)跨导g FS 测试双极型晶体管(GTR )通常用h FE (β)表示其增益,功率MOSFET 器件以跨导g FS表示其增益。
跨导的定义为漏极电流的小变化与相应的栅源电压小变化量之比,即g FS =△I D /△V GS 。
典型的跨导额定值是在1/2额定漏极电流和V DS =15V 下测得,受条件限制,实验中只能测到1/5额定漏极电流值。
SCR、GTO、MOSFET、GTR、IGBT特性实验

SCR、GTO、MOSFET、GTR、IGBT特性
实验
一、实验目的
(1)掌握各种电力电子器件的工作特性。
(2)掌握各器件对触发信号的要求。
二、实验所需挂件及附件
(略)
三、实验线路及原理
将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R串联后接至直流电源的两端, 给定电压从零开始调节, 直至器件触发导通, 从而可测得在上述过程中器件的V/A特性。
实验线路的具体接线如下图所示:
图3-26 新器件特性实验原理图
四、实验内容
(1)晶闸管(SCR)特性实验。
(2)可关断晶闸管(GTO)特性实验。
(3)功率场效应管(MOSFET)特性实验。
(4)大功率晶体管(GTR)特性实验。
(5)绝缘双极性晶体管(IGBT)特性实验。
五、思考题
各种器件对触发脉冲要求的异同点?
七、实验方法
给定电压, 监视电压表、电流表的读数, 当电压表指示接近零(表示管子完全导通), 停止调节, 记录给定电压Ug调节过程中回路电流Id以及器件的管压降Uv。
(1) SCR测试
(2) GTO测试
(3) MOSFET测试
(4)GTR测试
(5)IGBT测试
八、实验结论
根据得到的数据, 绘出各器件的输出特性。
电子课件-《电力拖动控制线路与技能训练(第五版)》-A04-1153 课题2 (2)

一.电力晶体管GTR
GTR是一种高击穿电压、大容量的晶体管。它具有 自关断能力,并具有开关时间短、饱和压降低和安全 工作区宽等优点。
六单元GTR 模块
图形符号 二单元模块的等效电路
课题2 变频器中的常用电力半导体器件
(2)GTR模块的主要参数
1)开路阻断电压UCEO ,例如:2DI200D-100 2)集电极最大持续电流ICM ,例如:6DI15Z-120 (3)GTR的选择方法 1)开路阻断电压UCEO的选择 UCEO通常按电源 线电压峰值的2倍来选择。UCEO 2 2UL 2)集电极最大持续电流ICM的选择 ICM通常按输出 交流线电流峰值的2.25倍来选择。 ICM 2.25IN
课题2 变频器中的常用电力半导体器件
二.绝缘栅双极晶Байду номын сангаас管IGBT
IGBT是MOSFET和GTR相结合的产物,其主体部分 与GTR相同,也有集电极和发射极,但驱动部分却 和MOSFET相同,是绝缘栅结构。
六单元IGBT
图形符号
基本电路
课题2 变频器中的常用电力半导体器件
1.IGBT的特点 IGBT在外形上有模块型和芯片型两种,在通用变频 器中使用的IGBT一般是模块型。
单管模块 双管模块
六管模块
课题2 变频器中的常用电力半导体器件
2.IGBT的主要参数 1)集电极—发射极额定电压UCES。 2)栅极—发射极额定电压UGES。 3)额定集电极电流IC。
课题2 变频器中的常用电力半导体器件
三.智能电力模块器件IPM
IPM的主要特点如下: (1)内含设定了最佳的IGBT驱动条件的驱动电路。 (2)内含完善的保护功能及相应的报警输出信号。 (3)内含制动电路。 (4)散热效果良好。
2021年 9实验十七 SCR、GTO、MOSFET、GTR、IGBT特性实验V3.1版

实验十七 SCR、GTO、MOSFET、GTR、IGBT特性实验一、实验目的1掌握各种电力电子器件的工作特性。
2掌握各器件对触发信号的要求。
二、实验所需挂件及附件三、实验线路及原理将电力电子器件包括SCR、GTO、MOSFET、GTR、IGBT 五种和负载电阻R串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。
实验线路的具体接线如下列图所示:图3-26 新器件特性实验原理图四、实验内容1晶闸管〔SCR〕特性实验。
2可关断晶闸管〔GTO〕特性实验。
3功率场效应管〔MOSFET〕特性实验。
4大功率晶体管〔GTR〕特性实验。
5绝缘双极性晶体管〔IGBT〕特性实验。
五、预习要求阅读电力电子技术教材中有关电力电子器件的章节。
六、思考题各种器件对触发脉冲要求的异同点?七、实验方法1按图3-26接线,首先将晶闸管〔SCR〕接入主电路,在实验开始时,将DJK06上的给定电位器ROSFET〕,重复上述步骤,并记录数据。
4按下控制屏的“停止〞按钮,换成大功率晶体管〔GTR〕,重复上述步骤,并记录数据。
5按下控制屏的“停止〞按钮,换成绝缘双极性晶体管〔IGBT〕,重复上述步骤,并记录数据。
八、实验报告根据得到的数据,绘出各器件的输出特性。
九、考前须知1可参考实验六的考前须知 1。
2为保证功率器件在实验过程中防止功率击穿,应保证管子的功率损耗即功率器件的管压降与器件流过的电流乘积小于8W。
3为使GTR特性实验更典型,其电流控制在以下。
《电力电子技术》讲义第05章

项目三开关电源的组装与调试【学习目标】1.掌握开关电源主要器件(大功率晶体管GTR、功率场效应晶体管MOSFET)的工作原理和特性。
2.掌握DC/DC变换电路的基本概念和工作原理。
3.熟悉PC主机开关电源典型故障现象及检修方法。
4. 制作一个单端反激式开关电源。
实例开关电源电路开关电源是一种高效率、高可靠性、小型化、轻型化的稳压电源,是电子设备的主流电源。
广泛应用于生活、生产、军事等各个领域。
各种计算机设备、彩色电视机等家用电器等都大量采用了开关电源。
图3-1是常见的PC主机开关电源。
图3-1 PC主机开关电源PC主机开关电源的基本作用就是将交流电网的电能转换为适合各个配件使用的低压直流电供给整机使用。
一般有四路输出,分别是+5V、-5V、+12V、-12V。
开关电源的原理框图如图3-2所示,输入交流电,经过滤波,再由整流桥整流后输出高压直流电,然后由功率开关电路将直流电压变成连续的脉冲,再经变压器隔离降压及输出滤波后变为低压的直流电。
开关电路的导通与截止由PWM控制电路发出的驱动信号控制。
PWM驱动电路在提供开关管驱动信号的同时,还要实现输出电压稳定的调节、对电源负载提供保护。
为此设有检测放大电路、过电流保护及过电压保护等环节。
通过自动调节开关管导通时间的比例(占空比)来实现。
图3-2 开关电源的原理框图。
由高压直流到低压多路直流的电路称DC/DC变换,是开关电源的核心技术。
图3-3为PC主机开关电源电路原理图。
图3-3 P C 主机开关电源电路原理图课题一全控型电力电子器件在开关电源中使用的开关器件有许多如:场效应晶体管MOSFET、绝缘栅双极型晶体管IGBT,在小功率开关电源上也使用大功率晶体管GTR,本实例中使用的是GTR,这些都属于全控型电力电子器件,本项目中介绍GTR和MOSFET两种器件,IGBT在项目四中介绍。
一、大功率晶体管GTR1. 大功率晶体管的结构和工作原理(1) 基本结构通常把集电极最大允许耗散功率在1W以上,或最大集电极电流在1A以上的三极管称为大功率晶体管,其结构和工作原理都和小功率晶体管非常相似。
功率晶体管(GTR)的特性

功率晶体管〔GTR〕的特性功率晶体管〔GTR〕具有控制方便、开关时间短、通态压降低、高频特性好、平安工作区宽等优点。
但存在二次击穿问题和耐压难以提高的缺点,阻碍它的进一步开展。
—、结构特性1、结构原理功率晶体管是双极型大功率器件,又称巨型晶体管或电力勗体管,简称GTR。
它从本质上讲仍是晶体管,因而工作原理与一般晶体管相同。
但是,由于它主要用在电力电子技术领域,电流容量大,耐压水平高,而且大多工作在开关状态,因此其结构与特性又有许多独特之处。
对GTR的要求主要是有足够的容量、适当的增益、较高的速度和较低的功耗等。
由于GTR电流大、功耗大,因此其工作状况出现了新特点、新问题。
比方存在基区大注入效应、基区扩展效应和发射极电流集边效应等,使得电流增益下降、特征频率减小,导致局部过热等,为了削弱这种影响,必须在结构上采取适当的措施。
目前常用的GTR器件有单管、达林顿管和模块三大系列。
三重扩散台面型NPN结构是单管GTR的典型结构,其结构和符号如图1所示。
这种结构的优点是结面积较大,电流分布均匀,易于提高耐压和耗散热量;缺点是电流增益较低,一般约为10~20g。
图1、功率晶体管结构及符号图2、达林顿GTR结构(a)NPN-NPN型、(b)PNP-NPNxing达林顿结构是提高电流增益的一种有效方式。
达林顿GTR由两个或多个晶体管复合而成,可以是PNP或NPN型,如图2所示,其中V1为驱动管,可饱和,而V2为输出管,不会饱和。
达林顿GTR的电流增益β大大提高,但饱和压降VCES也较高且关断速度较慢。
不难推得IC=ΒIB1.VCES= VCES1+VCES2〔其中β≈β1β2〕目前作为大功率开关应用最多的是GTR模块。
它是将单个或多个达林顿结构GTR及其辅助元件如稳定电阻、加速二极管及续流二极管等,做在一起构成模块,如图3所示。
为便于改善器件的开关过程或并联使用,有些模块的中间基极有引线引出。
GTR模块结构紧凑、功能强,因而性能价格比大大提高。
电力晶体管(GTR)特性研究

电力晶体管(GTR)特性研究一.实验目的1.熟悉(GTR)的开关特性与二极管的反向恢复特性及其测试方法2.掌握GTR缓冲电路的工作原理与参数设计要求二.实验内容1.不同负载时的GTR开关特性测试。
2.不同基极电流时的开关特性测试。
3.有与没有基极反压时的开关过程比较。
4.并联冲电路性能测试。
5.串联冲电路性能测试。
6.二极管的反向恢复特性测试。
三.实验线路见图2—1四.实验设备和仪器1.NMCL-07电力电子实验箱中的GTR与PWM波形发生器部分2.双踪示波器3.万用表4.教学实验台主控制屏五.实验方法1.不同负载时GTR开关特性测试(1)电阻负载时的开关特性测试GTR单元的开关S1合向“ ”,将GTR单元的输入“1”与“6”分别与PWM波形发生器的输出“1”与“2”相连,再分别连接GTR单元的“3”与“5”,“9”与“7”,“15”、“16”与“19”,“29”与“21”,以及GTR单元的“8”、“11”、“18”与主回路的“4”,GTR单元的“22”与主回路的“1”,即按照以下表格的说明连线。
用示波器观察,基极驱动信号i b(“19”与“18”之间)及集电极电流i c(“21”与“18”之间)波形,记录开通时间t on,存贮时间t s、下降时间t f。
t on= us,t s= us,t f= us(2)电阻、电感性负载时的开关特性测试除了将主回器部分由电阻负载改为电阻、电感性负载以外(即将“1”与“22”断开而将“2”与“22”相连),其余接线与测试方法同上。
t on= us,t s= us,t f= us2.不同基极电流时的开关特性测试(1)基极电流较小时的开关过程断开GTR单元“16”与“19”的连接,将基极回路的“15”与“19”相连,主回路的“1”与GTR 单元的“22”相连,其余接线同上,测量并记录基极驱动信号ib(“19”与“18”之间)及集电极电流ic(“21”与“18”之间)波形,记录开通时间t on,存贮时间t s、下降时间t f。
GTR (2)

理想的基极 驱动电流波形
3、GTR驱动电路实例
1)抗饱和电路
3、具有自保护功能的基极驱动电路
(1)信号隔离电路 :V1、B (2)工作状态检测与信号综合电路 :VD、LM311 (3)输出级: V4 、 V5 、 V6 、VD7
4.GTR的双电源驱动电路
图1.9.8 双电源驱动电路
UAA4002组成的GTR驱动电路
四、 GTR驱动电路
1、驱动电路的基本任务:
• 将信息电子电路传来的信号按控制目标的要求,转换 为加在电力电子器件控制端和公共端之间、可以使其开通 或关断的信号。 对半控型器件只需提供开通控制信号。 对全控型器件则既要提供开通控制信号,又要提供关
断控制信号。
在高压变换电路中,需要在控制系统和主电路之间进 行电气隔离,这可以通过脉冲变压器或光耦来实现。
电力电子器件分类
不控型器件
按开关控制性能分 半控型器件 全控型器件 单极型 功率MOSFET SIT(静电感应晶体管) GTR 按参与导电的载流子不同 双极型 混合型 GTO SITH(静电感应晶闸管) IGBT
MCT(MOS控制晶闸管)
一、电力晶体管及其工作原理
•
与普通的双极结型晶体管基本原理是一样的。 主要特性是耐压高、电流大、开关特性好。 通常采用至少由两个晶体管按达林顿接法组成的单元结构。 采用集成电路工艺将许多这种单元并联而成 。
GTR的主要参数 GTR的主要参数有:电流放大倍数b、直流电流增益hFE、集射极间漏电流Iceo、集射极 间饱和压降Uces、开通时间ton和关断时间toff。 此外还有: 1\最高工作电压 :GTR上电压超过规定值时会发生击穿。击穿电压不仅和晶体管本身特性 有关,还与外电路接法有关: BUcbo> BUcex> BUces> BUcer> Buceo 实际使用时,为确保安全,最高工作电压要比BUceo低得多。 2\集电极最大允许电流IcM :通常规定为hFE下降到规定值的1/2~1/3时所对应的Ic。实际使 用时要留有裕量,只能用到IcM的一半或稍多一点。 3\集电极最大耗散功率PcM :最高工作温度下允许的耗散功率GTR的二次击穿现象与安全 工作区。 1)一次击穿 集电极电压升高至击穿电压时,Ic迅速增大,出现雪崩击穿。只要Ic不超过限度,GTR一 般不会损坏,工作特性也不变。 2)二次击穿 一次击穿发生时Ic增大到某个临界点时会突然急剧上升,并伴随电压的陡然下降。常常立 即导致器件的永久损坏,或者工作特性明显衰变。 3)安全工作区(Safe Operating Area——SOA) 最高电压UceM、集电极最大电流IcM、最大耗散功率PcM、二次击穿临界线限定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功率晶体管(GTR)的特性
功率晶体管(GTR)具有控制方便、开关时间短、通态压降低、高频特性好、安全工作区宽等优点。
但存在二次击穿问题和耐压难以提高的缺点,阻碍它的进一步发展。
—、结构特性
1、结构原理
功率晶体管是双极型大功率器件,又称巨型晶体管或电力勗体管,简称GTR。
它从本质上讲仍是晶体管,因而工作原理与一般晶体管相同。
但是,由于它主要用在电力电子技术领域,电流容量大,耐压水平高,而且大多工作在开关状态,因此其结构与特性又有许多独特之处。
对GTR的要求主要是有足够的容量、适当的增益、较高的速度和较低的功耗等。
由于GTR电流大、功耗大,因此其工作状况出现了新特点、新问题。
比如存在基区大注入效应、基区扩展效应和发射极电流集边效应等,使得电流增益下降、特征频率减小,导致局部过热等,为了削弱这种影响,必须在结构上采取适当的措施。
目前常用的GTR器件有单管、达林顿管和模块三大系列。
三重扩散台面型NPN结构是单管GTR的典型结构,其结构和符号如图1所示。
这种结构的优点是结面积较大,电流分布均匀,易于提高耐压和耗散热量;缺点是电流增益较低,一般约为10~20g。
图1、功率晶体管结构及符号
图2、达林顿GTR结构
(a)NPN-NPN型、(b)PNP-NPNxing
达林顿结构是提高电流增益的一种有效方式。
达林顿GTR由两个或多个晶体管复合而成,可以是PNP或NPN型,如图2所示,其中V1为驱动管,可饱和,而V2为输出管,不会饱和。
达林顿GTR的电流增益β大大提高,但饱和压降VCES也较高且关断速度较慢。
不难推得
IC=ΒIB1.VCES= VCES1+VCES2(其中β≈β1β2)
目前作为大功率开关应用最多的是GTR模块。
它是将单个或多个达林顿结构GTR及其辅助元件如稳定电阻、加速二极管及续流二极管等,做在一起构成模块,如图3所示。
为便于改善器件的开关过程或并联使用,有些模块的中间基极有引线引出。
GTR模块结构紧凑、功能强,因而性能价格比大大提高。
图3、GTR模块的等效电路
2、特性参数
1)输出特性与电流增益
GTR的共射极输出特性如图4所示。
可分为四个区,即:阻断区、线性区、准饱和区及深饱和区。
用作开关时,应尽量避免工作于线性区,否则功耗很大。
进入深饱和区,虽功耗小,但关断时间长且安全工作区变窄.因此一般工作于准饱和区。
饱和压降VCES是一重要参数,它越小,GTR的功耗越小。
VCES随IC和温度的增加而增大。
图4、共射极电路输出特性
GTR的共射极电流增益β随集电极电流IC和结温Ti变化,如图5所示。
可见,大电流时沒下降,限制了 GTR的电流容量。
图5、β~IC关系曲线
2)开关特性
开关过程可分四个阶段:开通过程、导通状态、关断过程、阻断状态。
GTR开关过程的电流波形如图6所示。
其中,开通时间ton包括延迟时间td和上升时间tc,关断时间toff 包括存储时间ts和下降时间ti。
一般开关时间越短,工作频率越高。
为缩短开通时间,可选
结电容小的管子或提高驱动电流的幅值和陡度。
为缩短关断时间,可选β小的管子,防止深饱和,增加反偏电流等。
图6、GTR开关过程的电流波形
电压上升率dv/dt和电流上升率di/dt会影响开关过程。
为防止过高的dv/dt或di/dt对GTR造成危害,一般应加接缓冲电路。
3)二次击穿与安全工作区
二次击穿是集-射电压突然变低而电流激增的现象。
GTR的二次击穿特性如图7所示,包括发射结正偏、开路和反偏三种情况。
其中正偏二次击穿对GTR的威胁最大。
图7、GTR的二次击穿特性
安全工作区SOA是指GTR能够安全运行的电流、电压、功耗的极限范围,分为正偏安全工作区和反偏安全工作区,如图8所示。
其中正偏安全工作区受最大集电极电流ICM、最大耐压BVCEO、最大允许功耗PCM和二次击穿触发功率PS/B的限制。
DC为直流情况,虚线为脉冲情况,反向偏置安全工作区受最大集电极电流、集-射维持电压和二次击穿功率的限制。
来自海洋兴业仪器。
图8、正偏安全工作区
4)其他特性参数
主要有集电极电压最大值、发射极电压最大值、集电极电流最大值ICM、基极电流最大值IBM、最大功耗PCM、最高结温TIM等。
由干各参数均受温度影响,因此应采取有效散热措施,确保GTR结温不超过规定值。