第4章__双极型晶体管工作原理
达林顿晶体管工作原理

达林顿晶体管工作原理
达林顿晶体管是一种利用双极性晶体管的组合电路,是由两个晶体管级联而成的。
它的主要特点是具有高电流放大倍数和高输入阻抗,使其在放大电流信号方面非常适用。
达林顿晶体管的工作原理如下:
1. 由NPN型和PNP型晶体管组成。
NPN晶体管的基极连接到PNP晶体管的发射极,而PNP晶体管的基极连接到电源。
2. 当输入信号流入达林顿晶体管的基极时,起初只有初始信号的一小部分被第一个晶体管(NPN型)放大。
放大后的信号流经第二个晶体管(PNP型),再次被放大。
通过这样的级联放大过程,达林顿晶体管能够实现很高的电流放大倍数。
3. 达林顿晶体管的输出信号通过第二个晶体管的发射极获得,该发射极连接到负载电阻上。
4. 输入信号对达林顿晶体管的作用是改变基极电压,从而控制晶体管之间的电流流动。
当输入信号为正值时,它将获得较高的电流放大倍数,从而形成放大电流信号。
总之,达林顿晶体管是一种利用级联晶体管的组合电路,通过两个晶体管的共同作用,实现对输入信号的放大。
双向三极管工作原理及用途

双向三极管工作原理及用途
双向三极管的工作原理和用途如下:
双向三极管,全称应为半导体双向三极管,也称双极型晶体管、晶体三极管,是一种电流控制电流的半导体器件。
其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。
工作原理:三极管是由两个PN结构成的,两个PN结把整块半导体分成三个部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
正常正偏逻辑是P流向N,换言之反向偏置就是N到P。
根据这个P流向N,能根据原理图区分PNP和NPN型。
三极管的工作状态有四个,放大、截止、饱和、倒置。
当基极补充一个很小的IB,就可以在集电极上得到一个较大的IC,这就是所谓电流放大作用,IC与IB是维持一定的比例关系,β1称为直流放大倍数。
三极管有3种工作状态,分别是截止状态、放大状态、饱和状态。
具体用途:三极管是电子电路的核心元件,具有电流放大作用,是电子电路的核心元件。
可广泛用于开关逻辑电路、大电流驱动、控制电路、低噪声放大器、漏电报警电路、稳压电路以及运算放大电路等。
半导体器件物理(第四章 双极型晶体管及其特性)

4.1 晶体管结构与工作原理 三极电流关系
I E I B IC
对于NPN晶体管,电子电流是主要成分。电子从发射极出发,通 过发射区到达发射结,由发射结注入到基区,再由基区输运到集电结 边界,然后又集电结收集到集电区并到达集电极,最终称为集电极电 流。这就是晶体管内部载流子的传输过程。 电子电流在传输过程中有两次损失:一是在发射区,与从基区注 入过来的空穴复合损失;而是在基区体内和空穴的复合损失。因此
* 0
可见,提高电流放大系数的途径是减小基区平均掺杂浓度、减 薄基区宽度Wb以提高RsB,提高发射区平均掺杂浓度以减小RsE。另外, 提高基区杂质浓度梯度,加快载流子传输,减少复合;提高基区载 流子的寿命和迁移率,以增大载流子的扩散长度,都可以提高电流 放大系数。
4.2 晶体管的直流特性 4.2.1 晶体管的伏安特性曲线 1.共基极晶体管特性曲线
' ine 1 jCTe 1 ine re 1 jCTe 1 jreCTe
re in e
iCTe
' in e
交流发射效率
1 0 1 jre CTe
CTe
re CTe e
发射极延迟时间
4.3 晶体管的频率特性
2.发射结扩散电容充放电效应对电流放大系数的影响
虽然共基极接法的晶体管不能放大电流,但是由于集电极可以 接入阻抗较大的负载,所以仍然能够进行电压放大和功率放大。
4.1 晶体管结构与工作原理
(2)共发射极直流电流放大系数
IC 0 IB
(3)α0和β0的关系
C
IC
N
IB
B
I IC I I 0 C C E 0 I B I E IC 1 IC I E 1 0
电磁炉igbt工作原理

电磁炉igbt工作原理
电磁炉使用了一种称为IGBT(绝缘栅双极性晶体管)的功率
半导体器件,其工作原理如下:
1. 电源输入:当电磁炉接通电源时,交流电会先经过整流器转换为直流电。
2. 电流变换:直流电经过逆变器,被转换为高频交流电。
逆变器的核心部件就是IGBT。
3. IGBT工作原理:IGBT由三个部分组成——NPN型晶体管(一个底面接收器和一个集电极)、PNP型晶体管(基极和
发射极)以及一个嵌入在P型层中的绝缘栅。
当控制信号施
加在绝缘栅上时,可以控制NPN型晶体管和PNP型晶体管之
间的电流传输。
4. 控制信号:控制信号根据设定的加热功率和温度需求,通过控制电路添加或减少,并传递给IGBT。
5. 高频电流输出:通过控制和调整IGBT的导通和关断时间,
高频电流被传送到线圈中。
线圈内的磁场产生了交变的磁通量。
6. 感应加热效应:当放置在电磁炉上的铁质或者感应层底部的铁质锅具进入磁场后,感应层内的铁质材料会形成涡流(感应电流)。
涡流会在锅底产生热量,进而加热食物。
7. 加热控制:电磁炉内的传感器会感知锅具的温度变化,通过
反馈传给控制电路。
控制电路会根据反馈信号和设定的加热功率,调整IGBT的控制信号来控制加热温度。
绝缘栅双极型晶体管(IGBT)的工作原理、基本特性、主要参数

绝缘栅双极型晶体管(IGBT)的工作原理、基本特性、主要参数绝缘栅双极晶体管(Insulated-Gate Bipolar Transistor,IGBT)是一种复合型电力电子器件。
它结合了MOSFET和电力晶体管GTR的特点,既具有输入阻抗高、速度快、热稳定性好和驱动电路简单的优点,又具有输入通态电压低、耐压高和承受电流大的优点,因而具有良好的特性。
自1986年IGBT开始投入市场以来,就迅速扩展了其应用领域,目前已取代了原来GTR和一部分MOSFET的市场,成为中、小功率电力电子设备的主导器件,并在继续努力提高电压和电流容量,以期再取代GTO的地位。
IGBT的结构与工作原理IGBT是三端器件。
具有栅极G、集电极C和发射极E。
图1(a)给出了一种由N 沟道MOSFET与双极型晶体管组合而成的IGBT的基本结构。
与MOSFET对照可以看出,IGBT比MOSFET多一层P+注入区,因而形成了一个大面积的PN结J1。
这样使得IGBT导通时由P+注入区向N基区发射载流子,从而对漂移区电导率进行调制,使得IGBT具有很强的通流能力。
图1 IGBT的结构、等效电路和电气符号从图1可以看出,这是用双极型晶体管与MOSFET组成的达林顿结构,相当于一个由MOSFET驱动的PNP晶体管,RN为晶体管基区内的调制电阻。
因此,IGBT 的驱动原理与MOSFET基本相同,它是一种场控器件,其开通和关断是由栅射电压uGE决定的,当uGE为正且大于开启电压UGE(th)时,MOSFET内形成沟道,并为晶体管提供基极电流,进而使IGBT导通。
由于前面提到的电导调制效应,使得电阻RN减小,这样高耐压的IGBT也具有很小的通态压降。
当栅极与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,使得IGBT关断。
上述PNP晶体管与N沟道MOSFET组合而成的IGBT称为N沟道IGBT,记为N-IGBT,其电气图形符号如图1(c)所示。
npn型bjt工作原理

npn型bjt工作原理npn型BJT(Bipolar Junction Transistor)是一种常用的三层结构的双极性晶体管。
它由两个pn结构组成,其中一个是基结(base-emitter junction),另一个是集电结(collector-base junction)。
npn型BJT主要由n型硅片和掺杂的p型区域构成。
在这篇文章中,我们将探讨npn型BJT的工作原理以及其在电子设备中的应用。
npn型BJT的工作原理可以通过三个不同的区域来解释:发射区(emitter region)、基区(base region)和集电区(collector region)。
发射区和集电区都是n型的,而基区是p型的。
发射极通过发射区与基极相连接,而集电极通过集电区与基极相连接。
当一个正向电压被施加在发射极与基极之间时,电流会从发射区的n 型区域流入到基区的p型区域,这被称为发射结正向偏置。
同样,当一个反向电压被施加在集电极与基极之间时,电流会从集电区的n型区域流入到基区的p型区域,这被称为集电结反向偏置。
在正常工作状态下,npn型BJT主要依靠发射结的正向偏置来控制电流。
当发射极-基极电压为正时,发射区的n型区域中的电子会被推入基区的p型区域。
这些电子会与在基区的p型区域中的空穴重新结合,从而形成一个电流通道。
这个电流通道使得集电区的n型区域中的电子可以流向集电极。
因此,当一个小的电流流过发射极-基极电路时,一个较大的电流会从集电极-基极电路中流过。
npn型BJT的工作原理可以用放大器的概念来解释。
当一个小的输入信号电流流过发射极-基极电路时,通过放大作用,一个较大的输出信号电流会从集电极-基极电路中流过。
这种放大作用使得npn 型BJT成为电子设备中的重要元件。
npn型BJT常被用作开关、放大器和电压稳定器等电路中的关键部分。
在开关电路中,npn型BJT可以控制电流的流通。
当一个小的电流流过发射极-基极电路时,由于集电极-基极电路中的电流放大作用,一个较大的电流会从集电极-基极电路中流过。
绝缘栅双极晶体管的工作原理

绝缘栅双极晶体管的工作原理
绝缘栅双极晶体管是一种三端半导体器件,也被称为IGBT。
IGBT 包含一个P型衬底,两个N型外延层和一个PNPN结构。
其中,N+型区
域和P+型区域用于接触电极,形成源极(S)、栅极(G)和漏极(D)。
IGBT的工作原理是在栅极与源极之间加上一个正向电压,即形成了一个正向偏压,在PN结和N导电层之间形成一个细窄的储存电荷区域。
当从源极施加正向电压时,由于P层和N+层之间的势垒,会产生
大量的少数载流子,这些载流子被P层电场加速后,穿过N层,耗散
在收集区域。
在使G极与S极之间加正向电压的同时,在栅极上接上
一个信号电压,使G极形成一个电场,这个电场就能控制S极和D极
之间通道的导电状态,因此,IGBT可以实现大电流控制的功能。
当栅极电压较低时,极个电场也较弱,S与D之间的场效应导电
是较弱的。
当栅极电压增加到一定程度时,P衬底和N+区之间的PN结
区域就会放电,电子被注入N+区域,从而形成一个N+掺杂的导电通道,从而使S和D之间的电阻变得非常小,此时IGBT处于导通状态,可以
实现大电流放电。
电子电工学——模拟电子技术 第四章 双极结型三极管及发达电路基础

4.1 双极结型三极管BJT
(Bipolar Junction Transistor)
又称半导体三极管、晶 体管,或简称为三极管。
分类: 按材料分:硅管、锗管 按结构分:NPN型、PNP型 按频率分:高频管、低频管 按功率分:小功率、大功率
半导体三极管的型号
国家标准对半导体三极管的命名如下:
3 D G 110 B
c
e V VCE
VCC
V
VBE
也是一组特性曲线
实验电路
1.共射极电路的特性曲线
输入特性 :iB=f(vBE)|vCE=const
(1)VCE=0V时,发射结和集电结均正偏,输入特性相当于两个PN结并联
(2)VCE=1V时,发射结正偏,集电结反偏,收集电子能力增强,发射极发
射到基区的电子大部分被集电极收集,从而使得同样的VBE时iB减小。
ICEO (1 )ICBO 值愈大,则该管的 ICEO 也愈大。
3.极限参数
(1) 集电极最大允许电流 ICM
过流区
当IC过大时,三极管的值要 iC
减小。在IC=ICM时,值下降 ICM
到额定值的三分之二。
PCM = iCvCE
(2) 集电极最大允许耗散功率 PCM
将 iC 与 vCE 乘 积 等 于 规 定 的 PCM 值各点连接起来,可得 一条双曲线。
利用IE的变化去控制IC,而表征三极管电流控制作用的参 数就是电流放大系数 。
共射极组态连接方式
IE UBE
+ Uo
-
49 IC 0.98(mA)
IB
20( A)
共射极接法应用我们得到的结论:
1、从三极管的输入电流控制输出电流这一点看来,这两 种电路的基本区别是共射极电路以基极电流作为输入控制 电流。 2、共基极电路是以发射极电流作为输入控制电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管内载流子的运动情况可用下图说明。
①.发射区向基区注入电子 IEP << IEN , 发射极电流IE≈IEN。 ②.电子在基区中边扩散边复合 形成基区复合电流 IBN , RB 为基极电流IB的主要部分 ③. 电子被集电区收集 形成集电区收集电流ICN , UBB 为集电极电流IC的主要部分。
c
IC
3. 截止区
条件:e结和c结均处于反偏。 特点:三个电极上的电流均为反向电流,相当极间开路。 iC /m A 当iB=0时,iC= ICEO =(1+ ) 4
ICBO 。这时e结仍有正向受控
作用,但对小功率管,ICEO很 小,可以认为iB≤0时,管子截
3
30 A
放
2
20 A 10 A 0 A 10 15
b
发射区
e
N+
b
e
基极
NPN管
SiO2 绝缘层
b
P
c b
发射结 N 型外延 集电区 衬底 N + 衬底
集电结 基区
e PNP管
c
晶体管类型
双极型晶体管
{
锗管
{NPN管 (3Bxx) {NPN管 (3Dxx)
PNP管 (3Cxx)
PNP管 (3Axx)
硅管
例如:3DG6 即为硅NPN型高频小功率管。
UCE ≥1
90
60 30 0 0.5 0.7 0.9 UCE > 0
止,iB为反向电流。若反向电 压超过某一值时,e结也会发
u BE/V
综上所述,晶体管是一种非线性导电器件,有三个工 作区,对应三种不同的工作状态:
⑴.放大状态(iB>0,uCE≥uBE,即e结正偏,c 结反偏)
特点:①.iC受iB控制,即IC= IB或△IC= β△ IB
三. 晶体管的放大作用
c
IC + △IC
I CN
△ ICN
△ IBN
RC
△U=RC△IC
_
ui
b +
IB+ △ IB
I
BN
15V
RB IE
△IEN
U CC
I
UBB
e
IE + △IE
4.4.2
晶体管伏安特性曲线及参数
晶体管有三个电极,通常用其中两个分别作输入、 输出端,第三个作公共端,这样可以构成输入和输出两
I CN I C I CBO I C I EN IE IE
显然, <1,一般约为0.97~0.99。 根据上式,不难求得
RB
c
IC
ICN
N b
IB IBN IEN P
RC
15V
N+
U CC
I C I E I CBO I E I B (1 ) I E I CBO (1 ) I E I E IC I B
②. 三个电极间相当开路,各极电位主要由外电 路决定。
晶体管的三种工作状态,在实际中各有应用:
在构成放大器时,晶体管应工作在放大状态;
用作电子开关时,则要求工作在饱和、截止状态。 即c极端和e极端之间等效为一受b极控制的 开关,如图所示。 当管子饱和时,相当开关闭合; 当管子截止时,相当开关打开。
e
O
c b
O
c
b
O
e
需要指出,使e结反偏而c 结正偏时,这种状态通常称 为反向放大(或倒臵)状态,在模拟电路中这种工作方式 很少采用。
晶体管的主要参数
一、 1.共射极直流电流放大系数 和交流电流放大系数β
2.共基极直流电流放大系数
和交流电流放大系数
I C I B
uCE 常数
I C I E
uB 常数
注意: 、β和 α 、 都是放大区参数。其数值可以从 输出特性曲线上求出。
β
数值
α
数值
应当指出,β值与测量条件有关。一般来说,在iC很
大或很小时,β值较小。只有在iC不大不小的中间值范围 内,β值才比较大,且基本不随iC而变化。因此,在查手 册时应注意β值的测试条件。尤其是大功率管更应强调这
4.4 双极性晶体管
双极型晶体管是由三层杂质半导体构成的器件。它有
三个电极,所以又称为半导体三极管、晶体三极管等,以 后我们统称为晶体管。常见的晶体管其外形如图示。
大功率达林顿晶体管
晶体管的结构及电路符号
发射结
集电结
c
e
发射极
P 基区 发射区 发射区
+ + N P N
P N
集电区
N P N
c
集电极
30 A 20 A 10 A
放 大 区
5 10
IC
2 1 0
量ΔIC。 为此,定义共发
射极交流电流放大系数:
}
IB
15
IB
=- I
0 A
CBO
I C I B uCE 常数 反映在特性曲线上,为两条不同IB曲线的间隔。
u CE /V
②
②. uCE变化对IC的影响很小。在特性曲线上表现为iB
4 3 2 1 0
iC/ m A u CE=u BE
临界饱和线
I B=
40
A
放 大 区
2 4
30 A 20 A 10 A 0 A
饱 和 区 ①. iB一定时, iC的数值比放大时小; ②. uCE一定而 iB增大时,iC基本不变。
u CE/ V
管子饱和时,c、e间的电压称为饱和压降,记作UCE(sat)。 其值很小,深饱和时约为0.3~0.5V。
个回路。实际中有共发射极、共集电极和共基极三种基 本接法,如图所示。 iC iE iE iC c e e c iB b iB
b
输入 回路 输出 回路
e
c
b
共发射极 共基极 共集电极 其中,共发射极接法更具代表性,所以我们主要讨 论共发射极伏安特性曲线。
晶体管共发射极特性曲线
晶体管特性曲线包括输入和输出两组特性曲线。这
RC
IC I B (1 ) I CBO I B I CEO I E I C I B (1 ) I B I CEO I B I E IC
式中
RB
b
IB
IBN
15V
UCC
UBB
e
IE
I CEO (1 ) I CBO 称为穿透电流
两组曲线可以在晶体管特性图示仪的屏幕上直接显示出 来,也可以用图示电路逐点测出。
一、
+
iC
mA
-
RC
共射输出特性曲线是以
iB为参变量时,iC与uCE间的 关系曲线,即
RB
mA
iB
+ +
U CC uCE
U BB
u BE
V
-
V
-
iC f (uCE ) iB 常数
实测的共射输出特性曲线如图下所示:
共发射极输出特性曲线
β
β 0
IC
二、极间反向电流 1. ICBO ICBO指发射极开路时,集电极-基极间的反向电 2. ICEO ICEO指基极开路时,集电极-发射极间的反向电
3. IEBO IEBO指集电极开路时,发射极-基极间的反向电流。
I CN I C I CBO I BN I B I CBO
I B I BN ICBO IC ICN ICBO
其含义是:基区每复合一个电子,则有 个电子扩散到集 IC c 电区去。 值一般在20~200之间。
确定了 值之后,可得
ICBO
ICN
N P IEN N+
iC f (uCE ) iB 常数
+
iC / m A
uCE = uBE
4
临界饱和线
40
iC
RB
mA
+
mA
-
RC
A
iB
+
U CC
饱 和 区
3 2 1 0
放
大 区
5
IB= 30 A
20 A 10 A
U BB
u BE
V
-
V
-
uCE
0 A
10 15
I B =-I CBO
截 止 区 体管的三种工作种状态,即放大、截止和饱和状态。
(3). 当uCE =0时,晶体管相当于两个并联的二极管, 所以b,e间加正向电压时,iB很大。对应的曲线明显左移。 (4)当uCE在0~1V之间时, 随着uCE的增加,曲线右移。
i B /A
UCE =0
特别在0< uCE ≤UCE(sat)的范围 内,即工作在饱和区时,移动
(5)当uBE<0时,晶体管截
ICN
b IB I EP e IE IEN
N
RC
ECB
IBN
P
15V
N+
UCC
• 根据电荷守衡有 ICN+IBN=IEN
④. 集电结少子漂移 集电结反偏,两边少子飘移形成反向饱和电流ICBO。 通过对管内载流子传输
c I CBO b IB IC
的讨论可以看出,在晶体管 中,窄的基区将发射结和集 电结紧密地联系在一起。从 而把正偏下发射结的正向电 流几呼全部地传输到反偏的 R B 集电结回路中去。这是晶体 管能实现放大功能的关键所 U BB 在。
大
1
止。反映在特性上,即为iB≤0
的曲线基本重合在水平轴上。
区
5
i B=-I
CBO
0
u C E /V
截止区
对大功率管,由于ICEO很大,此时,为确保管子截止, e结必须反偏。