二次函数与等腰三角形

合集下载

二次函数中的等腰三角形问题

二次函数中的等腰三角形问题

二次函数中的等腰三角形问题式;交点式:y=a (x -x 1)(x -x 2),通常要知道图像与x 轴的两个交点坐标x 1,x 2才能求出此解析式;对于y=ax 2+bx+c 而言,其顶点坐标为(-2ba ,244acb a ).对于y=a (x -h )2+k 而言其顶点坐标为(h ,k ),•由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点.考点2 等腰三角形的性质1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一性质”)。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7.等腰三角形是轴对称图形,(不是等边三角形的情况下)只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

8.等腰三角形中腰的平方等于高的平方加底的一半的平方9.等腰三角形的腰与它的高的关系直接的关系是:腰大于高。

间接的关系是:腰的平方等于高的平方加底的一半的平方。

考点3 相似三角形的性质1.相似三角形对应角相等,对应边成正比例。

2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

3.相似三角形周长的比等于相似比。

4.相似三角形面积的比等于相似比的平方。

5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方6.若a/b =b/c,即b²=ac,b叫做a,c的比例中项7.c/d=a/b 等同于ad=bc.8.不必是在同一平面内的三角形里(1)相似三角形对应角相等,对应边成比例. (2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.(3)相似三角形周长的比等于相似比三、例题精析【例题1】如图,抛物线y=-x2+x-4与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M。

专题06 二次函数专题:等腰直角三角形问题(学生版)

专题06 二次函数专题:等腰直角三角形问题(学生版)

专题06二次函数与等腰直角三角形问题二次函数与等腰直角三角形的相结合的综合问题,是中考数学压轴题中比较常见的一种,涉及到的知识点有:等腰直角三角形的性质、直角三角形的性质、斜边的中线、全等三角形与相似三角形、角平分线、方程与函数模型、函数的基本性质等。

等腰直角三角形与二次函数综合问题常见的有三种类型:两定一动探索直角三角形问题;一定两动探索等腰直角三角形问题;三动探索等腰直角三角形问题;常见的思路中,不管是哪种类型的等腰直角三角形三角形问题,分类讨论的依据都是三个角分别为直角,解决的思路是通过构造K型全等或相似图来列方程解决。

在Rt△ACB和Rt△BEF中,若∠A=∠EBF,则△ACB∽BFE,则AC BF=AB BE=BC EF;若Rt△ACB和Rt△BEF是等腰直角三角形,则AC BF=AB BE=BC EF=1.【例1】(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【例2】(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【例3】(2022•吉林)如图,在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A(1,0),点B (0,3).点P在此抛物线上,其横坐标为m.(1)求此抛物线的解析式.(2)当点P在x轴上方时,结合图象,直接写出m的取值范围.(3)若此抛物线在点P左侧部分(包括点P)的最低点的纵坐标为2﹣m.①求m的值.②以PA为边作等腰直角三角形PAQ,当点Q在此抛物线的对称轴上时,直接写出点Q的坐标.1.(2022•石狮市模拟)已知抛物线y=ax2﹣2ax+a+2与x轴交于A,B两点(A在B的左侧),与y轴正半轴交于点C,点P为该抛物线在第一象限内的点.当点P为该抛物线顶点时,△ABP为等腰直角三角形.(1)求该抛物线的解析式;(2)过点P作PD⊥x轴于点E,交△ABP的外接圆于点D,求点D的纵坐标;(3)直线AP,BP分别与y轴交于M,N两点,求的值.2.(2022•福建模拟)如图,已知抛物线y=ax2+bx+c与x轴相交于A,B两点,点C(2,﹣4)在抛物线上,且△ABC是等腰直角三角形.(1)求抛物线的解析式;(2)过点D(2,0)的直线与抛物线交于点M,N,试问:以线段MN为直径的圆是否过定点?证明你的结论.3.(2022•碑林区校级四模)在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n与x轴交于点A,B(A在B的左侧).(1)若抛物线的对称轴为直线x=﹣3,AB=4.求抛物线的表达式;(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x轴正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标.4.(2021秋•福清市期末)已知抛物线y=ax2+bx﹣2经过(2,2),且顶点在y轴上.(1)求抛物线解析式;(2)直线y=kx+c与抛物线交于A,B两点.①点P在抛物线上,当k=0,且△ABP为等腰直角三角形时,求c的值;②设直线y=kx+c交x轴于点M(m,0),线段AB的垂直平分线交y轴于点N,当c=1,m>6时,求点N 纵坐标n的取值范围.5.(2022•集美区二模)在平面直角坐标系xOy中,抛物线T:y=a(x+4)(x﹣m)与x轴交于A,B两点,m >﹣3,点B在点A的右侧,抛物线T的顶点为记为P.(1)求点A和点B的坐标;(用含m的代数式表示)(2)若a=m+3,且△ABP为等腰直角三角形,求抛物线T的解析式;(3)将抛物线T进行平移得到抛物线T',抛物线T'与x轴交于点B,C(4,0),抛物线T'的顶点记为Q.若0<a<,且点C在点B的右侧,是否存在直线AP与CQ垂直的情形?若存在,求m的取值范围;若不存在,请说明理由.6.(2022•城厢区模拟)抛物线y2﹣(m+3)x+3m与x轴交于A、B两点,与y轴交于点C(不与点O重合).(1)若点A在x轴的负半轴上,且△OBC为等腰直角三角形.①求抛物线的解析式;②在抛物线上是否存在一点D,使得点O为△BCD的外心,若存在,请求出点D的坐标,若不存在,请说明理由.(2)点P在抛物线对称轴上,且点P的纵坐标为﹣9,将直线PC向下平移n(1≤n≤4)个单位长度得到直线P′C′,若直线P′C′与抛物线有且只有一个交点,求△ABC面积的取值范围.7.(2022•将乐县模拟)抛物线y=ax2+bx+c与直线y=﹣有唯一的公共点A,与直线y=交于点B,C(C 在B的右侧),且△ABC是等腰直角三角形.过C作x轴的垂线,垂足为D(3,0).(1)求抛物线的解析式;(2)直线y=2x与抛物线的交点为P,Q,且P在Q的左侧.(ⅰ)求P,Q两点的坐标;(ⅱ)设直线y=2x+m(m>0)与抛物线的交点为M,N,求证:直线PM,QN,CD交于一点.8.(2022•赣州模拟)如图,二次函数y=ax2+bx﹣3(x≤3)的图象过点A(﹣1,0),B(3,0),C(0,c),记为L.将L沿直线x=3翻折得到“部分抛物线”K,点A,C的对应点分别为点A',C'.(1)求a,b,c的值;(2)画出“部分抛物线”K的图象,并求出它的解析式;(3)某同学把L和“部分抛物线”K看作一个整体,记为图形“W”,若直线y=m和图形“W”只有两个交点M,N(点M在点N的左侧).①直接写出m的取值范围;②若△MNB为等腰直角三角形,求m的值.9.(2022•琼海二模)如图1,抛物线y=ax2+bx+3与x轴交于点A(3,0)、B(﹣1,0),与y轴交于点C,点P为x轴上方抛物线上的动点,点F为y轴上的动点,连接PA,PF,AF.(1)求该抛物线所对应的函数解析式;(2)如图1,当点F的坐标为(0,﹣4),求出此时△AFP面积的最大值;(3)如图2,是否存在点F,使得△AFP是以AP为腰的等腰直角三角形?若存在,求出所有点F的坐标;若不存在,请说明理由.10.(2022•虹口区二模)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+6与x轴交于点A(﹣2,0)和点B(6,0),与y轴交于点C,顶点为D,联结BC交抛物线的对称轴l于点E.(1)求抛物线的表达式;=S△CDB,求点P的坐标;(2)联结CD、BD,点P是射线DE上的一点,如果S△PDB(3)点M是线段BE上的一点,点N是对称轴l右侧抛物线上的一点,如果△EMN是以EM为腰的等腰直角三角形,求点M的坐标.11.(2022•顺城区模拟)如图,抛物线y=﹣x2+bx+c与x轴交于点A和B(5,0),与y轴交于点C(0,5).(1)求抛物线的解析式;(2)抛物线的对称轴与x轴交于点M,与BC交于点F,点D是对称轴上一点,当点D关于直线BC的对称点E在抛物线上时,求点E的坐标;(3)点P在抛物线的对称轴上,点Q在直线BC上方的抛物线上,是否存在以O,P,Q为顶点的三角形是等腰直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.12.(2022•襄城区模拟)抛物线y=x2﹣(m+3)x+3m与x轴交于A、B两点,与y轴交于点C.(1)如图1,若点A在x轴的负半轴上,△OBC为等腰直角三角形,求抛物线的解析式;(2)在(1)的条件下,点D(﹣2,5)是抛物线上一点,点M为直线BC下方抛物线上一动点,令四边形BDCM 的面积为S,求S的最大值及此时点M的坐标;(3)若点P是抛物线对称轴上一点,且点P的纵坐标为﹣9,作直线PC,将直线PC向下平移n(n>0)个单位长度得到直线P'C',若直线P'C'与抛物线有且仅有一个交点.①直接写出n关于m的函数关系式;②直接写出当1≤n≤5时m的取值范围.13.(2022•山西二模)综合与探究如图,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且A,B两点的坐标分别是A(﹣2,0),B(8,0).点P是抛物线上的一个动点,点P的横坐标为m,过点P作直线l⊥x轴,交直线AC于点G,交直线BC于点H.(1)求抛物线的函数表达式及点C的坐标.(2)如果点D是抛物线的顶点,点P在点C和点D之间运动时,试判断在抛物线的对称轴上是否存在一点N,使得△NGH是等腰直角三角形,若存在,请求出点N的坐标;若不存在,请说明理由.(3)试探究在抛物线的对称轴上是否存在点Q,使得以点P,Q,B,C为顶点的四边形是平行四边形,若存在,请直接写出点P的坐标;若不存在,请说明理由.14.(2022•长沙模拟)已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.15.(2022•永川区模拟)如图,在平面直角坐标系中,已知抛物线y=ax2+4x+c与直线AB相交于点A(0,1)和点B(3,4).(1)求该抛物线的解析式;(2)设C为直线AB上方的抛物线上一点,连接AC,BC,以AC,BC为邻边作平行四边形ACBP,求四边形ACBP面积的最大值;(3)将该抛物线向左平移2个单位长度得到抛物线(a1≠0),平移后的抛物线与原抛物线相交于点D,是否存在点E使得△ADE是以AD为腰的等腰直角三角形?若存在,直接写出点E的坐标;若不存在,请说明理由.16.(2022•兴城市一模)如图,抛物线与x轴交于点A和点B(5,0),与y轴交于点C(0,﹣3),连接AC,BC,点E是对称轴上的一个动点.(1)求抛物线的解析式;=2S△ABC时,求点E的坐标;(2)当S△BCE(3)在抛物线上是否存在点P,使△BPE是以BE为斜边的等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.17.(2021•昆明模拟)已知抛物线:y=ax2﹣2ax+c(a>0)过点(﹣1,0)与(0,﹣3).直线y=x﹣6交x轴、y轴分别于点A、B.(1)求抛物线的解析式;(2)若点P是抛物线上的任意一点.连接PA,PB,使得△PAB的面积最小,求△PAB的面积最小时,P的横坐标;(3)作直线x=t分别与抛物线y=ax2﹣2ax+c(a>0)和直线y=x﹣6交于点E,F,点C是抛物线对称轴上的任意点,若△CEF是以点E或点F为直角顶点的等腰直角三角形,求点C的纵坐标.18(2021•新泰市一模)如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.已知点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,连接AP、PC、CD.(1)求这个抛物线的表达式.(2)点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.(3)①点M在平面内,当△CDM是以CM为斜边的等腰直角三角形时,求出满足条件的所有点M的坐标;②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,求出满足条件的所有点N的坐标.19.(2021•广安)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴相交于A、B、C三点,其中A点坐标为(3,0),B点坐标为(﹣1,0),连接AC、BC.动点P从点A出发,在线段AC上以每秒个单位长度向点C做匀速运动;同时,动点Q从点B出发,在线段BA上以每秒1个单位长度向点A做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ,设运动时间为t秒.(1)求b、c的值.(2)在P、Q运动的过程中,当t为何值时,四边形BCPQ的面积最小,最小值为多少?(3)在线段AC上方的抛物线上是否存在点M,使△MPQ是以点P为直角顶点的等腰直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.20.(2021•上海)已知抛物线y=ax2+c(a≠0)经过点P(3,0)、Q(1,4).(1)求抛物线的解析式;(2)若点A在直线PQ上,过点A作AB⊥x轴于点B,以AB为斜边在其左侧作等腰直角三角形ABC.①当Q与A重合时,求C到抛物线对称轴的距离;的坐标.②若C在抛物线上,求C21。

二次函数等腰三角形两动一定问题

二次函数等腰三角形两动一定问题

二次函数在数学中是一个非常重要的概念,它在各个领域都有广泛的应用。

其中,二次函数等腰三角形两动一定问题是一个较为常见的数学问题,本文将从基本概念入手,逐步展开对二次函数等腰三角形两动一定问题的解析。

1. 二次函数的基本概念二次函数是指数学中的一种函数形式,其一般形式为y=ax^2+bx+c,其中a、b、c是实数且a≠0。

二次函数的图像是一条开口朝上或朝下的抛物线,其开口方向取决于a的正负。

二次函数在代数、几何、物理等领域都有着广泛的应用,因此对二次函数的研究具有重要意义。

2. 等腰三角形的基本概念等腰三角形是指具有两条边相等的三角形。

在等腰三角形中,两个相等的边称为等腰边,而夹在等腰边之间的角称为顶角。

等腰三角形在几何学中具有重要的地位,其性质和应用也是我们在学习和实际生活中经常遇到的。

3. 二次函数等腰三角形两动一定问题在数学问题中,我们经常会遇到求解关于二次函数和等腰三角形的结合问题。

其中,二次函数等腰三角形两动一定问题即是其中之一。

这类问题通常涉及到二次函数图像与等腰三角形的关系,需要通过数学方法去分析和求解。

4. 解析二次函数等腰三角形两动一定问题的方法4.1 分析二次函数的图像特点我们需要通过对二次函数的图像特点进行分析,来理解二次函数与等腰三角形的关系。

通过对二次函数的开口方向、顶点、对称轴等特征进行研究,可以为后续的问题解决提供重要的线索。

4.2 探讨等腰三角形的性质我们需要对等腰三角形的性质进行深入探讨。

通过对等腰三角形的角度、边长、高度等特性进行分析,可以为问题的解决提供必要的几何基础。

4.3 利用二次函数的性质解决问题我们可以利用二次函数的性质,结合等腰三角形的几何特性,来解决二次函数等腰三角形两动一定问题。

通过建立方程、求解交点、推导关系式等方法,可以得出最终的答案。

5. 实例分析为了更好地理解二次函数等腰三角形两动一定问题的解决方法,我们可以通过实例进行详细分析。

选取一个具体的二次函数和等腰三角形,通过具体计算和推导,来展示问题的解决过程和思路。

2024年九年级数学中考专题:二次函数等腰三角形存在性问题 两圆一线课件

2024年九年级数学中考专题:二次函数等腰三角形存在性问题 两圆一线课件

C
二、两圆一线画法
尺规作图
二、两圆一线画法(尺规作图)
1、探究实验:以线段AB为边做一个等腰三角形? 2、作图:如图,在平面直角坐标系找一点P,使得ΔABP为
等腰三角形,则满足要求的点P 有几个?
三、例题解析
二次函数等腰三角形存在性问题 -----两圆一线
三、例题解析
如图,抛物线与x轴交于A. B两点,与y轴交C点,点A的坐标 为(2,0),点C的坐标为(0,3)它的对称轴是直线x=−0.5 (1)求抛物线的解析式; (2)M是坐标轴上任意一点,当△MBC为等腰三角形时, 求M圆一线
目录
CONTENTS
一、等腰三角形 二、两圆一线画法 三、例题解析 四、方法归纳
一、等腰三角形
一、等腰三角形
等腰三角形 定义:
有两条边相等的三角形为等腰三角 形,相等的两条边叫做腰
如图:ΔABC,AB=AC, 则ΔABC为等腰三角形
A
B
做题技巧
1、做题工具: 圆规,直尺
2、做题方法: 两圆一线
3、做题思想: 数形结合,分 类讨论
谢谢
轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件 的所有点P的坐标
2.如图所示,二次函数y=k(x-1)2+2的图像与一次函数y=kx-k+2 的图像交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交 于C、D两点,其中k<0.
(1)求A、B两点的横坐标;
(2)若△OAB是以OA为腰的等腰三角形,求k的值;
四、方法归纳
四、方法归纳
2、分类讨论
4、写结果
1、先作图
3、计算点的坐标
五、学以致用
五、学以致用
1.如图,在平面直角坐标系中,抛物线与x轴交于A、B两点 (A在B的左侧),与y轴交于点C(0,4),顶点为(1,4.5) (1)求抛物线的函数关系式; (2)如图①,设该抛物线的对称轴与x轴交于点D,试在对称

二次函数与等腰三角形判定

二次函数与等腰三角形判定

二次函数与等腰三角形判定
二次函数与等腰三角形之间的关系可以从几何和代数两个角度来进行探讨。

首先从几何角度来看,等腰三角形是指具有两条边相等的三角形。

而二次函数的图像是一个抛物线,其开口方向可以是向上或向下。

当二次函数的图像是向上开口或向下开口的抛物线时,我们可以通过观察其顶点来判断与等腰三角形的关系。

如果顶点恰好落在等腰三角形的顶角上,那么二次函数的图像与等腰三角形的顶角部分重合,这时二次函数与等腰三角形有一定的关联。

其次从代数角度来看,我们可以通过二次函数的标准形式或一般形式来判断与等腰三角形的关系。

二次函数的标准形式为f(x) = ax^2 + bx + c,其中a、b、c分别代表抛物线的开口方向、顶点横坐标和纵坐标。

等腰三角形的特点是两条边相等,因此可以通过二次函数的一般形式y = a(x h)^2 + k来判断与等腰三角形的关系。

如果二次函数的a值相等,即a = -a,那么这个二次函数就是一个关于y轴对称的函数,其图像是关于y轴对称的,这与等腰三角形的特点相吻合。

综上所述,二次函数与等腰三角形之间的关系可以从几何和代数两个角度来进行分析。

通过观察二次函数的图像和代数形式,我们可以得出二次函数与等腰三角形有一定的关联,这种关联可以从图像重合和函数对称性两个方面来进行解释。

二次函数中等腰三角形的存在问题

二次函数中等腰三角形的存在问题

零点是函数图像与x轴相交的点,用于解方程 和确定函数的根。
二次函数的最值是函数图像的最高点(最大 值)或最低点(最小值),在寻求极值时非 常重要。Leabharlann II. 等腰三角形的性质定义
等腰三角形是一种具有两条边相等的三角形, 拥有一些特殊的性质和几何关系。
面积
等腰三角形的面积可以通过底边的长度和高度 来计算,其中高度与等边的长度有关。
2. Johnson, L. (2019). "Exploring the Existence of Isosceles Triangles in Quadratic Functions." Geometrical Review, 30(4), 267-286.
3. Wang, Y. (2018). "Applications of Isosceles Triangles in Quadratic Function Analysis." Mathematica, 55(3), 189-205.
二次函数中等腰三角形的 存在问题
本演示将探讨二次函数中等腰三角形的存在问题。我们将介绍二次函数和等 腰三角形的基本概念,并深入研究二次函数中等腰三角形的性质及其应用。
I. 介绍
二次函数
二次函数是一个具有二次方的多项式函数,可呈现多种形态和特征。
等腰三角形
等腰三角形是一种具有两条边相等的三角形,具有一些特殊的几何性质。
周长
等腰三角形的周长可以通过两条等边的长度和 第三条边的长度来计算。
内角
等腰三角形的内角具有特定的测量值,其中包 括基角、等边角和顶角。
IV. 二次函数中等腰三角形的探讨
1
确定三角形三个顶点坐标

二次函数等腰三角形代数法

二次函数等腰三角形代数法

二次函数等腰三角形代数法在数学中,二次函数是一个非常重要的概念。

它是一种形式为f(x) =ax^2+bx+c的函数,其中a、b、c为常数,且a不等于0。

二次函数的图像通常是一条抛物线,可以向上开口或向下开口,具有很多有趣的性质和应用。

而等腰三角形是一种有两条边相等的三角形,也是几何学中的基本概念之一。

本文将探讨二次函数与等腰三角形之间的联系,介绍一种用代数方法解决等腰三角形问题的方法。

首先,我们来回顾一下二次函数的基本性质。

二次函数的图像是一条抛物线,其开口方向由二次系数a的符号决定。

当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

抛物线的顶点坐标由如下公式给出:(-b/2a,f(-b/2a))接下来,我们来研究如何利用二次函数的性质解决等腰三角形问题。

考虑一个等腰三角形,已知其顶角的度数为θ,底边的长度为L。

我们的目标是求解该等腰三角形的高度h。

首先,我们可以根据等腰三角形的性质得到一个关系式。

根据三角函数的定义,我们知道:sin(θ)=h/L接下来,我们将sin(θ)用二次函数的形式表示出来。

根据三角函数的定义,我们知道sin(θ)可以表示为:sin(θ)=2sin(θ/2)cos(θ/2)进一步展开,可以得到:sin(θ)=2sin(θ/2)√(1-sin^2(θ/2))接下来,我们将sin(θ)表示为二次函数的形式。

假设sin(θ/2)= x,那么我们可以得到:sin(θ)=2x√(1-x^2)现在,我们将等腰三角形的高度h表示为二次函数的形式。

由于sin(θ)=h/L,我们可以得到:h=L*2x√(1-x^2)现在,我们的目标是求解二次函数h关于x的最大值。

我们可以通过计算二次函数的顶点来实现这一目标。

根据前面提到的二次函数顶点的公式,我们可以得到:x=-b/2a=0代入二次函数的表达式,可以得到:h=L*2*0*√(1-0^2)=0由此可见,当x=0时,二次函数h取得最大值0。

2023年中考数学总复习专题1二次函数与等腰三角形问题(学生版)

2023年中考数学总复习专题1二次函数与等腰三角形问题(学生版)

专题1 二次函数与等腰三角形问题数学因运动而充满活力,数学因变化而精彩纷呈,动态几何问题是近年来中考的热点问题,以运动的观点来探究几何图形的变化规律问题,动态问题的解答,一般要将动态问题转化为静态问题,抓住运动过程中的不变量,利用不变的关系和几何性质建立关于方程(组)、函数关系问题,将几何问题转化为代数问题。

在动态问题中,动点形成的等腰三角形问题是常见的一类题型,可以与旋转、平移、对称等几何变化相结合,也可以与一次函数、反比例函数、二次函数的图象相结合,从而产生数与形的完美结合.解决动点产生的等腰三角形问题的重点和难点在于应用分类讨论思想和数形结合思想进行准确的分类.在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC 是等腰三角形,那么存在①AB =AC ,②BA =BC ,③CA =CB 三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快. 几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC 的∠A (的余弦值)是确定的,夹∠A 的两边AB 和AC 可以用含x 的式子表示出来,那么就用几何法.①如图1,如果AB =AC ,直接列方程;②如图2,如果BA =BC ,那么1cos 2AC AB A =∠;③如图3,如果CA =CB ,那么1cos 2AB AC A =∠.图1 图2 图3代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x 的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.222222222()(y ),()(y ),()(y )A B A B A C A C B C B C AB x x y AC x x y BC x x y =-+-=-+-=-+-,然后根据分类:AB=AC,BA=BC,CA=CB列方程进行计算.【例1】(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.【例2】(2022•河池)在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y 轴交于点C(0,3).(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF =m,问:当m为何值时,△BFE与△DEC的面积之和最小;(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【例3】(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.【例4】(2022•贺州)如图,抛物线y=﹣x2+bx+c过点A(﹣1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)点P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P的坐标;(3)在(2)条件下,是否存在点M为抛物线第一象限上的点,使得S△BCM=S△BCP?若存在,求出点M的横坐标;若不存在,请说明理由.1.(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.2.(2022•岚山区一模)已知抛物线y=ax2+bx+8与x轴交于A(﹣3,0),B(8,0)两点,交y轴于点C,点P是抛物线上一个动点,且点P的横坐标为m.(1)求抛物线的解析式;(2)如图1,若点P在BC上方的抛物线上运动(不与B、C重合),过点P作x轴的垂线,垂足为E,交BC于点D,过点P作BC的垂线,垂足为Q,若△PQD≌△BED,求m的值;(3)如图2,将直线BC沿y轴向下平移5个单位,交x轴于点M,交y轴于点N.过点P作x轴的垂线,交直线MN于点D,是否存在一点P,使△BMD是等腰三角形?若存在,请直接写出符合条件的m 的值;若不存在,请说明理由.3.(2022•淮阴区校级一模)如图,抛物线y=2x2+bx+c过A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求该抛物线的表达式和对称轴;(2)点D是抛物线对称轴上一动点,当△BCD是以BC为直角边的直角三角形时,求所有符合条件的点D的坐标;(3)将抛物线在BC下方的图象沿BC折叠后与y轴交于点E,求点E的坐标;(4)若点N是抛物线上位于对称轴右侧的一点,点M在抛物线的对称轴上,当△BMN为等边三角形时,直接写出直线AN的关系式.4.(2022•仁寿县模拟)如图,直线y=kx+n(k≠0)与x轴、y轴分别交于A、B两点,过A,B两点的抛物线y=ax2+bx+4与x轴交于点C,且C(﹣1,0),A(4,0).(1)求抛物线和直线AB的解析式;(2)若M点为x轴上一动点,当△MAB是以AB为腰的等腰三角形时,求点M的坐标.(3)若点P是抛物线上A,B两点之间的一个动点(不与A,B重合),则是否存在一点P,使△P AB的面积最大?若存在求出△P AB的最大面积;若不存在,试说明理由.5.(2022•徐汇区模拟)如图1,在平面直角坐标系xOy中,直线y=kx+3分别交x轴、y轴于A,B两点,经过A,B两点的抛物线y=﹣x2+bx+c与x轴的正半轴相交于点C(1,0),点P为线段AB上的点,且点P的横坐标为m.(1)求抛物线的解析式和直线AB的解析式;(2)过P作y轴的平行线交抛物线于M,当△PBM是MP为腰的等腰三角形时,求点P的坐标;(3)若顶点D在以PM、PB为邻边的平行四边形的形内(不含边界),求m的取值范围.6.(2022•沭阳县模拟)如图1,在平面直角坐标系xOy中,抛物线y=x2+2x﹣3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)如图2,连接AC,点D为线段AC下方抛物线上一动点,过点D作DE∥y轴交线段AC于E点,连接EO、AD,记△ADC的面积为S1,△AEO的面积为S2,求S1﹣S2的最大值及此时点D的坐标;(3)如图3,连接CB,并将抛物线沿射线CB方向平移2个单位长度得到新抛物线,动点N在原抛物线的对称轴上,点M为新抛物线与y轴的交点,当△AMN为以AM为腰的等腰三角形时,请直接写出点N的坐标.7.(2022春•北碚区校级期末)如图,已知点(0,)在抛物线C1:y=x2+bx+c上,且该抛物线与x轴正半轴有且只有一个交点A,与y轴交于点B,点O为坐标原点.(1)求抛物线C1的解析式;(2)抛物线C1沿射线BA的方向平移个单位得到抛物线C2,如图2,抛物线C2与x轴交于C,D 两点,与y轴交于点E,点M在抛物线C2上,且在线段ED的下方,作MN∥y轴交线段DE于点N,连接ON,记△EMD的面积为S1,△EON的面积为S2,求S1+2S2的最大值;(3)如图3,在(2)的条件下,抛物线C2的对称轴与x轴交于点F,连接EF,点P在抛物线C2上且在对称轴的右侧,满足∠PEC=∠EFO.①直接写出P点坐标;②是否在抛物线C2的对称轴上存在点H,使得△PDH为等腰三角形,若存在,请直接写出H点的坐标;若不存在请说明理由.8.(2022•兴宁区校级模拟)如图,抛物线y=﹣x2+bx+c过点A、B,抛物线的对称轴交x轴于点D,直线y =﹣x+3与x轴交于点B,与y轴交于点C,且.(1)求抛物线的解析式;(2)点M(t,0)是x轴上的一个动点,点N是抛物线对称轴上的一个动点,当DN=2t,△MNB的面积为时,求出点M与点N的坐标;(3)在x轴上是否存在点P,使得△PDC为等腰三角形?若存在,请求出点P的坐标,若不存在,请说明理由.9.(2022•沈阳模拟)如图1,抛物线y=﹣x2+bx+3与y轴交于B点,与x轴交于A,C两点,直线BC 的解析式为y=﹣x+m.(1)求m与b的值;(2)P是直线BC上方抛物线上一动点(不与点B,C重合),连接AP交BC于点E,交OB于点F.①是否存在最大值?若存在,求出的最大值.并直接写出此时点E的坐标;若不存在,说明理由.②当△BEF为等腰三角形时,直接写出点P的坐标.10.(2022•永昌县一模)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,C是抛物线与y轴的交点,P是该抛物线上一动点.(1)求该抛物线的解析式;(2)在(1)中抛物线的对称轴上求一点M,使得△MAC是以AM为底的等腰三角形;求出点M的坐标.(3)设(1)中的抛物线顶点为D,对称轴与直线BC交于点E,过抛物线上的动点P作x轴的垂线交线段BC于点Q,使得D、E、P、Q四点组成的四边形是平行四边形?若存在,直接写出P点的坐标;若不存在,请说明理由.11.(2021•无为市三模)在平面直角坐标系中,抛物线y=ax2﹣4ax+3a(a>0)与x轴交于A、B两点(点A在点B的左侧),其顶点为C.(1)求抛物线的对称轴;(2)当△ABC为等边三角形时,求a的值;(3)直线l:y=kx+b经过点A,并与抛物线交于另一点D(4,3),点P为直线l下方抛物线上一点,过点P分别作PM∥y轴交直线l于点M,PN∥x轴交直线l于点N,记W=PM+PN,求W的最大值.12.(2021•广东模拟)如图,抛物线y=x2+bx﹣1与x轴交于点A,B(点A在点B的左侧),交y轴于点C,顶点为D,对称轴为直线x=﹣,连接AC,BC.(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上是否存在点E,使得△CDE为等腰三角形?如果存在,请直接写出点E的坐标,如果不存在,请说明理由.13.(2021•建华区二模)综合与探究如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A、C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)设该抛物线的顶点为点H,则S△BCH=;(3)若点M是线段BC上一动点,过点M的直线ED平行y轴交x轴于点D,交抛物线于点E,求ME 长的最大值及点M的坐标;(4)在(3)的条件下:当ME取得最大值时,在x轴上是否存在这样的点P,使得以点M、点B、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.14.(2021•重庆模拟)如图,在平面直角坐标系中,抛物线y=ax2﹣x+c(a≠0)与x轴交于A(﹣1,0)、B(3,0)两点,直线AC与y轴交于点C,与抛物线交于点D,OA=OC.(1)求该抛物线与直线AC的解析式;(2)若点E是x轴下方抛物线上一动点,连接AE、CE.求△ACE面积的最大值及此时点E的坐标;(3)将原抛物线沿射线AD方向平移2个单位长度,得到新抛物线:y1=a1x2+b1x+c1(a≠0),新抛物线与原抛物线交于点F,在直线AD上是否存在点P,使以点P、D、F为顶点的三角形是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.x115.(2021•玄武区二模)已知二次函数y=x2﹣(2m+2)x+m2+2m(m是常数).(1)求证:不论m为何值,该二次函数图象与x轴总有两个公共点;(2)二次函数的图象与y轴交于点A,顶点为B,将二次函数的图象沿y轴翻折,所得图象的顶点为B1,若△ABB1是等边三角形,求m的值.16.(2021•朝阳)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴分别交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求抛物线的解析式及对称轴;(2)如图1,点D与点C关于对称轴对称,点P在对称轴上,若∠BPD=90°,求点P的坐标;(3)点M是抛物线上位于对称轴右侧的点,点N在抛物线的对称轴上,当△BMN为等边三角形时,请直接写出点M的横坐标.17.(2021•绥化)如图,已知抛物线y=ax2+bx+5(a≠0)与x轴交于点A(﹣5,0),点B(1,0)(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点,连接BD.直线y=经过点A,且与y 轴交于点E.(1)求抛物线的解析式;(2)点N是抛物线上的一点,当△BDN是以DN为腰的等腰三角形时,求点N的坐标;(3)点F为线段AE上的一点,点G为线段OA上的一点,连接FG,并延长FG与线段BD交于点H (点H在第一象限),当∠EFG=3∠BAE且HG=2FG时,求出点F的坐标.18.(2021•宿迁)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.连接AC,BC,点P在抛物线上运动.(1)求抛物线的表达式;(2)如图①,若点P在第四象限,点Q在P A的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标;(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC于点H,当△PFH 为等腰三角形时,求线段PH的长.19.(2021•怀化)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由;(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.20.(2021•南充)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以二次函数与等腰三角形问题为背景的解答题
【学习目标】
这类问题主要是以一点(或以一条线段)为依托,动点和函数思想相结合以几何图形为背景,以动点为元素,构造动态型几何问题。

解此类题目,应从相关图形的性质和数量关系分类讨论来解决。

此类问题较多地关注学生对图形性质的理解,用动态的观点去看待一般函数和图形结合的问题,具有较强的综合性.
【教学过程】
解题思路:等腰三角形的存在性的解题方法:①几何法三步:先分类;再画图;后计算.②代数法三步:先罗列三边;再分类列方程;后解方程、检验.再以二次函数与等腰三角形问题为背景的解答题中,这两种方法往往结合使用.
一、考点突破
例1、如图,已知抛物线y=﹣+bx+4与x 轴相交于A 、B 两点,与y 轴相交于点C ,若已知A 点的坐标为(﹣2,0).
(1)求抛物线的解析式;
(2)连接AC 、BC ,求线段BC 所在直线的解析式;
(3)在抛物线的对称轴上是否存在点P ,使△ACP 为等腰三角形?若存在,求出符合条件的P 点坐标;若不存在,请说明理由.
214
x
【例2】如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C 的坐标是(8,4),连接AC,BC.
(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;
(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?
(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
例3、如图,已知抛物线(a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;
(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.
2
y ax bx c =++
【变式题组】
1、如图,抛物线y=ax 2+bx+c (a≠0)的图象过点M (﹣2, ),顶点坐标为N (﹣1,
),且与x 轴交于A 、B 两点,与y 轴交于C 点.
(1)求抛物线的解析式;
(2)点P 为抛物线对称轴上的动点,当△PBC 为等腰三角形时,求点P 的坐标;
(3)在直线AC 上是否存在一点Q ,使△QBM 的周长最小?若存在,求出Q 点坐标;若不存在,请说明理由.
3433
2、如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣2,0),B(1,0),交y轴于C(0,2).(1)求二次函数的解析式;
(2)连接AC,在直线AC上方的抛物线上是否存在点N,使△NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由;
(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由;
(4)若P为抛物线上一点,过P作PQ⊥BC于Q,在y轴左侧的抛物线是否存在点P使△CPQ ∽△BCO(点C与点B对应),若存在,求出点P的坐标,若不存在,说明理由.
3、如图,在平面直角坐标系中,点, 分别是轴正半轴, 轴正半轴上两动点, , ,以, 为邻边构造矩形,抛物线
交轴于点, 为顶点, 轴于点. ()求, 的长(结果均用含的代数式表示);
()当时,求该抛物线的表达式;
()在点在整个运动过程中,若存在是等腰三角形,请求出所有满足条件的的值.
A
B y x 2OA k =23OB k =+AO BO AOB
C 2334
y x x k =-++y D P PM x ⊥M 1OD PM k 2PM BM =3A ADP k
作业巩固
1、如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,求抛物线的解析式;
(3)在(2)条件下,点P(不与A,C重合)是抛物线上的一点,点M是y轴上一点,当△BPM是等腰直角三角形时,直接写出点M的坐标..
3、如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.
(1)求抛物线的表达式,并求出△ABC的面积;
(2)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(3)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.。

相关文档
最新文档