二次函数与三角形最大面积的3种求法(供参考)
二次函数的最值问题——求线段,三角形周长及面积的最值

二次函数的最值问题——求线段,三角形周长及面积的最值摘要:二次函数作为初中最重要的函数,近几年来,中考拉分题常常利用二次函数求线段的最值、三角形周长的最小值及面积的最大值问题。
在解决二次函数的最值问题时,一般构建二次函数模型,通过数形结合把求三角形的周长、三角形面积的最值问题转化为求线段长度的问题。
关键词:二次函数;最值问题;轴对称;数形结合一、将军饮马“K”字形,两点之间线段最短问题1.二次函数与x轴交于点A(-1,0),B(3,0),与y轴交于点C(0,3).在抛物线的对称轴上是否存在一点P,使得的分析:由已知,可求得二次函数的对称轴为,又因为二次函数图像关于对称轴对称可知:A、B两点关于对称,,连接BC与对称轴的交点为所求P点,则,所以CH+EH的最小值为。
小结:利用二次函数求两线段和的最小值问题,我们通常是作其中一点关于对称轴的对称点,连接对称点与另一点得到的线段长度为我们所求的两线段和的最小值。
变式1.如问题1改为:的周长是否存在最小值?若存在,请求出的周长;若不存在,请说明理由。
分析:延伸1看起来跟问题1不一样,但实际上,万变不离其宗。
,已知A,C两点坐标,由勾股定理可得,,题目中要求周长的最小值可转化为求的最小值,也就转化为问题1,即:,问题2.如图,直线与抛物线交于点A(0,3),B(3,0) ,点F是线段AB上的动点,FE x轴,E在抛物线上,若点F的横坐标为m,请用含m的代数式表示EF的长并求EF的最大值。
分析:利用E、F分别在抛物线及一次函数上可得到,,因为,所以,可求得当时,EF的最大值为小结:利用二次函数求竖直线段的最大值,一般是通过设未知数表示出二次函数及一次函数图像上的两点,由横坐标相等,利用两点纵坐标相减可得到线段的长度,再利用二次函数求最值方法可求出线段的最大值。
变式1:问题2改为过E作,求的最大值是多少?分析:因为该一次函数,可知为等腰直角三角形,,要求的最大值只需求得的最大值,由此就转化为问题2,所以小结:求斜线段的最大值问题,一般转化为求平行于y轴线段的最值问题,再利用三角函数可求得斜线段的最大值。
二次函数中三角形面积问题

二次函数中三角形面积问题【典型例题】:如图,二次函数y=-x²+2x+3与y轴,x轴交于点A ,B,点C是直线AB上方抛物线上的一个动点(不与点A ,B重合),求△ABC面积的最大值.【方法一】竖割法:过点C作CD⊥x轴,垂足为D,交AB于点E,S△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE解:令x=0, y=3 点C的坐标为(0,3);令y=0, 则-x²+2x+3=0 ,解得:x1=-1 x2=3 点B的坐标为(3,0),设AB所在直线的解析式为y=kx+b.求出直线AB所在直线的解析式为y=-x+3.设点E的坐标为(m,-m+3) ,则点C的坐标为(m, -m2+2m+3)CE=y C-y E= -m2+2m+3-(-m+3)= -m2+3mS△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE=1/2×3( -m2+3m)=--3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法二】割补法:连接OC,S△ABC=S△OAC +S△OBC-S△OAB解:S△ABC=S△OAC+S△OBC-S△OAB=1/2×OA·X C+1/2×OB·Y C-1/2×OA×OB=1/2×3×m+1/2×3×(-m2+2m+3)-1/2×3×3=-3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法三】平移法:平移直线AB,当直线AB与抛物线只有一个交点时,此时三角形ABC的面积最大。
解:设和y=-x+3平行的动直线的解析式为y=-x+b,用y=-x+b和y=-x²+2x+3联立方程组得:-x+b=-x²+2x+3,整理得:x²-3x+b-3=0当Δ=0时,b=21/4,此时的点C的坐标为(3/2,9/2)。
专题三。(一)。二次函数三角形之面积问题(铅垂法)

专题三。
(一)。
二次函数三角形之面积问题(铅垂法)专题三(一):二次函数三角形之面积问题(铅垂法)在处理坐标系中的面积问题时,我们应该充分利用横平竖直线段的长度和几何特征以及函数特征的互转。
处理面积问题的思路有公式法(对于规则图形)、割补法(通过分割求和和补形作差)和转化法(例如,同底等高)。
当三角形的三边都斜放在坐标系中时,我们通常使用铅垂法来表达其面积。
铅垂法的具体做法是,如果三角形是固定的,则可以从任意一点作铅垂;如果三角形是变化的,则可以从动点向另外两个点所在的定直线作铅垂。
利用铅垂法来表达三角形的面积,我们可以从动点向另外两个点所在的固定直线作铅垂。
将变化的竖直线段作为三角形的底,高即为两个定点的横坐标之差,然后结合三角形的面积公式来表达面积。
例如,在平面直角坐标系中,顶点为(4,-1)的抛物线交y轴于点A,交x轴于点B和C(其中B在C的左侧)。
已知A点坐标为(0,3),点P是抛物线上的一个动点,且位于A和C两点之间。
当△PAC的面积最大时,求P的坐标和△PAC的最大面积。
例如2,一次函数y=1/x+2与y轴、x轴分别交于点A,B,抛物线y=-x^2+bx+c过A、B两点。
Q为直线AB下方的抛物线上一点,设点Q的横坐标为n,△QAB的面积为S,求出S与n之间的函数关系式并求出S的最大值。
通过以上例题,我们可以看出铅垂法求面积的应用范围和具体做法。
在考试中,我们可以根据题目要求灵活运用铅垂法来解决问题。
上一动点在第三象限,记为S。
若存在点M使得S△ACM=1/2S△ABC,则求此时点M的坐标。
改写:假设动点S位于第三象限,现在需要找到一个点M,使得S与三角形ACM的面积是S与三角形ABC面积的一半。
求点M的坐标。
已知直线y=1/2x+3与点B(6,3),直线x=22/3与y轴交于点C。
直线Mx+x-2与x轴交于点A。
求点M的坐标。
改写:已知直线y=1/2x+3与点B(6,3),直线x=22/3与y轴交于点C。
二次函数求三角形面积最大值的典型题目

二次函数求三角形面积最大值的典型题目篇一:哎呀呀,说到二次函数求三角形面积最大值的题目,这可真是让我头疼了好一阵子呢!就比如说有这么一道题:在平面直角坐标系中,有一个二次函数图像,然后给了一堆点的坐标,让咱们求由这些点构成的三角形面积的最大值。
这可咋整?我一开始看到这题,那真是脑袋都大了!心里就想:“这啥呀?怎么这么难!”我瞪大眼睛,死死地盯着题目,手里的笔都快被我捏出汗来了。
我同桌小明呢,他倒是挺自信,还跟我说:“这有啥难的,看我的!”我心里暗暗不服气,哼,你就吹吧!然后老师开始讲题啦,老师说:“同学们,咱们得先找到这个二次函数的顶点坐标,这就好比是找到宝藏的钥匙!”我一听,宝藏?这比喻还挺有意思的。
老师接着说:“然后再看看那些给定的点,能不能通过一些巧妙的方法把三角形的面积表示出来。
”我就在那拼命点头,好像听懂了,其实心里还是有点迷糊。
我扭头看看后面的学霸小红,她一脸轻松,好像这题对她来说就是小菜一碟。
我忍不住问她:“小红,你咋这么厉害,这题你都懂啦?”小红笑了笑说:“多做几道类似的题,你也能懂!”我又埋头苦想,想着要是能像玩游戏一样,一下子就找到解题的秘诀该多好啊!经过一番折腾,我终于有点明白了。
原来求这个三角形面积最大值,就像是爬山,得找到那个最高的山峰,而我们要找的就是能让面积最大的那个点或者那条线。
你说,数学咋就这么难呢?但我就不信我搞不定它!我一定要把这些难题都攻克下来,让数学成为我的强项!总之,我觉得做这种二次函数求三角形面积最大值的题目,虽然过程很艰难,但只要我们不放弃,多思考,多练习,就一定能找到解题的窍门,取得胜利!篇二:哎呀!说起二次函数求三角形面积最大值的题目,这可真是让我又爱又恨呀!有一次上课,数学老师在黑板上出了一道这样的题:已知一个二次函数图像,还有三角形的三个顶点坐标都在这个函数图像上,让我们求三角形面积的最大值。
当时我一看,脑袋就嗡嗡响,这啥呀?我就开始在草稿纸上乱画,心里想着:“这咋这么难呢?”同桌小明凑过来,瞅了瞅我的草稿纸,说:“你这算的啥呀,思路都不对!”我瞪了他一眼,回道:“那你行你上啊!”然后我俩就你一句我一句地争论起来。
二次函数之“铅垂法”求三角形面积

二次函数之“铅垂法”求三角形面积求三角形面积往往用公式12S a h∆=或1sin2S ab C∆=进行计算。
在二次函数里,有时用公式求三角形面积有一定的难度,我们不妨考虑用“铅垂法”来解决。
图1 图2作法:1、作铅直线PM交线段AB于点M;2、分别过A、B两点作PM的垂线段。
计算:如图1:S△PAB= S△PMA+S△PMB=12×PM×h2+12×PM×h1=12×PM×(h2+h1);①如图2:S△PAB= S△PMA﹣S△PMB=12×PM×h2-12×PM×h1=12×PM×(h2-h1)。
②理解:我们把公式中的PM称为三角形的“铅直高度”,把(h2+h1)或(h2-h1)称为三角形的“水平宽度”,则三角形的面积等于“铅直高度”与“水平宽度”积的一半。
特别地,在二次函数中,三角形的“铅直高度”就是动点P和铅直线PM与线段AB交点M的纵坐标之差(y P -y M),“水平宽度”就是两定点A与B的横坐标之差(x B-x A),即S△=12×(y P-y M)×(x B-x A)。
我们把这种求三角形面积的方法叫做“铅垂法”。
运用:例:如图,直线l:y=−x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2−2ax+a+4(a<0)经过点B。
(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标。
解答:(1)y=-x 2+2x+3;(2)过点M 作MC ⊥x 轴交直线AB 于点C 。
设M (t ,-t 2+2t+3),则C (t ,-t+3)。
∵A (3,0),B (0,3)∴S=12×〖(-t2+2t+3)-(-t+3)〗×(3-0)化简整理得:23327()224S t =--+。
二次函数与面积

二次函数与面积求三角形的面积: (1)直接用面积公式计算;如图:抛物线与x 轴交于A 、B 两点,P 是抛物线上一点。
则S △ABP=21AB •PE(2)割补法;如图:直线MN 与抛物线交于M 、N ,与y 轴交于E , 则S △MON=S △OEM+S △OEN(3)铅垂高法;如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ). 我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半。
BC铅垂高水平宽 haA1、如图,抛物线经过A(-1,0),B(3,0),C(0,-3)三点,点P在第二象限的抛物线上,S△POB=S△PCO,求P点的坐标。
2、如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,- 3).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA=2S△AOB。
3、如图,在平面直角坐标系中,直线112y x=+与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上的一动点(不与点A、B 重合),连接PA、PB,S△PAB=6,求P点的坐标。
4、如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图像与y 轴交于点()3 0,C ,与x 轴交于A 、B 两点,点B 的坐标为()0 3,-。
(1) 求二次函数的解析式及顶点D 的坐标;(2) 点P 是第二象限内抛物线上的一动点,问:点P 在何处时△CPB 的面积最大?最大面积是多少?并求出此时点P 的坐标。
5、如图,在平面直角坐标系中,抛物线与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C (0,4),顶点为(1,92). (1)求抛物线的函数表达式;(2)若点E 是线段AB 上的一个动点(与A 、B 不重合),分别连接AC 、BC ,过点E 作EF ∥AC 交线段BC 于点F ,连接CE ,记△CEF 的面积为S ,S 是否存在最大值?若存在,求出S 的最大值及此时E 点的坐标;若不存在,请说明理由.6、如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使△ABC面积有最大值,若存在,求出这个最大值;若不存在,请说明理由;7、如图,已知抛物线经过点(1,-5)和(-2,4)(1)求这条抛物线的解析式.(2)设此抛物线与直线相交于点A,B(点B在点A的右侧),平行于轴的直线与抛物线交于点M,与直线交于点N,交轴于点P,求线段MN的长(用含的代数式表示).(3)在条件(2)的情况下,连接OM、BM,是否存在的值,使△BOM的面积S最大?若存在,请求出的值,若不存在,请说明理由.。
初中数学二次函数中三角形面积问题解析

∙∙∙∙初中数学二次函数中三角形面积问题解析一、命题意图二次函数中三角形面积相结合的题目是近年来中考数学中常见的问题,题型常考常新,体现了数形结合、化归转化、分类讨论数学思想等。
如果将三角形这一平面图形问题与二次函数相结合,就需要学生以逻辑思维和空间思维相结合的方式进行学习,以培养学生逻辑思维与空间思维能力相结合的基本数学思想,让学生学会自主思考问题的过程。
二、考点及对应的考纲要求初中数学课程教学中关于三角形面积问题的讨论一直是教学重点,这其中牵涉了二次函数与几何问题的融合,是初中数学课程中的一个难点。
求面积常用的方法:(1)直接法,若题已经给出或能由已知条件推出个边的长度并且通过坐标能找到对应的高,那么三角形的面积能直接用公式算出来。
(2)简单的组合,解决问题的途径常需要进行图形割补、等积变形等图形变换。
(3)面积不变同底等高或等底等高的转换,利用平行线得到三角形同底等高进行面积转化。
(4)如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”. 可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半。
三、试题讲解过程如图,在平面直角坐标系中,抛物线c bx ax y ++=2C (0,-4)三点.(1)求该抛物线的解析式; (2)若点D 是该抛物线上一动点,且在第四象限,当∆面积最大时,求点D 的坐标.解:(1)解法一: 由题意得,c=-4, ∴⎩⎨⎧=-+=--0441604b a b a ,解得:⎩⎨⎧-==31b a , ∴=x y 解法二: 由题意得,设y=a (x+1)(x-4), ∴∴y=(x+1)(x-4), ∴432--=x x y ,(2)解法一:由(1)可知,y=x 2-3x -4,设点D 为(x, x 2-3x -4),过点D 作DE ∥OC 交BC 设直线BC 的解析式为y=kx +b,则∙∙∙⎩⎨⎧=+-=044b k b ,∴⎩⎨⎧-==41b k ,∴y=x -4, ∴E (x, x -4)∴DE=(x -4)-(x 2-3x -4)= -x 2+4x,∵a=-1<0, ∴当x=2时, DE 取最大值,S △BCD 解法二:由(1)可知,y=x 2-3x -4, 设点D 为(x,y ),过点D 作DF ⊥OB 于点F,S △BCD =S 梯形OCDF +S △BDF -S △OBC=21x (4-y )+21(-y )(4-x )-8 =2x -2y -8=2x -2(x 2-3x -4)-8=-2x 2+8x,∵a=-2<0, ∴当x=2时, S △BCD 取最大值,∴D (2,-6解法三:由(1)可知,y=x 2-3x -4, 过点D 作DE ∥设直线BC 的解析式为y=kx +b, 则⎩⎨⎧=+-=044b k b ,∴⎩⎨⎧-==41b k ,∴y=x -4,∴设直线DE 的解析式为y=x +d,则x 2-3x -4=x +d, x 2∴当△=(-4)2-4(-4-d )=0, d=-8, S △BCD 取最大值, ∴x 2-4x +4=0, ∴(x-2)2=0, ∴x 1=x 2=2, ∴D (2,-6). 四、试题的拓展延伸及变式分析如图,在平面直角坐标系中,抛物线c bx ax y ++=2C (0,3)三点.(1)若点D 是抛物线的对称轴上一点,当ACD ∆求点D 的坐标;(2)在(1)的情况下,抛物线上是否存在除点A 得PCD ∆ 的面积与ACD ∆P 的坐标;若不存在,请说明理由.解:(1)∵抛物线c bx ax y ++=2经过A (1,0),B (3∴抛物线的对称轴l 是x=231+=2, ∵△ACD 的周长=AD+AC+CD, AC 是定值, ∴当AD+CD 最小时,△ACD 的周长最小,∵点A 、点B 关于对称轴l 对称,∴连接BC 交l 于点D ,即点D 为所求的点, 设直线BC 的解析式为n kx y +=,∴ ⎩⎨⎧=+=033n k n ,∴⎩⎨⎧=-=31n k ,∴直线BC 的解析式为3+-=x y ,∙∙当x=2时,y=-x+3=-2+3=1,∴点D 的坐标是(2,1).(2)解:由(1)可知,∵抛物线c bx ax y ++=2经过A (1,0),B (3,0),C (0,3)三点,∴c=3, ∴⎩⎨⎧=++=++033903b a b a ,解得:⎩⎨⎧-==41b a ,∴342+-=x x y ,解法一:如图,①过点A 作AP 1∥CD 交抛物线于点P 1,∴设直线AP 1的解析式为d x y +-=, ∴∴d=1,∴直线AP 1的解析式为1+-=x y , 解方程1+-x =342+-x x ,(x-1)(x-2)∴x 1=1, x 2=2,当x 1=1时,11+-=x y =0当x 2=2时,12+-=x y =-1,∴点P 1②设直线AP 1交y 轴于点E (0,1)把直线BC 向上平移2个单位交抛物线于P 2得直线P 2P 3的解析式为5+-=x y ,解方程5+-x =342+-x x , x 2-3x -2=0,∴x 3=2173+, x 4=2173-, 当x 3=2173+时,53+-=x y =2177-, 当x 4=2173-时,54+-=x y =2177+, ∴点P 2的坐标是(2173+,2177-),点P 3的坐标是(2173-,2177+), 综上所述, 抛物线上存在点P 1(2,-1),P 2(2173+,2177-), P 3(2173-,2177+), 使得△PCD 的面积与△ACD 的面积相等. 解法二:如图,过A 点作AE∥y 轴,交BC 于点E .则E 点的纵坐标为231=+-.∴ AE=2. 设点P 为(n ,342+-n n ),过P 点作PF∥y 轴,交BC 于点F ,则点F 为(n ,n -3),PF∥AE. 若PF =AE ,则△PCD 与△ACD 的面积相等.∙∙①若P 点在直线BC 的下方,则PF =(n -3)-(342+-n n )=n 2-∴n n 32+-=2.解得21=n ,12=n .当2=n 时,3-n-2∴P 1点坐标为(2,-1). 同理 当1=n 时,P 点坐标为(1,0)(不合题意,舍去).②若P 点在直线BC 的上方,则PF=(342+-n n )-(n -3)=n n 32-∴232=-n n .解得21733+=n ,4=n 当21733+=n 时,P 点的纵坐标为2177221733-=++-; 当21734-=n 时,P 点的纵坐标为2177221733+=+--. ∴点P 2的坐标是(2173+,2177-),点P 3的坐标是(2173-,2177+), 综上所述, 抛物线上存在点P 1(2,-1),P 2(2173+,2177-), P 3(2173-,2177+), 使得△PCD 的面积与△ACD 的面积相等. 在以上问题的分析中研究思路为:(1)分析图形的成因;(2)识别图形的形状;(3)找出图形的计算方法。
解二次函数中三角形面积最值问题

的长度 和除直角外任 意一个角度 就可 以表示 出其余 的边
出N G 的 长 为一 ÷Ⅱ + 4 a . S △ ^ c Ⅳ = S △ M+ J s △ : ÷Ⅳ G ×
1 1
+ ÷Ⅳ G x C F : ÷N G × O C =一 + 1 0 a . 故当口 : ÷时三角
SA A O B 4 x2 + 1 ×2 ×4 一 1
一
上存在一点 Ⅳ, 使 △N A C的面积有最大值?若存在请 求出 此值 ; 若不存在请说 明理 由.
×4 ×4 =4.
一 y
| |
解析
2
设 Ⅳ点坐 标 为 ( n,
A D ;
/
~
a
一
。+ 4 ) , 。∈( o ’ 5 ) . 如 图所
使 AA B M 面积存 在 最 大值 ?若 存 在 , 求 出最 值 ; 若 不 存在, 说 明理 由. 解析 以A B作 为三角形的底 , 只要求 出高 的最大值 就 可以求出面积 的最值. 将直 线 A B平移 , 与抛 物线存 在 交 点时 , 两直线 的距 离就 是高 的 长度. 观察 图形 可 知 , 当 直线与抛物线相切 时有最大值 , 此 时切点即为 点. 直 线
2 0 1 6 年1 2 月第 3 5 期
数理化 解 题 研 究
解 二 次 函数 中 三 角 形 面积 最 值 问题
江 苏省镇 江 实验 学校 魅 力之 城 分校 ( 2 1 2 0 0 0 ) 王唯 一 ●
中图分类号 : G 6 3 2
一
文献标识码 : B
文章编号 : 1 0 0 8— 0 3 3 3 ( 2 0 1 6 ) 3 5— 0 0 0 9— 0 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与三角形最大面积的3种求法一.解答题(共7小题)1.(2012•广西)已知抛物线y=ax2+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标;(3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.2.(2013•茂名)如图,抛物线与x轴交于点A和点B,与y轴交于点C,已知点B的坐标为(3,0).(1)求a的值和抛物线的顶点坐标;(2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等;(3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由.3.(2011•茂名)如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴l与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)点P在抛物线上,且以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标;(3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由.4.(2012•黔西南州)如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴相交于点M.(1)求抛物线对应的函数解析式和对称轴;(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数,请你直接写出点P的坐标;(3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请说明理由.5.(2013•新疆)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.6.(2009•江津区)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.7.如图,已知二次函数y=ax2+bx+c经过点A(1,0),C(0,3),且对称轴为直线x=﹣1.(1)求二次函数的表达式;(2)在抛物线上是否存在点P,使△PAB得面积为10,请写出所有点P的坐标.二次函数与三角形最大面积的3种求法参考答案与试题解析一.解答题(共7小题)1.(2012•广西)解答:解:(1)∵抛物线y=ax2+2x+c的图象经过点A(3,0)和点B(0,3),∴,解得a=﹣1,c=3,∴抛物线的解析式为:y=﹣x2+2x+3.(2)对称轴为x==1,令y=﹣x2+2x+3=0,解得x1=3,x2=﹣1,∴C(﹣1,0).如图1所示,连接AB,与对称轴x=1的交点即为所求之D点,由于A、C两点关于对称轴对称,则此时DB+DC=DB+DA=AB最小.设直线AB的解析式为y=kx+b,由A(3,0)、B(0,3)可得:,解得k=﹣1,b=3,∴直线AB解析式为y=﹣x+3.当x=1时,y=2,∴D点坐标为(1,2).(3)结论:存在.如图2所示,设P(x,y)是第一象限的抛物线上一点,过点P作PN⊥x轴于点N,则ON=x,PN=y,AN=OA﹣ON=3﹣x.S△ABP=S梯形PNOB+S△PNA﹣S△AOB=(OB+PN)•ON+PN•AN﹣OA•OB=(3+y)•x+y•(3﹣x)﹣×3×3=(x+y)﹣,∵P(x,y)在抛物线上,∴y=﹣x2+2x+3,代入上式得:S△ABP=(x+y)﹣=﹣(x2﹣3x)=﹣(x﹣)2+,∴当x=时,S△ABP取得最大值.当x=时,y=﹣x2+2x+3=,∴P(,).所以,在第一象限的抛物线上,存在一点P,使得△ABP的面积最大;P点的坐标为(,).2.(2013•茂名)解答:解:(1)∵抛物线y=ax2﹣x+2经过点B(3,0),∴9a﹣×3+2=0,解得a=﹣,∴y=﹣x2﹣x+2,∵y=﹣x2﹣x+2=﹣(x2+3x)+2=﹣(x+)2+,∴顶点坐标为(﹣,);(2)∵抛物线y=﹣x2﹣x+2的对称轴为直线x=﹣,与x轴交于点A和点B,点B的坐标为(3,0),∴点A的坐标为(﹣6,0).又∵当x=0时,y=2,∴C点坐标为(0,2).设直线AC的解析式为y=kx+b,则,解得,∴直线AC的解析式为y=x+2.∵S△AMC=S△ABC,∴点B与点M到AC的距离相等,又∵点B与点M都在AC的下方,∴BM∥AC,设直线BM的解析式为y=x+n,将点B(3,0)代入,得×3+n=0,解得n=﹣1,∴直线BM的解析式为y=x﹣1.由,解得,,∴M点的坐标是(﹣9,﹣4);(3)在抛物线对称轴上存在一点N,能够使d=|AN﹣CN|的值最大.理由如下:∵抛物线y=﹣x2﹣x+2与x轴交于点A和点B,∴点A和点B关于抛物线的对称轴对称.连接BC并延长,交直线x=﹣于点N,连接AN,则AN=BN,此时d=|AN﹣CN|=|BN﹣CN|=BC最大.设直线BC的解析式为y=mx+t,将B(3,0),C(0,2)两点的坐标代入,得,,∴直线BC的解析式为y=﹣x+2,当x=﹣时,y=﹣×(﹣)+2=3,∴点N的坐标为(﹣,3),d的最大值为BC==.3.(2011•茂名)解答:解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:x=3;(2)P点坐标为:(6,4),由题意可知以A、O、M、P为顶点的四边形有两条边AO=4、OM=3,又∵点P的坐标中x>5,∴MP>2,AP>2;∴以1、2、3、4为边或以2、3、4、5为边都不符合题意,∴四条边的长只能是3、4、5、6的一种情况,在Rt△AOM中,AM===5,∵抛物线对称轴过点M,∴在抛物线x>5的图象上有关于点A的对称点与M的距离为5,即PM=5,此时点P横坐标为6,即AP=6;故以A、O、M、P为顶点的四边形的四条边长度分别是四个连续的正整数3、4、5、6成立,即P(6,4);(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),过点N作NG∥y轴交AC于G;作AM⊥NG于M,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4;把x=t代入得:y=﹣t+4,则G(t,﹣t+4),此时:NG=﹣x+4﹣(t2﹣t+4)=﹣t2+4t,∵AM+CF=CO,∴S△ACN=S△ANG+S△CGN=AM×NG+NG×CF=NG•OC=(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).4.(2012•黔西南州)解答:解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),将点A(0,4)代入上式解得:a=,即可得函数解析式为:y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,故抛物线的对称轴是:x=3;(2)P点坐标为:(6,4),由题意可知以A、O、M、P为顶点的四边形有两条边AO=4、OM=3,又∵点P的坐标中x>5,∴MP>2,AP>2;∴以1、2、3、4为边或以2、3、4、5为边都不符合题意,∴四条边的长只能是3、4、5、6的一种情况,在Rt△AOM中,AM===5,∵抛物线对称轴过点M,∴在抛物线x>5的图象上有关于点A的对称点与M的距离为5,即PM=5,此时点P横坐标为6,即AP=6;故以A、O、M、P为顶点的四边形的四条边长度分别是四个连续的正整数3、4、5、6成立,即P(6,4);(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),过点N作NG∥y轴交AC于G,作AM⊥NG于M,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4;把x=t代入y=﹣x+4,则可得G(t,﹣t+4),此时:NG=﹣x+4﹣(t2﹣t+4)=﹣t2+4t,∵AM+CE=CO,∴S△ACN=S△ANG+S△CGN=AM×NG+NG×CE=NG•OC=(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).5.(2013•新疆)解答:解:(1)∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),∴,解得,所以,抛物线的解析式为y=x2﹣4x+3;(2)∵点A、B关于对称轴对称,∴点D为AC与对称轴的交点时△BCD的周长最小,设直线AC的解析式为y=kx+b(k≠0),则,解得,所以,直线AC的解析式为y=x﹣1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,当x=2时,y=2﹣1=1,∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小;(3)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x2﹣5x+3﹣m=0,△=(﹣5)2﹣4×1×(3﹣m)=0,即m=﹣时,点E到AC的距离最大,△ACE的面积最大,此时x=,y=﹣=﹣,∴点E的坐标为(,﹣),设过点E的直线与x轴交点为F,则F(,0),∴AF=﹣1=,∵直线AC的解析式为y=x﹣1,∴∠CAB=45°,∴点F到AC的距离为AF•sin45°=×=,又∵AC==3,∴△ACE的最大面积=×3×=,此时E点坐标为(,﹣).6.(2009•江津区)解答:解:(1)将A(1,0),B(﹣3,0)代y=﹣x2+bx+c中得(2分)∴(3分)∴抛物线解析式为:y=﹣x2﹣2x+3;(4分)(2)存在(5分)理由如下:由题知A、B两点关于抛物线的对称轴x=﹣1对称∴直线BC与x=﹣1的交点即为Q点,此时△AQC周长最小∵y=﹣x2﹣2x+3∴C的坐标为:(0,3)直线BC解析式为:y=x+3(6分)Q点坐标即为解得∴Q(﹣1,2);(7分)(3)存在.(8分)理由如下:设P点(x,﹣x2﹣2x+3)(﹣3<x<0)∵S△BPC=S四边形BPCO﹣S△BOC=S四边形BPCO﹣若S四边形BPCO有最大值,则S△BPC就最大,∴S四边形BPCO=S△BPE+S直角梯形PEOC(9分)=BE•PE+OE(PE+OC)=(x+3)(﹣x2﹣2x+3)+(﹣x)(﹣x2﹣2x+3+3)=当x=﹣时,S四边形BPCO最大值=∴S△BPC最大=(10分)当x=﹣时,﹣x2﹣2x+3=∴点P坐标为(﹣,).(11分)7.解答:解:(1)根据题意得:,解得:a=1,b=2,c=﹣3,∴抛物线解析式为y=x2+2x﹣3.(2)令y=0,则x2+2x﹣3=0,解得x=1或x=﹣3,∴AB=4,∵△PAB得面积为10,设P的纵坐标为h,∴AB×|h|=10,∴|h|=5,∵y=x2+2x﹣3=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),∴P的纵坐标不能为﹣5,∴,h=5,代入得5=x2+2x﹣3,解得x=2,x=﹣4;∴点P的坐标为(2,5),(﹣4,5).。