最新人教版高三数学(文)第一轮复习函数的单调性与最值公开课教学设计

合集下载

3.2.1-单调性与最大(小)值课件-2025届高三数学一轮复习

3.2.1-单调性与最大(小)值课件-2025届高三数学一轮复习

f x1 − f x2 > 0,
f x1 − f x2 < 0,
f x1 > f x2 ,



x1 < x2
x1 − x2 < 0
x1 − x2 > 0,
f x1 < f x2 ,
∴ f x 在 a, b 上是减函数,C是真命题,同理可得D也是真命题.
x1 > x2 ,
例1-2 (2024·河北省石家庄市期末)下列四个函数中,在 0, +∞ 上单调递增的是

= − +


因为 , ∈ , +∞ 且 < ,可得 − < , > , <



> ,
所以 − = −



< ,即 < ,
所以函数 在 , +∞ 上单调递增.
3
, (−1, ],单调
2
3
2
递减区间为[ , 4), 4, +∞ .
所以由复合函数的单调性可知函数y =
D.∀x1 ,x2 ∈ a, b ,且x1 ≠ x2 ,当 x1 − x2 [f x1 − f x2 ] > 0时,f x 在 a, b 上单调递
【解析】A是假命题,“无穷多个”不能代表“所有”“任意”;
1
x
以f x = 为例,知B是假命题;

f x1 −f x2
x1 −x2
< 0 x1 ≠ x2 等价于[f x1 − f x2 ] ⋅ x1 − x2 < 0,而此式又等价于
[1, +∞),单调递减区间是(−∞, −3]和[−1,1].(函数的单调区间

2023届高考数学一轮复习讲义:第7讲 函数的单调性与最值

2023届高考数学一轮复习讲义:第7讲 函数的单调性与最值

第7讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 当x1<x2时,都有,那么就称函数f(x)在区间D上是增函数当x1<x2时,都有,那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是或,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 (1)∀x ∈I ,都有 ; (2)∃x 0∈I ,使得(1)∀x ∈I ,都有 ; (2)∃x 0∈I ,使得结论M 为最大值M 为最小值➢考点1 函数的单调性[名师点睛]确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接. (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 1.(2022·全国·高三专题练习)函数2()23f x x x -- ) A .(,1]-∞B .[3,)+∞C .(,1]-∞-D .[1,)+∞2.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性.[举一反三]1.(2022·全国·高三专题练习)函数222x x y -++=的单调递增区间是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 2.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( )A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-3.(2022·全国·高三专题练习)已知函数()2f x x x x =-+,则下列结论正确的是( ) A .递增区间是(0,)+∞ B .递减区间是(,1)-∞- C .递增区间是(,1)-∞-D .递增区间是(1,1)-4.(2022·全国·高三专题练习)已知函数()f x 的图象如图所示,则函数()()12log g x f x =的单调递增区间为( )A .(],3-∞-,[]0,3B .[]3,0-,[)3,+∞C .(),5-∞-,[)0,1D .(]1,0-,()5,+∞5.(2022·广西柳州·三模)下列函数在(),0∞-上是单调递增函数的是( ) A .tan y x =B .()ln y x =-C .12xy =D .1y x=-6.(2022·全国·高三专题练习)函数y =|-x 2+2x +1|的单调递增区间是_________ ;单调递减区间是_________.7.(2022·全国·高三专题练习)函数216y x x =-+_____. 8.(2022·福建·三模)写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.9.(2022·全国·高三专题练习)已知函数f (x )1x=+lg 4xx -.判断并证明函数f (x )的单调性;10.(2022·全国·高三专题练习)已知定义域为实数集R 的函数()11222xx f x +-=+.判断函数f (x )在R 上的单调性,并用定义证明.➢考点2 函数单调性的应用1.(2022·重庆巴蜀中学高三阶段练习)已知函数()()e e 2x xx f x --=,则21log3a f ⎛⎫= ⎪⎝⎭,342b f -⎛⎫= ⎪⎝⎭,432c f ⎛⎫=- ⎪⎝⎭的大小关系为( )A .b ac << B .a b c << C .c a b << D .a c b <<2.(2022·广东深圳·高三期末)已知函数()1e ,111,1x x f x x x x-⎧≤⎪=⎨-+>⎪⎩,则()f x 的最大值为______.3.(2022·河北唐山·二模)已知函数()f x ()()21f x f x >-,则x 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭4.(2022·全国·高三专题练习)已知函数1()ax f x x a-=-在(2,)+∞上单调递减,则实数a 的取值范围是( ) A .(-∞,1)(1-⋃,)+∞ B .(1,1)-C .(-∞,1)(1-⋃,2]D .(-∞,1)(1-⋃,2)[举一反三]1.(2022·辽宁朝阳·高三开学考试)已知函数()f x 是定义在R 上的偶函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x ->-,记(2)(3)(1),,23f f a f b c -===,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a <<2.(2022·重庆·模拟预测)设函数()()()32200x xx f x x x -⎧-+>⎪=⎨-≤⎪⎩,若ln 2a =,0.23b =,0.3log 2c =,则( )A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f a f c f b >>D .()()()f c f a f b >>3.(2022·全国·高三专题练习)函数()41f x x x =++在1,22⎡⎤-⎢⎥⎣⎦上的值域为( ) A .153,2⎡⎤-⎢⎥⎣⎦B .[]3,4C .153,2⎡⎤⎢⎥⎣⎦D .154,2⎡⎤⎢⎥⎣⎦4.(2022·重庆八中模拟预测)已知函数()1y f x =-是定义在R 上的偶函数,且()f x 在(),1-∞-单调递减,()00f =,则()()210f x f x +<的解集为( )A .()(),20,-∞-⋃+∞B .()2,0-C .312,,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭D .31,22⎛⎫-- ⎪⎝⎭5.(2022·河北·模拟预测)设函数()()212,1,2,1,x x f x x x ⎧++<⎪=⎨-≥⎪⎩则不等式()()340f f x +->的解集为( ) A .()1,1- B .()(),11,-∞-⋃+∞ C .()7,7-D .()(),77,-∞-⋃+∞6.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( ) A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,17.(2022·全国·高三专题练习)函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,则m 的取值范围是( )A .[)3,-+∞B .[)3,+∞C .(],5-∞D .(],3-∞-8.(2022·全国·高三专题练习)已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( ) A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭ D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭9.(多选)(2022·全国·高三专题练习)函数()21x af x x -=+在区间()b +∞,上单调递增,则下列说法正确的是( ) A .2a >-B .1b >-C .1b ≥-D .2a <-10.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a 的范围是_______.11.(2022·全国·高三专题练习)已知函数f (x )m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________.12.(2022·全国·高三专题练习)已知函数()f x 满足:①(0)0f =;②在[13],上是减函数;③(1)(1)f x f x +=-.请写出一个满足以上条件的()f x =___________.13.(2022·全国·高三专题练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______.14.(2022·全国·高三专题练习)若函数2()4f x x ax =-+在[]1.3内不单调,则实数a 的取值范围是__________.15.(2022·全国·高三专题练习)已知函数()y f x =是定义在R 的递减函数,若对于任意(0x ∈,1]不等式2(31)(1)(2)f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.16.(2022·全国·高三专题练习)已知函数()f x x .(1)若1a ,求函数的定义域;(2)是否存在实数a,使得函数()f x在定义域内具有单调性?若存在,求出a的取值范围第7讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 (1)∀x ∈I ,都有f (x )≤M ; (2)∃x 0∈I ,使得f (x 0)=M(1)∀x ∈I ,都有f (x )≥M ; (2)∃x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值➢考点1 函数的单调性[名师点睛]确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接. (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 1.(2022·全国·高三专题练习)函数2()23f x x x -- ) A .(,1]-∞ B .[3,)+∞ C .(,1]-∞-D .[1,)+∞【答案】B 【解析】由题意,可得2230x x --≥,解得1x ≤-或3x ≥, 所以函数2()23f x x x =--(][),13,-∞-⋃+∞,二次函数223y x x =--的对称轴为1x =,且在(][),13,-∞-⋃+∞上的单调递增区间为[3,)+∞,根据复合函数的单调性,可知函数2()23f x x x =--[3,)+∞.故选:B.2.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性. 【解】任取1x 、2(11)x ∈-,,且12x x <,(11)1()(1)11a x f x a x x -+==+--,则:21121212()11()()(1)(1)11(1)(1)a x x f x f x a a x x x x --=+-+=----,当0a >时,12())0(f x f x ->,即12()()f x f x >,函数()f x 在(11)-,上单调递减; 当0a <时,12())0(f x f x -<,即12()()f x f x <,函数()f x 在(11)-,上单调递增. [举一反三]1.(2022·全国·高三专题练习)函数y = )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 【答案】C 【解析】令220x x -++≥,解得12x -≤≤, 令22t x x =-++,则y =∵函数22t x x =-++在区间112⎡⎤-⎢⎥⎣⎦,上单调递增,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,y =内递增,∴根据复合函数的单调性可知,函数y =112⎡⎤-⎢⎥⎣⎦,.故选:C2.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( ) A .(),2-∞ B .()2,+∞ C .()2,2- D .()2,6-【答案】C 【解析】 令13log y u=,2412u x x =-++.由24120u x x =-++>,得26x -<<.因为函数13log y u=是关于u 的递减函数,且()2,2x ∈-时,2412u x x =-++为增函数,所以()213log 412y x x =-++为减函数,所以函数()213log 412y x x =-++的单调减区间是()2,2-.故选:C.3.(2022·全国·高三专题练习)已知函数()2f x x x x =-+,则下列结论正确的是( ) A .递增区间是(0,)+∞ B .递减区间是(,1)-∞- C .递增区间是(,1)-∞- D .递增区间是(1,1)-【答案】D 【解析】因为函数222,0()22,0x x x f x x x x x x x ⎧-+≥=-+=⎨+<⎩,作出函数()f x 的图象,如图所示:由图可知,递增区间是(1,1)-,递减区间是(,1)-∞-和()1,+∞. 故选:D .4.(2022·全国·高三专题练习)已知函数()f x 的图象如图所示,则函数()()12log g x f x =的单调递增区间为( )A .(],3-∞-,[]0,3B .[]3,0-,[)3,+∞C .(),5-∞-,[)0,1D .(]1,0-,()5,+∞【答案】C 【解析】因为12log y x=在()0,∞+上为减函数,所以只要求()y f x =的单调递减区间,且()0f x >.由图可知,使得函数()y f x =单调递减且满足()0f x >的x 的取值范围是()[),50,1-∞-.因此,函数()()12log g x f x =的单调递增区间为(),5-∞-、[)0,1.故选:C.5.(2022·广西柳州·三模)下列函数在(),0∞-上是单调递增函数的是( ) A .tan y x = B .()ln y x =-C .12xy =D .1y x=-【答案】D 【解析】选项A. 函数tan y x =在(),0∞-上只有单调增区间,但不是一直单调递增,故不满足; 选项B. 由复合函数的单调性可知函数()ln y x =-在(),0∞-上单调递减,故不满足;选项C. 函数1122xx y ⎛⎫== ⎪⎝⎭在(),0∞-上单调递减,故不满足;选项D. 函数1y x=-在(),0∞-上单调递增,故满足,故选:D6.(2022·全国·高三专题练习)函数y =|-x 2+2x +1|的单调递增区间是_________ ;单调递减区间是_________.【答案】 (12,1)-,(12,)++∞ (,12)-∞-,(1,12)【解析】作出函数y =|-x 2+2x +1|的图像,如图所示,观察图像得,函数y =|-x 2+2x +1|在(12,1)-和(12,)++∞上单调递增,在(,12)-∞和(1,12)上单调递减,所以原函数的单调增区间是(1,(1)+∞,单调递减区间是(,1-∞,(1,12).故答案为:(1-,(1)++∞;(,1-∞,(1,12)7.(2022·全国·高三专题练习)函数1y =_____. 【答案】[3,6] 【解析】226060x x x x -+≥⇒-≤,解得06x ≤≤,令()()22639x x x x μ=-+=--+,对称轴为3x =,所以函数()x μ在(),3-∞为单调递增;在[)3,+∞上单调递减.所以函数1y =[3,6]. 故答案为:[3,6]8.(2022·福建·三模)写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.【答案】1()12xf x =-(答案不唯一) 【解析】 1()12x f x =-,定义域为R ;102x>,1()112x f x =-<,值域为(,1)-∞; 是增函数,满足对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.故答案为:1()12xf x =-(答案不唯一). 9.(2022·全国·高三专题练习)已知函数f (x )1x=+lg 4xx -.判断并证明函数f (x )的单调性;【解】由题意,040x x x ≠⎧⎪-⎨>⎪⎩,解得04x <<故f (x )的定义域为(0,4) 令441x u x x -==-,lg y u =,由于41u x=-在(0,4)单调递减,lg y u =在(0,)+∞单调递增,因此4lgxy x-=在(0,4)单调递减,又1y x =在(0,4)单调递减,故f (x )1x =+4lgx x -在(0,4)上单调递减,证明如下: 设0<x 1<x 2<4,则: ()()()()121221121122122144411lg lg lg 4x x x x x x f x f x x x x x x x x x -----=+--=+-, ∵0<x 1<x 2<4,∴x 2﹣x 1>0,x 1x 2>0,4﹣x 1>4﹣x 2>0,12214114x xx x -->,>, ∴()()()()1212211221214401lg 044x x x x x x x x x x x x ----->,>,>, ∴f (x 1)>f (x 2),∴f (x )在(0,4)上单调递减11.(2022·全国·高三专题练习)已知定义域为实数集R 的函数()11222xx f x +-=+.判断函数f (x )在R 上的单调性,并用定义证明.【解】由题意11211()22212x x x f x +-==-+++, 令1112,2xu y u =+=-+,由于12x u =+在R 上单调递增,112y u=-+在(0,)+∞单调递减,由复合函数单调性可知f (x )在R 上为减函数. 证明:设∀x 1,x 2∈R ,且x 1<x 2,所以f (x 1)﹣f (x 2)()()211212112212121212x x x x x x -=-=++++,由于x 1<x 2,y =2x 在R 上单增 所以21220x x ->,且2x >0 所以f (x 1)>f (x 2), 所以f (x )在R 上单调递减.➢考点2 函数单调性的应用1.(2022·重庆巴蜀中学高三阶段练习)已知函数()()e e 2x xx f x --=,则21log3a f ⎛⎫= ⎪⎝⎭,342b f -⎛⎫= ⎪⎝⎭,432c f ⎛⎫=- ⎪⎝⎭的大小关系为( )A .b a c <<B .a b c <<C .c a b <<D .a c b <<【答案】A【解析】()f x 的定义域为R , 因为()()()e e ee ()22x xxx x x f x f x ------===,所以()f x 为偶函数,所以()()2221log log 3log 33a f f f ⎛⎫==-= ⎪⎝⎭,443322c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,当0x >时,()()()ee e e 2xx x xx f x ---++'=,因为0x >,所以e1,0e 1xx -><<,所以e e 0x x -->,(e e )0x x x -+>,所以()0f x '>,所以()f x 在(0,)+∞上单调递增,因为2x y =在R 上单调递增,且340143-<<<,所以43013402222-<<<<,即433402122-<<<<,因为2log y x =在(0,)+∞上为增函数,且234<<,所以222log 2log 3log 4<<,即21log 32<<,所以4334202log 32-<<<,所以()433422log 32f f f -⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即b a c <<,故选:A2.(2022·广东深圳·高三期末)已知函数()1e ,111,1x x f x x x x-⎧≤⎪=⎨-+>⎪⎩,则()f x 的最大值为______.【答案】1 【解析】解:(],1x ∈-∞时,()1x f x e -=单调递增,()()1111f x f e -==≤;()1,x ∈+∞时,()1+1f x x x=-单调递减,()11+111f x <-=.所以()f x 的最大值为1. 故答案为:1.3.(2022·河北唐山·二模)已知函数()f x ()()21f x f x >-,则x 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】C 【解析】解:()f x 定义域为R , 又()()-=-f x f x ,所以()f x 是奇函数,当0x =时,()00f =,当0x >时,()=f x ()f x 在()0,∞+上递增, 所以()f x 在定义域R 上递增,又()()21f x f x >-,所以21x x >-,解得13x >,故选:C4.(2022·全国·高三专题练习)已知函数1()ax f x x a-=-在(2,)+∞上单调递减,则实数a 的取值范围是( ) A .(-∞,1)(1-⋃,)+∞ B .(1,1)-C .(-∞,1)(1-⋃,2]D .(-∞,1)(1-⋃,2)【答案】C 【解析】解:根据题意,函数221()11()ax a x a a a f x a x a x a x a--+--===+---, 若()f x 在区间(2,)+∞上单调递减,必有2102a a ⎧->⎨⎩,解可得:1a <-或12a <,即a 的取值范围为(-∞,1)(1-⋃,2], 故选:C . [举一反三]1.(2022·辽宁朝阳·高三开学考试)已知函数()f x 是定义在R 上的偶函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x ->-,记(2)(3)(1),,23f f a f b c -===,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a <<【答案】B 【解析】依题意,12,(0,)x x ∀∈+∞,12x x ≠,122112121212()()()()00f x f x x f x x f x x x x x x x -->⇔>--, 于是得函数()f x x 在(0,)+∞上单调递增,而函数()f x 是R 上的偶函数,即(2)(2)22f f b -==,显然有(1)(2)(3)123f f f <<,因此得:a b c <<, 所以a b c <<. 故选:B2.(2022·重庆·模拟预测)设函数()()()32200x xx f x x x -⎧-+>⎪=⎨-≤⎪⎩,若ln 2a =,0.23b =,0.3log 2c =,则( )A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f a f c f b >>D .()()()f c f a f b >>【答案】D 【解析】解:因为()()()32200x x x f x x x -⎧-+>⎪=⎨-≤⎪⎩,又2x y =在()0,∞+上单调递增,2x y -=在()0,∞+上单调递减,则()22xx g x -=-+在()0,∞+上单调递减且()002002g -+==,又()3h x x =-在(),0∞-上单调递减且()3000h =-=,所以()f x 在R 上单调递减,又因为0.20331>=,即1b >,0ln1ln 2lne 1=<<=,即01a <<,0.30.3log 2log 10<=,即0c <,所以b a c >>,所以()()()f b f a f c <<; 故选:D3.(2022·全国·高三专题练习)函数()41f x x x =++在1,22⎡⎤-⎢⎥⎣⎦上的值域为( ) A .153,2⎡⎤-⎢⎥⎣⎦B .[]3,4C .153,2⎡⎤⎢⎥⎣⎦D .154,2⎡⎤⎢⎥⎣⎦【答案】C 【解析】设1x t ,1x t =-,1,22x ⎡⎤∈-⎢⎥⎣⎦,则1,32t ⎡⎤∈⎢⎥⎣⎦,则()41g t t t =+-,根据双勾函数性质:函数在1,22⎡⎤⎢⎥⎣⎦上单调递减,在(]2,3上单调递增,()()max 1151015max ,3max ,2232g t g g ⎧⎫⎛⎫⎧⎫===⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,()()min 23g t g ==,故函数值域为153,2⎡⎤⎢⎥⎣⎦.故选:C.4.(2022·重庆八中模拟预测)已知函数()1y f x =-是定义在R 上的偶函数,且()f x 在(),1-∞-单调递减,()00f =,则()()210f x f x +<的解集为( )A .()(),20,-∞-⋃+∞B .()2,0-C .312,,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭D .31,22⎛⎫-- ⎪⎝⎭【答案】C【解析】因为函数()1y f x =-是定义在R 上的偶函数,所以()y f x =的图象关于直线1x =-对称.因为()f x 在(),1-∞-上单调递减,所以在()1,-+∞上单调递增. 因为()00f =,所以()()200f f -==.所以当()(),20,x ∈-∞-⋃+∞时,()0f x >;当()2,0x ∈-时,()0f x <.由()()210f x f x +<,得20,2210.x x x ⎧-⎨-<+<⎩或或20,212210.x x x -<<⎧⎨+-+⎩或解得312,,022x ⎛⎫⎛⎫∈--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:C5.(2022·河北·模拟预测)设函数()()212,1,2,1,x x f x x x ⎧++<⎪=⎨-≥⎪⎩则不等式()()340f f x +->的解集为( ) A .()1,1- B .()(),11,-∞-⋃+∞ C .()7,7- D .()(),77,-∞-⋃+∞【答案】A 【解析】解:因为()()212,12,1x x f x x x ⎧++<⎪=⎨-≥⎪⎩,所以()36f =-,()()233126f -=-++=,则()()340f f x +->,即()()()4363f x f f ->-==-,()f x 的函数图象如下所示:由函数图象可知当3x >-时()6f x <且()f x 在(),3∞--上单调递减,所以()()43f x f ->-等价于43x -<-,即1x <,解得11x -<<,即()1,1x ∈-; 故选:A6.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( ) A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1【答案】B 【解析】因为分段函数()f x 在R 上的单调函数,由于22y x ax =-开口向上,故在1≥x 上单调递增,故分段函数()f x 在在R 上的单调递增,所以要满足:0212112a aa a>⎧⎪-⎪-≤⎨⎪-≤-⎪⎩,解得:203a <≤ 故选:B7.(2022·全国·高三专题练习)函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,则m 的取值范围是( )A .[)3,-+∞B .[)3,+∞C .(],5-∞D .(],3-∞-【答案】D 【解析】解:函数2()2(1)3f x x m x =-+-+的图像的对称轴为2(1)12m x m -=-=--, 因为函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,所以14m -≥,解得3m ≤-, 所以m 的取值范围为(],3-∞-, 故选:D8.(2022·全国·高三专题练习)已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( ) A .11,63⎛⎫⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭【答案】B 【解析】由题意可知,()313y a x a =-+在(),1-∞上为减函数,则310a -<, 函数21y x =-+在[)1,+∞上为减函数,且有()3130a a -+≥,所以,310610a a -<⎧⎨-≥⎩,解得1163a ≤<.综上所述,实数a 的取值范围是11,63⎡⎫⎪⎢⎣⎭.故选:B.9.(多选)(2022·全国·高三专题练习)函数()21x af x x -=+在区间()b +∞,上单调递增,则下列说法正确的是( ) A .2a >- B .1b >- C .1b ≥- D .2a <-【答案】AC 【解析】 ()22211x a a f x x x -+==-++, ()f x 在区间()b +∞,上单调递增,20a ∴+>,2a >-∴,由()f x 在区间()1+∞-,上单调递增, 1b.故选:AC10.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a 的范围是_______. 【答案】(2,4]- 【解析】 函数5()3x f x x a +=-+,定义域为(,3)(3,)x a a ∈-∞-⋃-+∞,又322()133x a a a f x x a x a -++++==+-+-+,因为函数5()3x f x x a +=-+在(1,)+∞上是减函数,所以只需23a y x a +=-+在(1,)+∞上是减函数,因此2031a a +>⎧⎨-≤⎩,解得24a -<≤.故答案为:24a -<≤11.(2022·全国·高三专题练习)已知函数f (x )m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________. 【答案】(-∞,0)∪(1,4] 【解析】由题意可得4-mx ≥0,x ∈(0,1]恒成立,所以m ≤4()xmin =4.当0<m ≤4时,4-mx 单调递减,所以m -1>0,解得1<m ≤4; 当m <0时,4-mx 单调递增,所以m -1<0,解得m <1,所以m <0. 故实数m 的取值范围是(-∞,0)∪(1,4]. 故答案为: (-∞,0)∪(1,4].12.(2022·全国·高三专题练习)已知函数()f x 满足:①(0)0f =;②在[13],上是减函数;③(1)(1)f x f x +=-.请写出一个满足以上条件的()f x =___________. 【答案】22x x -+ 【解析】由(1)(1)f x f x +=-可得()f x 关于1x =对称,所以开口向下,对称轴为1x =,且过原点的二次函数满足题目中的三个条件, 故答案为:22x x -+13.(2022·全国·高三专题练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______.【答案】1223⎛⎫- ⎪⎝⎭,【解析】由题意得:-2-12-21-22-11-2m m m m <<⎧⎪<<⎨⎪<⎩,,,解得12-<m <23.故答案为:1223⎛⎫- ⎪⎝⎭,14.(2022·全国·高三专题练习)若函数2()4f x x ax =-+在[]1.3内不单调,则实数a 的取值范围是__________. 【答案】13(,)22【解析】解:由题意得2()4f x x ax =-+的对称轴为2x a =,因为函数()f x 在[]1.3内不单调,所以123a <<,得1322a <<.故答案为:13(,)22.15.(2022·全国·高三专题练习)已知函数()y f x =是定义在R 的递减函数,若对于任意(0x ∈,1]不等式2(31)(1)(2)f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.【解】因为函数()y f x =是定义在R 的递减函数,所以2(31)(1)(2)f mx f mx x f m ->+->+对(0x ∈,1]恒成立2231112mx mx x mx x m ⎧-<+-⇔⎨+-<+⎩在(0x ∈,1]恒成立.整理,当(0x ∈,1]时,2222(1)1mx x m x x ⎧<-⎨-<+⎩恒成立, (1)当1x =,2102m <⎧⎨<⎩,所以12m <;(2)当(0,1)x ∈时,222211x m xx m x ⎧-<⎪⎪⎨+⎪>⎪-⎩恒成立,1,2xy y x ==-都在(0,1)x ∈上为减函数22122x x y x x -∴==-在(0,1)x ∈上为减函数, ∴22122x x ->,222x m x-∴<恒成立⇔12m ≤. 结合当1x =时,12m <①又2222212(1)(1)21,01(1)(1)x x x x x x y y x x x +--+--'===<-++,当(0,1)x ∈ 故211x y x +=-在(0,1)x ∈上是减函数,∴2111x x +<--.211x m x +∴>-恒成立1m ⇔≥-② ∴①、②两式求交集1[1,)2m ∈-由(1)(2)可知当[1m ∈-,1)2时,对任意(0x ∈,1]时,2(31)(1)(2)f mx f mx x f m ->+->+恒成立.16.(2022·全国·高三专题练习)已知函数()f x x . (1)若1a =,求函数的定义域;(2)是否存在实数a ,使得函数()f x 在定义域内具有单调性?若存在,求出a 的取值范围. 【解】(1)()f x x ,∴|1|10x +-≥,解得(,2][0,)x ∈-∞-+∞; 所以函数的定义域为(,2][0,)x ∈-∞-+∞.(2)当x a ≥-,211()24f x x x ⎫===-+⎪⎭,在1[,)4+∞递减,此时需满足14a -≥,即14a -≤时,函数()f x 在[,)a -+∞上递减;当x a <-,()f x x x ,在(,2]a -∞-上递减, ∵104a ≤-<,∴20a a ->->,即当14a -≤时,函数()f x 在(,)a -∞-上递减;综上,当14a -≤时,函数()f x 在定义域R 上连续,且单调递减.所以a 的取值范围是1,4⎛⎤-∞- ⎥⎝⎦。

人教版高中数学《函数的单调性与最值》全国一等奖教学设计

人教版高中数学《函数的单调性与最值》全国一等奖教学设计

人教版高中数学《函数的单调性与最值》全国一等奖教学设计1.3.1 函数的单调性与最大(小)值(第一课时)教学设计本课教学内容来自人教版《普通高中课程标准实验教科书必修数学1》第一章3.1节。

函数单调性研究自变量x增大时函数y增大或减小的性质。

增函数表现为“随着x增大,y也增大”。

与函数的奇偶性不同,函数的奇偶性研究x成为相反数时,y是否也成为相反数,即函数的对称性质。

函数单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有。

函数单调性的研究方法具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般。

教学的重点是引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数)。

本课教学内容包含四种知识类型。

函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题、提出问题、解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识。

函数的单调性是文字语言、图形语言、符号语言的上位知识。

图象法、作差法是判断证明函数单调性的下位知识。

本课教学内容不仅在函数内部,而且在解不等式、证明不等式、数列的性质等数学的其他内容的研究中都有重要的应用,因此在数学中具有核心地位。

文章没有明显的格式错误和问题段落。

本课将通过生活常见数据曲线图例子和函数f(x)=0.001x+1、y=x+的研究,引发观察发现思维和提出、分析、解决问题的思维。

同时,将通过二次函数探究背景,引发从直观到抽象、由特殊到一般、从感性到理性、先猜想后证明的思维,树立“事物是普遍联系的”价值观。

高三数学一轮复习优质教案6:2.2 函数的单调性与最值教学设计

高三数学一轮复习优质教案6:2.2 函数的单调性与最值教学设计

2.2 函数的单调性与最值『复习指导』本讲复习首先回扣课本,从“数”与“形”两个角度来把握函数的单调性和最值的概念,复习中重点掌握:(1)函数单调性的判断及其应用;(2)求函数最值的各种基本方法;对常见题型的解法要熟练掌握.基础梳理1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I.如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f (x )在区间D上是减函数图象描述自左向右图象是上升的自左向右图象是下降的(2)单调区间的定义若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件①对于任意x∈I,都有f(x)≤M;①对于任意x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M②存在x0∈I,使得f(x0)=M.结论M为最大值M为最小值助学微博一个防范函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y =1x 分别在(-∞,0),(0,+∞)内都是单调递减的,但不能说它在整个定义域即(-∞,0)∪(0,+∞)内单调递减,只能分开写,即函数的单调减区间为(-∞,0)和(0,+∞),不能用“∪”连接. 两种形式设任意x 1,x 2∈『a ,b 』且x 1<x 2,那么 ①f x 1-f x 2x 1-x 2>0⇔f (x )在『a ,b 』上是增函数;f x 1-f x 2x 1-x 2<0⇔f (x )在『a ,b 』上是减函数.②(x 1-x 2)『f (x 1)-f (x 2)』>0⇔f (x )在『a ,b 』上是增函数;(x 1-x 2)『f (x 1)-f (x 2)』<0⇔f (x )在『a ,b 』上是减函数. 两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值. 四种方法 函数单调性的判断(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数. (3)导数法:利用导数研究函数的单调性. (4)图象法:利用图象研究函数的单调性.双基自测1.设f (x )为奇函数,且在(-∞,0)内是减函数,f (-2)=0,则xf (x )<0的解集为( ). A .(-2,0)∪(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)2.(2011·湖南)已知函数f (x )=e x -1,g (x )=-x 2+4x -3.若有f (a )=g (b ),则b 的取值范围为( ).A .『2-2,2+2』B .(2-2,2+2)C .『1,3』D .(1,3)3.(2012·保定一中质检)已知f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ). A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)4.(2011·江苏)函数f (x )=log 5(2x +1)的单调增区间是______.5.若x >0,则x +2x的最小值为________.考向一 函数的单调性的判断『例1』试讨论函数f (x )=xx 2+1的单调性.『审题视点』 可采用定义法或导数法判断.『答案』 法一 f (x )的定义域为R ,在定义域内任取x 1<x 2, 都有f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1-x 21-x 1x 2x 21+1x 22+1,其中x 1-x 2<0,x 21+1>0,x 22+1>0.①当x 1,x 2∈(-1,1)时,即|x 1|<1,|x 2|<1,∴|x 1x 2|<1,则x 1x 2<1,1-x 1x 2>0,f (x 1)-f (x 2)<0,f (x 1)<f (x 2),∴f (x )为增函数. ②当x 1,x 2∈(-∞,-1』或『1,+∞)时, 1-x 1x 2<0,f (x 1)>f (x 2),∴f (x )为减函数.综上所述,f (x )在『-1,1』上是增函数,在(-∞,-1』和『1,+∞)上是减函数. 法二 ∵f ′(x )=⎝⎛⎭⎫x x 2+1′=x 2+1-x x 2+1′x 2+12=x 2+1-2x 2x 2+12=1-x 2x 2+12,∴由f ′(x )>0解得-1<x <1.由f ′(x )<0解得x <-1或x >1,∴f (x )在『-1,1』上是增函数,在(-∞,-1』和『1,+∞)上是减函数.判断(或证明)函数单调性的主要方法有:(1)函数单调性的定义;(2)观察函数的图象;(3)利用函数和、差、积、商和复合函数单调性的判断法则;(4)利用函数的导数等. 『训练1』 讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 『答案』 设-1<x 1<x 2<1, f (x )=ax -1+1x -1=a ⎝⎛⎭⎫1+1x -1, f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=ax 2-x 1x 1-1x 2-1当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.考向二 利用已知函数的单调区间求参数的值(或范围)『例2』已知函数f (x )=x 2+ax (a >0)在(2,+∞)上递增,求实数a 的取值范围.『审题视点』 求参数的范围转化为不等式恒成时要注意转化的等价性.『答案』 法一 设2<x 1<x 2,由已知条件f (x 1)-f (x 2)=x 21+a x 1-x 22+ax 2=(x 1-x 2)+a x 2-x 1x 1x 2=(x 1-x 2)x 1x 2-ax 1x 2<0恒成立.即当2<x 1<x 2时,x 1x 2>a 恒成立.又x 1x 2>4,则0<a ≤4.法二 f (x )=x+a x ,f ′(x )=1-ax 2>0得f (x )的递增区间是(-∞,-a ),(a ,+∞),根据已知条件a ≤2,解得0<a ≤4.已知函数的解析式,能够判断函数的单调性,确定函数的单调区间,反之已知函数的单调区间可确定函数解析式中参数的值或范围,可通过列不等式或解决不等式恒成立问题进行求解.『训练2』 函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( ).A .a =-3B .a <3C .a ≤-3D .a ≥-3『解析』y =x -5x -a -2=1+a -3x -a +2,需⎩⎪⎨⎪⎧a -3<0,a +2≤-1,即⎩⎪⎨⎪⎧a <3,a ≤-3,∴a ≤-3. 『答案』C考向三 利用函数的单调性求最值『例3』►已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在『-3,3』上的最大值和最小值.『审题视点』 抽象函数单调性的判断,仍须紧扣定义,结合题目作适当变形. (1)证明 法一 ∵函数f (x )对于任意x ,y ∈R 总有 f (x )+f (y )=f (x +y ), ∴令x =y =0,得f (0)=0. 再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0, f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2). 又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2). 因此f (x )在R 上是减函数. 法二 设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2) =f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2). 又∵x >0时,f (x )<0,而x 1-x 2>0, ∴f (x 1-x 2)<0,即f (x 1)<f (x 2), ∴f (x )在R 上为减函数. (2)解 ∵f (x )在R 上是减函数, ∴f (x )在『-3,3』上也是减函数,∴f (x )在『-3,3』上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,f (-3)=-f (3)=2.∴f (x )在『-3,3』上的最大值为2,最小值为-2.对于抽象函数的单调性的判断仍然要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x 1,x 2在所给区间内比较f (x 1)-f (x 2)与0的大小,或f x 1f x 2与1的大小.有时根据需要,需作适当的变形:如x 1=x 2·x 1x 2或x 1=x 2+x 1-x 2等.『训练3』 已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值; (2)判断f (x )的单调性;(3)若f (3)=-1,求f (x )在『2,9』上的最小值. 『答案』 (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0. (2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)∵f (x )在『0,+∞)上是单调递减函数. ∴f (x )在『2,9』上的最小值为f (9). 由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.∴f (x )在『2,9』上的最小值为-2.规范解答2——如何解不等式恒成立问题『问题研究』 在恒成立的条件下,如何确定参数的范围是历年来高考考查的重点内容,近年来在新课标地区的高考命题中,由于三角函数、数列、导数知识的渗透,使原来的分离参数法、根的分布法增添了思维难度,因而含参数不等式的恒成立问题常出现在综合题的位置. 『解决方案』 解决这类问题的关键是将恒成立问题进行等价转化,使之转化为函数的最值问题,或者区间根的分布问题,进而运用最值原理或者区间根原理使问题获解,常用方法还有函数性质法,分离参数法等.『示例』►(本题满分12分)已知函数f (x )=x 2-2ax +2,当x ∈『-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.利用函数性质求f (x )的最值,从而解不等式f (x )min ≥a ,得a 的取值范围.解题过程中要注意a 的范围的讨论.『解答示范』 ∵f (x )=(x -a )2+2-a 2,∴此二次函数图象的对称轴为x =a (1分) (1)当a ∈(-∞,-1)时,f (x )在『-1,+∞)上单调递增, ∴f (x )min =f (-1)=2a +3.(3分)要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a , 解得a ≥-3,即-3≤a <-1.(6分)(2)当a ∈『-1,+∞)时,f (x )min =f (a )=2-a 2.(8分) 要使f (x )≥a 恒成立,只需f (x )min ≥a , 即2-a 2≥a (10分)解得-2≤a ≤1,即-1≤a ≤1.(11分)综上所述,实数a 的取值范围为『-3,1』(12分)本题是利用函数的性质求解恒成立问题,主要的解题步骤是研究函数的性质,由于导数知识的运用,拓展了这类问题深度和思维的广度,因此,解答问题时,一般的解题思路是先通过对函数求导,判断导函数的符号,从而确定函数在所给区间上的单调性,得到区间上对应的函数最值.『试一试』 当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________. 『解析』法一 当x ∈(1,2)时,不等式x 2+mx +4<0可化为:m <-⎝⎛⎭⎫x +4x , 又函数f (x )=-⎝⎛⎭⎫x +4x 在(1,2)上递增, 则f (x )>-5, 则m ≤-5.法二 设g (x )=x 2+mx +4当-m 2≤32,即m ≥-3时,g (x )<g (2)=8+2m , 当-m 2>32,即m <-3时,g (x )<g (1)=5+m 由已知条件可得:⎩⎪⎨⎪⎧ m ≥-3,8+2m ≤0,或⎩⎪⎨⎪⎧m <-3,5+m ≤0.解得m ≤-5『答案』(-∞,-5』答案双基自测1. 『答案』C 2.『解析』函数f (x )的值域是(-1,+∞),要使得f (a )=g (b ),必须使得-x 2+4x -3>-1.即x 2-4x +2<0,解得2-2<x <2+ 2. 『答案』B 3.『解析』由已知条件:⎪⎪⎪⎪1x >1,不等式等价于⎩⎪⎨⎪⎧|x |<1,x ≠0,解得-1<x <1,且x ≠0. 『答案』C4.『解析』要使y =log 5(2x +1)有意义,则2x +1>0,即x >-12,而y =log 5u 为(0,+∞)上的增函数,当x >-12时,u =2x +1也为增函数,故原函数的单调增区间是⎝⎛⎭⎫-12,+∞. 『答案』⎝⎛⎭⎫-12,+∞ 5.『解析』∵x >0,则x +2x≥2x ·2x=2 2 当且仅当x =2x ,即x = 2时,等号成立,因此x +2x 的最小值为2 2.『答案』2 2。

2024届新高考一轮总复习人教版 第二章 第2节 函数的单调性与最值 课件(35张)

2024届新高考一轮总复习人教版 第二章 第2节 函数的单调性与最值 课件(35张)

【小题热身】 1.思考辨析(在括号内打“√”或“×”). (1)对于函数 y=f(x),若 f(4)<f(5),则 f(x)为增函数.( ) (2)函数 y=f(x)在[4,+∞)上是增函数,则函数的单调递增区间是[4,+∞).( ) (3)函数 y=3x的单调递减区间是(-∞,0)∪(0,+∞).( ) (4)对于函数 f(x),x∈D,若对任意 x1, x2∈D,且 x1≠x2 有(x1-x2)[f (x1)-f(x2)]>0,则 函数 f(x)在区间 D 上是增函数.( ) 答案:(1)× (2)× (3)× (4)√
【考点集训】
1.下列函数中,在区间(0,+∞)上为减函数的是( )
A.y=-sin x
B.y=x2-2x+3
C.y=ln (x+1)
x
D.y=2 022-2
解析:y=-sin x 和 y=x2-2x+3 在(0,+∞)上不具备单调性;y=ln (x+1)在(0,
+∞)上单增.故选 D.
答案:D
2.函数 y=log1(-x2+x+6)的单调递增区间为( )
-1<12,解得 1≤x<32,故选 D. 答案:D
4.(必修第一册 P81 例 5 改编)函数 f(x)=2x-5 1在区间[2,4]上的最大值为________, 最小值为________.
解析:因为 f(x)在[1,5]上是减函数,所以最大值为 f(2)=2×52-1=53,最小值为 f(4)
第二章 函 数
[课标解读] 借助函数图象,会用符号语言表达函数的单调性、最大值、最小值, 理解它们的作用和实际意义.
备考第 1 步——梳理教材基础,落实必备知识
1.函数单调性的定义
义域为 I,区间 D⊆I,如果∀x1,x2∈D,当 x1<x2 时

高考数学一轮复习 专题05 函数的单调性与最值教学案 文-人教版高三全册数学教学案

高考数学一轮复习 专题05 函数的单调性与最值教学案 文-人教版高三全册数学教学案

专题05 函数的单调性与最值1.利用函数的单调性求单调区间,比较大小,解不等式;2.利用函数单调性求最值和参数的取值X围;3.与导数交汇命题,以解答题形式考查.1.函数单调性的定义增函数减函数定义设函数y=f(x)的定义域为A,区间M⊆A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当Δy=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数Δy=f(x2)-f(x1)<0时,就称函数y=f(x)在区间M上是减函数图象自左向右看图象是上升的自左向右看图象是下降的2.单调性与单调区间如果一个函数在某个区间M上是增函数或是减函数就说这个函数在这个区间M上具有单调性,区间M称为单调区间.【特别提醒】1.函数的单调性是局部性质函数的单调性,从定义上看,是指函数在定义域的某个子区间上的单调性,是局部的特征.在某个区间上单调,在整个定义域上不一定单调.2.函数的单调区间的求法函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间. 3.单调区间的表示单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.高频考点一 确定函数的单调性(区间)例1、(1)函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞) B.(-∞,0)C .(2,+∞) D.(-∞,-2) (2)试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.答案 D(2)解 法一 设-1<x 1<x 2<1,f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上是增函数.法二 f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上递增.【方法规律】(1)求函数的单调区间,应先求定义域,在定义域内求单调区间,如例1(1). (2)函数单调性的判断方法有:①定义法;②图象法;③利用已知函数的单调性;④导数法. (3)函数y =f (g (x ))的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则.【变式探究】 判断函数f (x )=x +ax(a >0)在(0,+∞)上的单调性,并给出证明. 解 f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数. 证明如下:所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +a x(a >0)在(0,a ]上是减函数,在[a ,+∞)上为增函数. 法二 f ′(x )=1-a x 2,令f ′(x )>0,则1-a x2>0, 解得x >a 或x <-a (舍).令f ′(x )<0,则1-a x2<0,解得-a <x <a . ∵x >0,∴0<x <a .∴f (x )在(0,a ]上为减函数,在[a ,+∞)上为增函数. 高频考点二 函数的最值例2、(1)已知函数f (x )=⎩⎪⎨⎪⎧log 13x ,x >1,-x 2+2x ,x ≤1,则f (f (3))=________,函数f (x )的最大值是________.(2)已知函数f (x )=x 2+2x +ax,x ∈[1,+∞)且a ≤1.①当a =12时,求函数f (x )的最小值;②若对任意x ∈[1,+∞),f (x )>0恒成立,试某某数a 的取值X 围. (1)解析 ①由于f (x )=⎩⎪⎨⎪⎧log 13x ,x >1,-x 2+2x ,x ≤1.所以f (3)=log 133=-1,则f (f (3))=f (-1)=-3,②当x >1时,f (x )=log 13x 是减函数,得f (x )<0.当x ≤1时,f (x )=-x 2+2x =-(x -1)2+1在(-∞,1]上单调递增,则f (x )≤1,综上可知,f (x )的最大值为1.答案 -3 1(2)解 ①当a =12时,f (x )=x +12x +2,设1≤x 1<x 2,则f (x 2)-f (x 1)=(x 2-x 1)⎝ ⎛⎭⎪⎫1-12x 1x 2,令g (x )=-(x 2+2x )=-(x +1)2+1,x ∈[1,+∞), ∴g (x )在[1,+∞)上是减函数,g (x )max =g (1)=-3. 又a ≤1,∴当-3<a ≤1时,f (x )>0在x ∈[1,+∞)上恒成立. 故实数a 的取值X 围是(-3,1].【方法规律】(1)求函数最值的常用方法:①单调性法;②均值不等式法;③配方法;④图象法;⑤导数法.(2)利用单调性求最值,应先确定函数的单调性,然后根据性质求解.若函数f (x )在闭区间[a ,b ]上是增函数,则f (x )在[a ,b ]上的最大值为f (b ),最小值为f (a ).若函数f (x )在闭区间[a ,b ]上是减函数,则f (x )在[a ,b ]上的最大值为f (a ),最小值为f (b ).【变式探究】 如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x -1),那么函数f (x )在[-2,0]上的最大值与最小值之和为( ) A .2 B .3 C .4 D .-1答案 C高频考点三 函数单调性的应用例3、 (2016·某某卷)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值X 围是________.解析 ∵f (x )在R 上是偶函数,且在区间(-∞,0)上单调递增,∴f (x )在(0,+∞)上是减函数, 则f (2|a -1|)>f (-2)=f (2), 因此2|a -1|<2=212,又y =2x是增函数,∴|a -1|<12,解得12<a <32.答案 ⎝ ⎛⎭⎪⎫12,32 【变式探究】(1)如果函数f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值X 围是________.(2)定义在R 上的奇函数y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,则不等式f (log 19x )>0的解集为________.解析 (1)对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0.所以y =f (x )在(-∞,+∞)上是增函数. 所以⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值X 围是⎣⎢⎡⎭⎪⎫32,2.所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |0<x <13或1<x <3.答案 (1)⎣⎢⎡⎭⎪⎫32,2 (2)⎩⎨⎧⎭⎬⎫x |0<x <13或1<x <3 【方法规律】(1)利用单调性求参数的取值(X 围)的思路是:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.(2)在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解,此时应特别注意函数的定义域.1.【2016高考某某理数】已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足1(2)(2)a f f ->,则a 的取值X 围是______.【答案】13(,)22【解析】由题意()f x 在(0,)+∞上单调递减,又()f x 是偶函数,则不等式1(2)(2)a f f ->-可化为1(2)(2)a f f ->,则122a -<,112a -<,解得1322a <<.2.【2016高考新课标1卷】函数22xy x e =-在[]2,2-的图像大致为(A )(B )(C )(D )【答案】D3.【2016高考某某理数】设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是()A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题【答案】D【解析】①不成立,可举反例2,1)1(3,x x f x x x ≤-+>⎧=⎨⎩, 03,023,21()1,x x x x x x g x ≤-+<+⎧≥=<⎪⎨⎪⎩, 0(0)2,,x h x x x x -=≤>⎧⎨⎩②()()()()f x g x f x T g x T +=+++ ()()()()f x h x f x T h x T +=+++ ()()()()g x h x g x T h x T +=+++前两式作差,可得()()()()g x h x g x T h x T -=+-+ 结合第三式,可得()()g x g x T =+, ()()h x h x T =+ 也有()()f x f x T =+∴②正确 故选D.【2015高考某某,理6】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =- 【答案】B【2015高考某某,理15】设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是.(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==. 【答案】①③④⑤【解析】令3()f x x ax b =++,求导得2'()3f x x a =+,当0a ≥时,'()0f x ≥,所以()f x 单调递增,且至少存在一个数使()0f x <,至少存在一个数使()0f x >,所以3()f x x ax b =++必有一个零点,即方程30x ax b ++=仅有一根,故④⑤正确;当0a <时,若3a =-,则2'()333(1)(1)f x x x x =-=+-,易知,()f x 在(,1),(1,)-∞-+∞上单调递增,在[1,1]-上单调递减,所以()=(1)132f x f b b -=-++=+极大,()=(1)132f x f b b =-+=-极小,要使方程仅有一根,则()=(1)1320f x f b b -=-++=+<极大或者()=(1)1320f x f b b =-+=->极小,解得2b <-或2b >,故①③正确.所以使得三次方程仅有一个实 根的是①③④⑤.(2014·卷)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1) 【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.(2014·某某卷)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞) 【答案】D(2014·某某卷)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.【答案】1【解析】由题意可知,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫2-12=f ⎝ ⎛⎭⎪⎫-12=-4⎝ ⎛⎭⎪⎫-122+2=1. (2014·某某卷)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R,∃a ∈D ,f (a )=b ”; ②函数f (x )∈B 的充要条件是f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B ; ④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R)有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号)【答案】①③④ 【解析】若f (x )∈A ,则f (x )的值域为R ,于是,对任意的b ∈R,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得f (x )的值域包含于[-M ,M ]=[-1,1],但此时f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R,一定存在一个a 0∈D ,使得f (a 0)=b -g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1 (x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=xx 2+1(x >-2).易知f (x )∈⎣⎢⎡⎦⎥⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确. (2014·某某卷)已知函数f (x )=e x-ax 2-bx -1,其中a ,b ∈R,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值X 围.当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b . 综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理g (x )在区间(x 0,1)内存在零点x 2. 故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值X 围是(e -2,1).(2013·某某卷)已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,lnx ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2. (1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值; (3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值X 围.【解析】(1)函数f(x)的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞). (2)由导数的几何意义可知,点A 处的切线斜率为f′(x 1),点B 处的切线斜率为f′(x 2),故当点A 处的切线与点B 处的切线垂直时,有f′(x 1)f′(x 2)=-1. 当x<0时,对函数f(x)求导,得f′(x)=2x +2. 因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1, 所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2+2]≥[-(2x 1+2)](2x 2+2)=1,当且仅当-(2x 1+2)=2x 2+2=1,即x 1=-32且x 2=-12时等号成立.所以,函数f(x)的图像在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1.两切线重合的充要条件是 ⎩⎪⎨⎪⎧1x 2=2x 1+2,①ln x 2-1=-x 21+a.② 由①及x 1<0<x 2,知-1<x 1<0.由①②得,a =x 21+ln 12x 1+2-1=x 21-ln(2x 1+2)-1.设h(x 1)=x 21-ln(2x 1+2)-1(-1<x 1<0), 则h′(x 1)=2x 1-1x 1+1<0.所以,h(x 1)(-1<x 1<0)是减函数. 则h(x 1)>h(0)=-ln 2-1, 所以a>-ln 2-1.又当x 1∈(-1,0)且趋近于-1时,h(x 1)无限增大, 所以a 的取值X 围是(-ln 2-1,+∞).故当函数f(x)的图像在点A ,B 处的切线重合时,a 的取值X 围是(-ln 2-1,+∞). (2013·某某卷)设函数f(x)=e x+x -a (a∈R,e 为自然对数的底数).若曲线y =sinx 上存在(x 0,y 0)使得f(f(y 0))=y 0,则a 的取值X 围是( ) A .[1,e] B .[e -1-1,1] C .[1,e +1] D .[e -1-1,e +1] 【答案】A当x∈⎣⎢⎡⎦⎥⎤0,12时,e x>0,-2x +1≥0,故g′(x)>0,当x∈⎝ ⎛⎦⎥⎤12,1时,e x>e >1,0>-2x +1≥-1,故g′(x)>0.综上,g′(x)在x∈[0,1]上恒大于0,所以g(x)在[0,1]上为增函数,值域为[1,e],从而a 的取值X 围是[1,e].(2013·某某卷)函数y =x33x -1的图像大致是( )图1-5 【答案】C【解析】函数的定义域是{x∈R|x≠0},排除选项A ;当x<0时,x 3<0,3x-1<0,故y>0,排除选项B ;当x→+∞时,y>0且y→0,故为选项C 中的图像.(2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .x 0∈R,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=0 【答案】C1.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为( ) A .-2 B .2 C .-6 D .6【解析】 由图象易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,∴a =-6.【答案】 C2.下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x【解析】 ∵y =11-x与y =ln(x +1)在(-1,1)上为增函数,且y =cos x 在(-1,1)上不具备单调性.∴A ,B ,C 不满足题意.只有y =2-x=⎝ ⎛⎭⎪⎫12x在(-1,1)上是减函数.【答案】 D3.定义新运算“⊕”:当a ≥b 时,a ⊕b =a 2;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),在区间[-2,2]上的最大值等于( ) A .-1 B .1 C .6 D .12【解析】 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 【答案】 C4.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c <b <aB .b <a <cC .b <c <aD .a <b <c【解析】 ∵函数图象关于x =1对称,∴a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,又y =f (x )在(1,+∞)上单调递增,∴f (2)<f ⎝ ⎛⎭⎪⎫52<f (3),即b <a <c . 【答案】 B5.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值X 围是( )A .(8,+∞) B.(8,9] C .[8,9] D .(0,8)【答案】 B6.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.【解析】由题意知g (x )=⎩⎪⎨⎪⎧x 2(x >1),0 (x =1),-x 2 (x <1),函数的图象如图所示的实线部分,根据图象,g (x )的减区间是[0,1).【答案】 [0,1)7.函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________. 【解析】由于y =⎝ ⎛⎭⎪⎫13x在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3. 【答案】 38.设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a的取值X 围是________.【解析】作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.【答案】 (-∞,1]∪[4,+∞) 9.已知函数f (x )=1a -1x(a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值. (1)证明 设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.(2)解 ∵f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,又由(1)得f (x )在⎣⎢⎡⎦⎥⎤12,2上是单调增函数, ∴f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,易知a =25.10.已知函数f (x )=2x -a x的定义域为(0,1](a 为实数). (1)当a =1时,求函数y =f (x )的值域;(2)求函数y =f (x )在区间(0,1]上的最大值及最小值,并求出当函数f (x )取得最值时x 的值. 解 (1)当a =1时,f (x )=2x -1x,任取1≥x 1>x 2>0,则f (x 1)-f (x 2)=2(x 1-x 2)-⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)⎝⎛⎭⎪⎫2+1x 1x 2.∵1≥x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0.∴f (x 1)>f (x 2),∴f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值1,所以f (x )的值域为(-∞,1].11.若函数f (x )=a x(a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =( ) A .4 B .2 C.12D.14【解析】当a >1,则y =a x 为增函数,有a 2=4,a -1=m ,此时a =2,m =12,此时g (x )=-x 在[0,+∞)上为减函数,不合题意. 当0<a <1,则y =a x为减函数, 有a -1=4,a 2=m ,此时a =14,m =116.此时g (x )=34x 在[0,+∞)上是增函数.故a =14.【答案】 D12.已知函数f (x )=e x-1,g (x )=-x 2+4x -3,若存在f (a )=g (b ),则实数b 的取值X 围为( )A .[0,3]B .(1,3)C .[2-2,2+2]D .(2-2,2+2)【答案】 D13.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.【解析】依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, ∴h (x )在x =2时,取得最大值h (2)=1. 【答案】 114.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值X 围.解 (1)由x +a x -2>0,得x 2-2x +ax>0,当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }. (2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时,∴g ′(x )=1-a x 2=x 2-ax2>0.因此g (x )在[2,+∞)上是增函数, ∴f (x )在[2,+∞)上是增函数. 则f (x )min =f (2)=ln a2.。

函数单调性与最值的综合(一轮复习教案)

函数单调性与最值的综合(一轮复习教案)

学习过程一、复习预习1.函数的值域1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。

2.确定函数的值域的原则①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合;②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。

二、知识讲解常见函数的值域:1 一次函数的)0(≠+=a b ax y 的定义域为R ,值域为R ,对于一个R 中的任意一个数,对R 中都有为唯一的数与它相对应。

2 二次函数)0(2≠++=a c bx ax y 的定义域为R ,值域为B 。

当0>a 时,}44{2ab ac y y B -≥=,当0<a 时,}44{2a b ac y y B -≤=,对R 中都有为唯一的数与它相对应。

3反比例函数()0ky k x=≠的值域为{}0y R y ∈≠.4求函数值域的方法:观察法,配方法,换元法,分离常数法,反解法,判别式法等。

单调性(1)定义:一般地,设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2)(2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。

函数的单调性与最值+课件——2025届高三数学一轮复习

函数的单调性与最值+课件——2025届高三数学一轮复习
探究点一 函数单调性的判断与证明
例1 已知函数,且,讨论 的单调性.
[思路点拨] 先分离常数,再根据定义判断函数的单调性,注意分 和 两种情况进行讨论.
解:函数,设,,且 ,则 ,当时,在上单调递增,由,得 ,所以,又, ,所以,即 ,此时在 上单调递增;当时,在 上单调递减,由,得,所以 ,又,,所以 ,即,此时在 上单调递减.综上,当时,函数在 上单调递增;当时,函数在 上单调递减.
单调性
单调区间
续表
3.函数的最值
前提
一般地,设函数的定义域为,如果存在实数 满足
条件
,都有____________; ,使得_____________
,都有____________; ,使得_____________
结论
为最大值
为最小值
几何意义
图象上最高点的_________
图象上最低点的_________
变式题 (多选题)下列函数在其定义域内是增函数的为( )
BD
A. B. C. D.
[解析] 对于A,画出函数 的图象如图所示,易知函数 在其定义域内不是增函数,故A错误;对于B,因为函数是增函数, 是减函数,所以是 上的增函数,故B正确;对于C,函数是减函数,而 为增函数,
在定义域 上为减函数,故C错误;对于D,的定义域为,在上恒成立,故 是上的增函数,故D正确.故选 .
(2)开区间上的“单峰”函数一定存在最大值或最小值.
◆ 对点演练 ◆
题组一 常识题
1.[教材改编] 函数 的单调递增区间是_______,单调递减区间是________.
[解析] 由函数的图象可得 的单调递增区间是,单调递减区间是 .
2.[教材改编] 函数 的最大值为___,最小值为___.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函的单调性与最值一、知识梳:(阅读教材必修1第27页—第32页)1.对于给定区间D 上的函)(x f ,对于D 上的任意两个自变量12,x x ,当12x x <时,都有12()()f x f x <,那么就说)(x f 在区间D 上是增函; 当12x x <时,都有12()()f x f x >, 则称)(x f 是区间D 上减函.2.判断函单调性的常用方法:(1)定义法: (2)导法: (3)利用复合函的单调性; (4) 图象法. 3.设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函.4.设)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函;如果0)(<'x f ,则)(x f 为减函.5.如果)(x f 和)(x g 都是增(或减)函,则在公共定义域内是)()(x g x f +增(或减)函;)(x f 增)(x g 减,则)()(x g x f -是增函;)(x f 减)(x g 增,则差函)()(x g x f -是减函.6.基本初等函的单调性(1)一次函y kx b =+. 当0k >在(),-∞+∞上是增函;当0k <在(),-∞+∞上是减函(2)二次函2(0)y ax bx c a =++≠.当0a >在,2b a ⎛⎤-∞- ⎥⎝⎦上是减函;在,2b a ⎡⎫-+∞⎪⎢⎣⎭上是增函; 当0a <在,2b a ⎛⎤-∞- ⎥⎝⎦上是增函;在,2b a ⎡⎫-+∞⎪⎢⎣⎭上是减函;(3)反比例函(0)ky k x=≠.当0k >在(),0-∞上是减函,在()0,+∞上是减函;当0k <在(),0-∞上是增函,在()0,+∞上是增函。

(4)指函(0,1)x y a a a =>≠.当1a >在(),-∞+∞上是增函;当01a <<在(),-∞+∞上是减函。

(5)指函log (0,1)a y x a a =>≠当1a >在()0,+∞上是增函;当01a <<在()0,+∞上是减函。

7.函的最值对于函y=f(x),设定义域为A ,则(1)、若存在,使得对于任意的,恒有 成立,则称f()是函f(x)的 。

(2)、若存在,使得对于任意的,恒有 成立,则称f()是函f(x)的 。

二、题型探究【探究一】:判断证明函的单调性 例1:试判断函2()1xf x x =-在区间(0,1)上的单调性.例2:下列函中,在区间]0,(-∞上是增函的是( ) (A )842+-=x x y (B ) )(log 21x y -= (C )12+-=x y (D )x y -=1 探究二:抽象函的单调性例3:【2013师大精典题库】定义在R 上的函f(x),f(0) ,当x>0时, f(x)>1,且对任意的a 、b ,有f(a+b)=f(a)f(b). (1)求证:f(0)=1;(2)求证:对任意x ,f(x)> 0; (3)证明:f(x)是R 上的增函。

例4:函f(x)对任意a 、b ,有f(a-b) = f(a)-f(b)+1, 且x>0,时, f(x)> 1。

(1)证明:f(x)是R 上的增函; (2)若f(4)=5,解关于m 的不等式f(3<3.探究三:与单调性有关的参问题例5:若函()y f x =在R 单调递增,且2()()f m f m >-,则实m 的取值范围是( ).A (),1-∞- .B ()0,+∞ .C ()1,0- .D (),1-∞-()0,+∞探究四、函的单调性与最值 例6:求下列函的值域 1、 y =-x 2-6x -5 2、 y=x+ 3、4、 ,表示不超过x 的最大整例7:12.求f (x )=x 2-2ax -1在区间[0,2]上的最大值和最小值.解:f (x )=(x -a )2-1-a 2,对称轴为x =a . w w w .x k b 1.c o m①当a<0时,由图①可知,f(x)=f(0)=-1,minf(x)=f(2)=3-4a.max②当0≤a<1时,由图②可知,f(x)=f(a)=-1-a2,minf(x)=f(2)=3-4a.max③当1≤a≤2时,由图③可知,f(x)=f(a)=-1-a2,minf(x)=f(0)=-1.max④当a>2时,由图④可知,f(x)=f(2)=3-4a,minf(x)=f(0)=-1.max综上所述,当a<0时,f(x)min=-1,f(x)max=3-4a;当0≤a<1时,f(x)min=-1-a2,f(x)max=3-4a;当1≤a≤2时,f(x)min=-1-a2,f(x)max=-1;当a>2时,f(x)min=3-4a,f(x)max=-1.三、方法提升1、函的单调性只能在函的定义域内讨论,函在给定的区间的单调性反映函在区间上函值的变趋势,是函在区间上的整体性质,但不一定是函在定义域内上的整体性质,函的单调性是针对某个区间而言的,所以受到区间的限制;2、求函的单调区间,首先请注意函的定义域,函的增减区间都是定义域的子区间;其次,掌握基本初等函的单调区间,常用的方法有:定义法,图象法,导法;3、 利用函的单调性可以解函不等式、方程及函的最值问题。

四、反思感悟。

五、课时作业一、选择题1. 【15高考改编】函)ln()(2x x x f -=的定义域为( )A. ),1()0,(+∞-∞ B ),1[]0,(+∞-∞ C.)1,0( D. ]1,0[ 2. 【15高考改编】已知函||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=a ( C )A. 3B. 2C. 1D. -13.已知偶函()f x 在区间[0,)+∞单调递增,则满足(21)f x -<1()3f 的x 取值范围是(A )A .(13,23)B .(∞-,23)C .(12,23)D .⎪⎭⎫ ⎝⎛+∞,324.若偶函)(x f 在(]1,-∞-上是增函,则下列关系式中成立的是 (D )A .)2()1()23(f f f <-<- B .)2()23()1(f f f <-<-C .)23()1()2(-<-<f f fD .)1()23()2(-<-<f f f5.已知f (x )是R 上的奇函()f x ,且f (2)=0,x 为单调增函,求x f (x )的解集( )A .[-2,0] B. C. D.6.偶函 在 上单调递增,则 与 的大小关系是( )A .)2()1(+≥+b f a fB .)2()1(+<+b f a fC .)2()1(+≤+b f a fD .)2()1(+>+b f a f7.设a ,b ∈R ,且a >0,函f (x )=x 2+ax +2b ,g (x )=ax +b ,在[-1,1]上g (x )的最大值为2,则f (2)等于( ).A .4B .8C .10D .168.函f(x)= x 2+2(a -1)x+2在区间(-∞,4)上递减,则a 的取值范围是( ) A. [)3,-+∞B. (],3-∞-C. (-∞,5)D.[)3,+∞9.已知函3()log 2,[1,9]f x x x =+∈,则函22[()]()y f x f x =+的最大值是 ( ) A .22 B .13 C .11 D .-3 10.函xx xx x x f cos 22)4sin(2)(22++++=π的最大值为M ,最小值为m ,则A.4=-m MB.4=+m MC.2=-m MD.2=+m M二、填空题11.函⎩⎨⎧++=762)(x x x f ]1,1[]2,1[-∈∈x x ,则)(x f 的最大值、最小值为。

12. 当x 则函的最大值为 。

13.设x ∈R ,则函f (x ) =16)12(122+-++x x 的最小值为 。

14.已知22x y ++22(8)(6)x y -+-= 20,则| 3 x – 4 y – 100 |的最大值为 ,最小值为 。

三、解答题15.求证:函()1f x x x=+,在区间()0,1上是减函。

16.已知函. (1)当12a =时,求函()f x 的最小值; (2)若对任意[2,),()0x f x ∈+∞>恒成立,求实a 的取值范围。

17.已知函()12(1)x x f x a a a 2=--> (1)求函()f x 的值域;(2)若[2,1]x ∈-时,函()f x 的最小值为7-,求a 的值和函()f x 的最大值。

18.对于定义域为D 的函)(x f y =,若同时满足下列条件:①)(x f 在D 内单调递增或单调递减;②存在区间[b a ,]D ⊆,使)(x f 在[b a ,]上的值域为[b a ,];那么把)(x f y =(D x ∈)叫闭函。

(1)求闭函3x y -=符合条件②的区间[b a ,]; (2)判断函)0(143)(>+=x xx x f 是否为闭函?并说明由; (3)判断函2++=x k y 是否为闭函?若是闭函,求实k 的取值范围。

答案解析 一、选择题1.A2.C3.A4.D5.A6.D7.B8.B9.B 10.D 二、填空题11.10,-1 12. 13.13 14.100 + 253,100 – 253。

三、解答题15.解析:设()120,1x x <∈则()()()()()()121212211212121212121211 1 11 f x f x x x x x x x x x x x x x x x x x x x x x -=+---=-+⎛⎫=-- ⎪⎝⎭-=-12x x < 120x x -< ()120,1x x ∈ 120x x > 1210x x -<()()120f x f x ∴->()()12f x f x ∴> ∴()1f x x x=+在区间()0,1上是减函。

16.解析:(1)当12a =时,2311()3x x f x x x x ++==++ 易证()y f x =在[2,)+∞上是增函(须证明一下)min 111()(2)2322f x f ∴==++=(2)由()0f x >有2320x x ax ++>对[2,)x ∈+∞恒成立 223a x x ∴>-- 令2()3[2,)g x x x x =--∈+∞ max ()(2)10g x f ∴==- 210a ∴>- 即5a >-(另有讨论法求和函最值法求) 17.解析:设22021(1)2x a t y t t t =>∴=--+=-++(1)1(0,)t =-∉+∞ 221y t t ∴=--+在(0,)+∞上是减函1y ∴< 所以值域为(,1)-∞(2)21[2,1]1[,]x a t a a ∈->∴∈ 由211[,]t a a =-∉ 所以221y t t =--+在21[,]a a上是减函 22172a a a --+=-∴=或4a =-(不合题意舍去) 当2114t a ==时y 有最大值, 即2max 117()214416y =--⨯+=18.解析:(1)由题意,3x y -=在[b a ,]上递减,则⎪⎩⎪⎨⎧>-=-=ab b a a b 33解得⎩⎨⎧=-=11b a所以,所求的区间为[-1,1] (2)取,10,121==x x 则)(107647)(21x f x f =<=,即)(x f 不是),0(+∞上的减函。

相关文档
最新文档