7.1.2 平面直角坐标系内点的坐标特征
象限-各象限点及坐标轴上点的坐标特点

7.1.2(2)--象限-各象限点及坐标轴上点的坐标特点一.【知识要点】1.象限内点的坐标特点:①点P(x,y)在第一象限⇔x>0,y>0;②点P(x,y)在第二象限⇔x<0,y>0;③点P(x,y)在第三象限⇔x<0,y<0;④点P(x,y)在第四象限⇔x>0,y<0.2.坐标轴上点的坐标特征:①点在x 轴上⇔纵坐标为0;②点在y 轴上⇔横坐标为0.注意:坐标轴上的点不属于任何一个象限.二.【经典例题】1.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.2.如果0ab <,那么点P ),(b a 所在象限为( )A. 第二象限B.第四象限C.第一或第三象限D.第二或第四象限3.若点M (a ,b )在第二象限,则点N (-b ,b -a )在第________象限4.根据要求解答下列问题:设M (a ,b )为平面直角坐标系中的点.(1)当a >0,b <0时,点M 位于第几象限?(2)当ab >0时,点M 位于第几象限?(3)当a 为任意实数,且b <0时,点M 位于何处?5.在平面直角坐标系中,若点A )1,4(2+-m m 在y 轴的正半轴上,则点B )21,1(m m --在( )A.第一象限B.第二象限C.第三象限D.第四象限6.已知点P )82,2(+-a a ,分别根据下列条件求出点P 的坐标.(1)点P 在x 轴上;(2)点P 在y 轴上;(3)点P 到x 轴、y 轴的距离相等.三.【题库】【A 】1.若点P(x,y)满足 xy=0,则点P 一定落在 .【B 】1.若a >0,则点P (﹣a ,2)应在( )A .第一象限B .第二象限C .第三象限D .第四象限【C 】1.如果点M (a+b ,ab )在第二象限,那么点N (a ,b )在第 象限.【D 】1.在平面直角坐标系中,点)21,1(2---a 一定在第 象限.2.在平面直角坐标系中,若点),(b a A -在第三象限,则点),(b ab B -在第 象限.3.若点A 的坐标为(m+4,m-5),则点A 不可能在第 象限.。
平面直角坐标系内点的坐标特征

横坐标的绝 对值
③点P(a,b)与坐标原点的距离是 a2 b2
学习文档
练一练
1.点M〔-5,12〕到x轴的距离是__1_2_;到y轴的距 离是__5__;到原点的距离是__1_3_. 2.点M〔m,-5〕. ①点M到x轴的距离是__5__; ②假设点M到y轴的距离是4;那么 m 为±_4___.
学习文档
学习文档
7.点P(a-2,2a+8),分别根据以下条件求出点P的 坐标. 〔3〕点Q的坐标为〔1,5〕,直线PQ∥y轴;
解:∵点Q的坐标为(1,5),直线PQ∥y轴, ∴a-2=1, 解得 a=3, 故2a+8=14,那么P(1,14);
学习文档
7.点P(a-2,2a+8),分别根据以下条件求出点P的 坐标.
2
学习文档
问题3:如图,在平面直角坐标系中你能画出点A关 于y轴的对称点吗?
y
A′(-2,3)
A (2,3)
你能说出点A 与点A'坐标的 关系吗?
O
x
学习文档
做一做:在平面直角坐标系中画出以下各点关于y轴
的对称点.
y
(x , y)
关于 y轴 对称
( -x, y )
B(-4,2)
O
C '(-3,-4)
-4 -3 -2 -1O 1 2 3 4 5 x
E
-1 -2
H
F
-3 -4
Q
G
学习文档
总结归纳 y
O L(-x,-y)
M〔x,y〕 x
关于原点对称的两点,横坐标和纵坐标都互为 相反数.
学习文档
做一做
点〔4,3〕与点〔4,- 3〕的关系是〔 B 〕 A.关于原点对称 B.关于 x轴对称 C.关于 y轴对称 D.不能构成对称关系
平面直角坐标系内点的坐标特征

平面直角坐标系内点的坐标特征1. 坐标系的基本概念嘿,大家好,今天我们来聊聊平面直角坐标系,这听起来是不是有点像数学课上的枯燥内容?别急,让我们把它变得轻松有趣些!想象一下,我们的生活就像是一张大大的地图,而这个坐标系就是给我们定位的工具。
平面直角坐标系有两个轴,一个是横轴(也就是我们常说的X轴),另一个是纵轴(也就是Y轴)。
它们交叉在一个点上,那个点叫原点,通常用“O”表示,像个小圆点,简简单单却意义重大。
在这个坐标系里,每一个点都可以用一对数字来表示,像是一个神秘的通行证!比如说,点A的坐标是(3, 2),这就像是在告诉你,走3步到右边,再走2步向上,你就能找到A了。
是不是有点像解谜游戏?想想看,如果把我们生活中的一些地方换成坐标,那我们的家、学校、朋友的住处都可以变得超级有趣!1.1 坐标的组成部分那么,坐标到底是由什么组成的呢?简单来说,坐标就是X和Y两个部分。
X代表横向的距离,Y代表纵向的距离。
就像打麻将时,横着走的那一排和竖着走的那一排,虽然看上去没什么关系,但其实它们结合起来,才有了更大的乐趣!而且,X轴和Y轴分别对应着不同的方向,生活中的一切似乎都可以在这两条轴上找到自己的位置。
你有没有想过,为什么有些点的坐标是正的,有些却是负的呢?其实,这就像我们的人生旅程,有时候顺风顺水,有时候却要逆风飞翔。
比如说,(3, 2)就意味着你要向右走3步,但却要往下走2步,这种上下起伏就像过山车一样刺激。
没错,生活就是这样,时而欢笑,时而波折,正负之间的变化才让我们的人生更加丰富多彩!2. 点的四个象限说到坐标,就不得不提到四个象限了。
这四个象限就像四个小世界,每个世界都有它独特的风景。
第一象限位于右上方,所有的坐标都是正数,简直是个阳光明媚的地方,适合开派对!第二象限在左上方,X是负的,Y是正的,像个爱喝咖啡的文艺青年,虽然有些忧伤,但也很有个性。
第三象限则是左下方,这里X和Y都是负数,仿佛在深夜的酒吧里,听着忧伤的旋律。
考点01 平面直角坐标系内点的坐标特征(解析版)

考点一平面直角坐标系内点的坐标特征知识点整合1.有序数对(1)有顺序的两个数a与b组成的数对,叫做有序数对.平面直角坐标系中的点和有序实数对是一一对应的.(2)经一点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标和纵坐标.有序实数对(a,b)叫做点P的坐标.2.点的坐标特征点的位置横坐标符号纵坐标符号第一象限﹢+第二象限-+第三象限--第四象限+-x轴上正半轴上+0负半轴上-0y轴上正半轴上0+负半轴上0-原点003.轴对称(1)点(x,y)关于x轴对称的点的坐标为(x,-y);(2)点(x,y)关于y轴对称的点的坐标为(-x,y).4.中心对称两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y).5.图形在坐标系中的旋转图形(点)的旋转与坐标变化:(1)点P(x,y)绕坐标原点顺时针旋转90°,其坐标变为P′(y,-x);(2)点P(x,y)绕坐标原点顺时针旋转180°,其坐标变为P′(-x,-y);(3)点P(x,y)绕坐标原点逆时针旋转90°,其坐标变为P′(-y,x);(4)点P(x,y)绕坐标原点逆时针旋转180°,其坐标变为P′(-x,-y).6.图形在坐标系中的平移图形(点)的平移与坐标变化(1)点P(x,y)向右平移a个单位,其坐标变为P′(x+a,y);(2)点P(x,y)向左平移a个单位,其坐标变为P′(x-a,y);(3)点P(x,y)向上平移b个单位,其坐标变为P′(x,y+b);(4)点P(x,y)向下平移b个单位,其坐标变为P′(x,y-b).考向一有序数对有序数对的作用:利用有序数对可以在平面内准确表示一个位置.有序数对一般用来表示位置,如用“排”“列”表示教师内座位的位置,用经纬度表示地球上的地点等.典例引领1.根据下列表述,能确定具体位置的是()A.电影城1号厅6排B.北京市海淀区C.北纬31︒,东经103︒D.南偏西40︒【答案】C【分析】本题考查了平面内的点与有序实数对一一对应,根据平面内的点与有序实数对一一对应分别对每个选项判断.【详解】A、电影城1号厅6排不能确定具体位置.故本选项不合题意;B、北京市海淀区不能确定具体位置.故本选项不合题意;C、北纬31︒,东经103︒能确定具体位置.故本选项符合题意;D、南偏西40︒不能确定具体位置.故本选项不合题意.故选:C2.下列表述,能确定准确位置的是()A.威高广场东面B.环翠楼北偏西10︒C.U度影城2号厅一排D.北纬37︒,东经122︒【答案】D【分析】本题考查了有序数对,利用有序数对可以准确的表示出一个位置.确定位置需要两个数据,对各选项分析判断利用排除法即可求解.【详解】解:A、威高广场东面,不能确定具体位置,故本选项不符合题意;B、环翠楼北偏西10︒,不能确定具体位置,故本选项不符合题意;C 、U 度影城2号厅一排,不能确定具体位置,故本选项不符合题意;D 、北纬37︒,东经122︒,能确定具体位置,故本选项符合题意.故选:D .3.2023年山西省大学生篮球锦标赛于12月中旬开赛,图1是某大学篮球场座位图,图2是该篮球场部分座位的示意图.小刚、小芳、小美的座位如图所示.若小刚的座位用()1,1-表示,小芳的座位用()3,2表示,则小美的座位可以表示为()A .()1,2-B .()2,0C .()2,1-D .()1,0【答案】C【分析】本题考查点的坐标,根据点的位置先确定平面直角坐标系的位置,然后写出点的坐标是解题的关键.【详解】解:根据小刚、小芳的位置确定坐标系位置如图所示,∴小美的座位可以表示为()2,1-,故选C .4.如图,雷达探测器测得六个目标A ,B ,C ,D ,E ,F ,目标E ,F 的位置分别表示为()()3,330,2,30E F ︒︒.按照此方法,目标A ,B ,C ,D 的位置表示不正确的是()A .()5,60A ︒B .()3,120B ︒C .()3,210C ︒D .()5,270D ︒【答案】C【分析】本题考查利用有序实数对表示位置,解题的关键是根据理解题意.根据()3,330E ︒,()2,30F ︒得到第一个数为由里向外的圈数,第二个数为角度,直接逐个判断即可得到答案【详解】解:∵()3,330E ︒,()2,30F ︒,∴()5,60A ︒,()3,120B ︒,()4,210C ︒,()5,270D ︒,故选:C5.如果剧院里“5排2号”记作()5,2,那么()7,9表示()A .“7排9号”B .“9排7号”C .“7排7号”D .“9排9号”【答案】A【分析】本题考查了坐标确定位置,解题关键是清楚有序数对与排号之间的关系,根据题意可前一个数表示排数,后一个数表示号数即可求解.【详解】解:由“5排2号”记作()5,2可知,有序数对与排号对应,所以()7,9表示第7排9号.故选:A .6.一幢东西走向的5层教学楼,每层共8个教室.若把一楼从东侧数起第3个教室记为()1,3,二楼最东侧教室记为()2,1,则五楼最西侧教室记为()A .()5,1B .()5,8C .()8,5D .()1,5【答案】B【解析】略7.某班级第3组第4排的位置可以用数对()3,4表示,则数对()1,2表示的位置是()A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排【答案】C【解析】略变式拓展00,【答案】()【分析】本题考查有序数对位置的确定,进而得出答案,采用数形结合的思想是解此题的关键.【详解】解:根据棋子“马”和“车”00,.故答案为()【答案】23【分析】本题主要考查了数字类的规律探索,的数为()1n n+,据此算出第三、解答题13.如图是某校区域示意图.规定列号写在前面,行号写在后面.(1)用数对的方法表示校门的位置.9,7在图中表示什么地方?(2)数对()2,3;【答案】(1)()(2)教学楼.【分析】(1)根据校门所在的列及所在的行,即可表示出校门的位置;(2)根据数对的表示方法找到对应的位置,即可得到数对表示的地点;本题考查了用有序数对表示点的位置,理解序数对表示的含义是解题的关键.【详解】(1)解:由图可知,校门位于第2列,第3行,2,3;∴校门的位置为数对()9,7表示的位置为第9列,第7行,(2)解:数对()由图可知,表示的地方为教学楼.14.在计算机软件Excel中,若将第A列第1行空格记作A1,如图.(1)试在图中找出空格B53,并填上“B53”字样;(2)图中的蜜蜂所在位置记作什么?(3)一只电子“蜜蜂”的行进路线为A52→A51→B52→C51→D52→C53.试在图中描出它的行进路线.【答案】(1)见解析(2)D52(3)见解析【详解】(1)如图所示(2)图中的蜜蜂所在位置记作D52.(3)行进路线如图所示.考向二点的坐标特征1.象限角平分线上的点的坐标特征(1)第一、三象限角平分线上的点的横、纵坐标相等;第二、四象限角平分线上的点的横、纵坐标互为相反数;(2)平行于x轴(或垂直于y轴)的直线上的点的纵坐标相等,平行于y轴(或垂直于x轴)的直线上的点的横坐标相等.2.点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.典例引领∴点()3,1Q a a -+所在象限是第二象限,故选:B .变式拓展二、填空题所以23a a +=±,解得3a =-(舍去)或1-.故答案为:1-.三、解答题考向三点的坐标规律探索这类问题通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.典例引领1.如图,将边长为1的正方形ABOC 沿x 轴正方向连续翻转2014次,点A 依次落在点12A A 、、32014A A 、、的位置,则点2014A 的横坐标为()A .1343B .1510C .1610D .2014【答案】D【分析】本题考查了探究规律,利用规律即可解决问题,涉及坐标与图形变化-对称、规律型:点的坐标,先根据题意写出已知点的坐标,再找到规律为次数是2的奇数倍的偶数,位于x 轴上,横坐标为这个翻转次数;次数是2的偶数倍的偶数,位于x 轴的上方,横坐标为这个翻转次数加上1;据此作答即可.A .()3032,1-B .()3034,4C .()3036,4D .()3031,1【答案】B【分析】本题考查坐标的规律问题,先找到点的规律,然后计算解题即可,解题的关键是找到点的坐标规律.【详解】由题可知,每四个点纵坐标重复一次,横坐标向左平移6个单位长度,∴202345053÷= ,则2023A 的横坐标为:505643034⨯+=,纵坐标为4,故选:B .4.对一组数(),x y 的一次操作变换记为()111,P x y ,定义其变换法则如下:()111,(,)P x y x y x y =+-,()()()()22211111111,,,,n n n n n n n P x y x y x y P x y x y x y ----=+-=+- (n 为大于1的整数),如这组数为(1,2),则1(3,1)P =-,2(2,4)P =,3(6,2)P =-…当这组数为(1,1)-时,2024P =()A .()101210122,2-B .()10120,2-C .()10110,2D .()101110112,2-【答案】A【分析】本题考查了新定义点的坐标,根据操作方法依次求出前几次变换的结果,然后根据规律解答,读懂题目信息,理解操作方法并观察出点的纵坐标的指数的变化规律是解题的关键.【详解】解:当这组数为()1,1-时,()()11,10,2P -=,()()21,12,2P -=-,()()()231,10,40,2P -==,()()()2241,14,42,2P -=-=-,()()()351,10,80,2P -==,∴()()1012101220241,12,2P -=-,故选:A .二、填空题【答案】()20212,【分析】本题考查了点坐标规律探索,旨在考查学生的抽象概括能力.标为对应的运动次数减3,纵坐标依次为:4,2,1,1,2-,每5次一个循环,据此即可求解.【详解】解:由题意得:动点0()34P -,在平面直角坐标系中的运动为:1()22P -,,()21,1P -,31(0)P -,,42(1)P ,,54(2)P ,,62(3)P ,,...∴横坐标为对应的运动次数减3,则第2024次运动到点2024P 的横坐标为:202432021-=;∵()202415405+÷=,∴第2024次运动到点2024P 的纵坐标为:2;故答案为:()20212,变式拓展【答案】()20242024,0P 【分析】本题考查了坐标系中点的坐标规律探索,仔细观察点的坐标发现第()22,0P ,第4次坐标为()44,0P ,第6次坐标为()66,0P ,故第2024次的坐标为【详解】第2次坐标为()22,0P ,第4次坐标为()44,0P ,第6次坐标为故第2024次的坐标为()20242024,0P .故答案为:()20242024,0P .7.在平面直角坐标系xOy 中,对于点(),P x y ,我们把(11,P y x --知点1A 的友好点为2A ,点2A 的友好点为3A ,点3A 的友好点为4A ,这样依次得到各点的坐标为()1,2,设()1,A x y ,则x y +的值是.【答案】5-【分析】本题主要考查了规律型:点的坐标,解答本题的关键是准确理解题意,发现变换规【答案】()2023,1-【分析】本题主要考查的是坐标系中的规律探究问题,计算P 的时间,根据规律即可求得第2023秒P 点位置,找出运动规律是解题的关键.【详解】由题意可知,点P 运动一个半圆所用的时间为:π÷三、解答题10.如图,在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:4A (_________,_________),8A (_________,_________),12A (_________,_________);(2)写出点4n A 的坐标(n 是正整数);(3)指出蚂蚁从点2021A 到点2022A 的移动方向.【答案】(1)2,0;4,0;6,0;(2)()2,0n (3)向右.【分析】(1)本题考查了在平面坐标系中点的坐标特点,根据题意知道按向上、向右、向下、向右的方向每次移动1个单位,即可解题.(2)本题考查了在平面坐标系中坐标的特点和坐标的规律,观察点4A 的位置,由图可知,蚂蚁每走4步为一个周期,得出4n OA 的值,再根据点4n A 在x 轴的正半轴上,即可解题.(3)本题考查了在平面坐标系中坐标的特点和坐标的规律,根据点4n A 的坐标,分析可得点2020A 的坐标,再结合题意知道按方向每次移动1个单位,得到点2021A 和点2021A 的坐标,即可解题.【详解】(1)解:由图可知,点4A ,点8A ,点12A 都在x 轴的正半轴上,小蚂蚁每次移动1个单位,42OA ∴=,84OA =,126OA =,()42,0A ∴,()84,0A ,()126,0A ,故答案为:2,0;4,0;6,0.(2)解:由图可知,蚂蚁每走4步为一个周期,44422n OA n n ∴=÷⨯=,点4n A 在x 轴的正半轴上,()42,0n A n ∴.(3)解: 当2020n =时,4505n ∴=⨯,∴点2020A 的坐标为()1010,0,∴点2021A 的坐标为()1010,1,点2022A 的坐标为()1011,1,∴蚂蚁从点2021A 到点2022A 的移动方向为向右.。
人教版七年级数学下册7.1.2《平面直角坐标系》教学设计

人教版七年级数学下册7.1.2《平面直角坐标系》教学设计一. 教材分析《平面直角坐标系》是人教版七年级数学下册第七章第一节的内容,主要介绍了平面直角坐标系的定义、各象限内点的坐标特征及坐标轴上的点的坐标特征。
这部分内容是学生学习函数、几何等知识的基础,对于培养学生的空间想象能力和抽象思维能力具有重要意义。
二. 学情分析七年级的学生已具备一定的数学基础,但对于平面直角坐标系的理解和应用还需要通过实例来加强。
学生在学习过程中应能够借助图形直观地理解坐标系,掌握各象限内点的坐标特征,并能够运用坐标系解决实际问题。
三. 教学目标1.知识与技能:理解平面直角坐标系的定义,掌握各象限内点的坐标特征及坐标轴上的点的坐标特征。
2.过程与方法:通过实例分析,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标特征及坐标轴上的点的坐标特征。
2.难点:坐标系在实际问题中的应用。
五. 教学方法1.情境教学法:通过实例引入坐标系的概念,让学生在实际情境中理解坐标系的含义。
2.合作学习法:引导学生分组讨论,共同探究坐标系的性质,培养学生的合作意识。
3.问题驱动法:提出问题,引导学生思考,激发学生的探究精神。
六. 教学准备1.教学素材:准备相关实例,如图形、图片等,用于导入和巩固环节。
2.教学工具:准备黑板、粉笔、投影仪等教学工具。
七. 教学过程1.导入(5分钟)利用多媒体展示生活中的实例,如商场地图、停车场示意图等,引导学生思考如何用数学工具表示这些实例中的点。
通过讨论,引入平面直角坐标系的概念。
2.呈现(10分钟)用投影仪展示平面直角坐标系的图形,引导学生观察并总结各象限内点的坐标特征及坐标轴上的点的坐标特征。
教师在黑板上板书各象限内点的坐标特征及坐标轴上的点的坐标特征。
3.操练(10分钟)学生分组讨论,每组选取一个实例,运用坐标系表示实例中的点,并总结坐标系的性质。
考点01 平面直角坐标系内点的坐标特征(原卷版)

考点一平面直角坐标系内点的坐标特征知识点整合1.有序数对(1)有顺序的两个数a与b组成的数对,叫做有序数对.平面直角坐标系中的点和有序实数对是一一对应的.(2)经一点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标和纵坐标.有序实数对(a,b)叫做点P的坐标.2.点的坐标特征点的位置横坐标符号纵坐标符号第一象限﹢+第二象限-+第三象限--第四象限+-x轴上正半轴上+0负半轴上-0y轴上正半轴上0+负半轴上0-原点003.轴对称(1)点(x,y)关于x轴对称的点的坐标为(x,-y);(2)点(x,y)关于y轴对称的点的坐标为(-x,y).4.中心对称两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y).5.图形在坐标系中的旋转图形(点)的旋转与坐标变化:(1)点P(x,y)绕坐标原点顺时针旋转90°,其坐标变为P′(y,-x);(2)点P(x,y)绕坐标原点顺时针旋转180°,其坐标变为P′(-x,-y);(3)点P(x,y)绕坐标原点逆时针旋转90°,其坐标变为P′(-y,x);(4)点P(x,y)绕坐标原点逆时针旋转180°,其坐标变为P′(-x,-y).6.图形在坐标系中的平移图形(点)的平移与坐标变化(1)点P (x ,y )向右平移a 个单位,其坐标变为P′(x +a ,y );(2)点P (x ,y )向左平移a 个单位,其坐标变为P′(x -a ,y );(3)点P (x ,y )向上平移b 个单位,其坐标变为P′(x ,y +b );(4)点P (x ,y )向下平移b 个单位,其坐标变为P′(x ,y -b ).考向一有序数对有序数对的作用:利用有序数对可以在平面内准确表示一个位置.有序数对一般用来表示位置,如用“排”“列”表示教师内座位的位置,用经纬度表示地球上的地点等.典例引领1.根据下列表述,能确定具体位置的是()A .电影城1号厅6排B .北京市海淀区C .北纬31︒,东经103︒D .南偏西40︒2.下列表述,能确定准确位置的是()A .威高广场东面B .环翠楼北偏西10︒C .U 度影城2号厅一排D .北纬37︒,东经122︒3.2023年山西省大学生篮球锦标赛于12月中旬开赛,图1是某大学篮球场座位图,图2是该篮球场部分座位的示意图.小刚、小芳、小美的座位如图所示.若小刚的座位用()1,1-表示,小芳的座位用()3,2表示,则小美的座位可以表示为()A .()1,2-B .()2,0C .()2,1-D .()1,04.如图,雷达探测器测得六个目标A ,B ,C ,D ,E ,F ,目标E ,F 的位置分别表示为()()3,330,2,30E F ︒︒.按照此方法,目标A ,B ,C ,D 的位置表示不正确的是()A .()5,60A ︒B .()3,120B ︒C .()3,210C ︒D .()5,270D ︒5.如果剧院里“5排2号”记作()5,2,那么()7,9表示()A .“7排9号”B .“9排7号”C .“7排7号”D .“9排9号”6.一幢东西走向的5层教学楼,每层共8个教室.若把一楼从东侧数起第3个教室记为()1,3,二楼最东侧教室记为()2,1,则五楼最西侧教室记为()A .()5,1B .()5,8C .()8,5D .()1,57.某班级第3组第4排的位置可以用数对()3,4表示,则数对()1,2表示的位置是()A .第2组第1排B .第1组第1排C .第1组第2排D .第2组第2排变式拓展9.在平面直角坐标系内,,x y 满足个.11.若教室座位表的6列7行记为12.电影票上“10排8号”记作三、解答题13.如图是某校区域示意图.规定列号写在前面,行号写在后面.(1)用数对的方法表示校门的位置.9,7在图中表示什么地方?(2)数对()14.在计算机软件Excel中,若将第A列第1行空格记作A1,如图.(1)试在图中找出空格B53,并填上“B53”字样;(2)图中的蜜蜂所在位置记作什么?(3)一只电子“蜜蜂”的行进路线为A52→A51→B52→C51→D52→C53.试在图中描出它的行进路线.考向二点的坐标特征1.象限角平分线上的点的坐标特征(1)第一、三象限角平分线上的点的横、纵坐标相等;第二、四象限角平分线上的点的横、纵坐标互为相反数;(2)平行于x轴(或垂直于y轴)的直线上的点的纵坐标相等,平行于y轴(或垂直于x轴)的直线上的点的横坐标相等.2.点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.典例引领变式拓展11.已知在平面直角坐标系中,点(),P a b 在第三象限,且点P 到x 轴的距离是到y 轴距离的2倍,则下列关系式正确的是()A .2a b=B .2a b=-C .2b a=D .2b a=-二、填空题三、解答题16.已知直角坐标系中一点(2,21)M m m -+.(1)若点M 在y 轴上,则点M 的坐标为______;(2)若点M 在过点(2,3)A 且与x 轴平行的直线上,则点M 的坐标为______;(3)若点M 到x 轴、y 轴的距离相等,则点M 的坐标为______.17.已知点(22,5)P a a -+,解答下列各题:(1)若点P 在x 轴上.求出点P 的坐标;(2)若点Q 的坐标为(4,5),直线PQ x ∥轴,求出点P 的坐标;(3)若点P 到x 轴、y 轴的距离相等,求出点P 的坐标,并说出P 点所在的象限.18.在平面直角坐标系中,点()13,2P m n --和()3,25Q m n -+.(1)如果点P 在y 轴上,点Q 在x 轴上,求m 、n 的值;(2)点P 和点Q 是否能同在第三象限内,若能,求出m 、n 的范围,若不能,请说明理由;(3)如果PQ y ∥轴,且6PQ =,求m 、n 的值.考向三点的坐标规律探索这类问题通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.典例引领1.如图,将边长为1的正方形ABOC 沿x 轴正方向连续翻转2014次,点A 依次落在点12A A 、、32014A A 、、的位置,则点2014A 的横坐标为()A .1343B .1510C .1610D .20142.已知点0(o E x y ,),点22)(F x y ,,点11()M x y ,是线段EF 的中点,则1x 0212y y y +=.在平面直角坐标系中有三个点(1,1)(1,1)(01)A B C ---,,,,点A .()3032,1-B .()3034,44.对一组数(),x y 的一次操作变换记为()111,(,)P x y x y x y =+-,()222,P x y =二、填空题变式拓展6.如图,平面直角坐标系内,动点P 按照图中箭头所示方向依次运动,第动到点()11,1P ,第2次运动到点()22,0P ,第3次运动到点3P 律,动点P 第2024次运动到点的坐标为.7.在平面直角坐标系xOy 中,对于点(),P x y ,我们把(11,P y x --知点1A 的友好点为2A ,点2A 的友好点为3A ,点3A 的友好点为4A ,这样依次得到各点的坐标为()1,2,设()1,A x y ,则x y +的值是.8.如图,在平面直角坐标系中,半径均为1个单位长度的半圆1O9.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第()2,2,第2次从点()2,2运动到点()4,0,第3次从点()4,0运动到点规律运动,第2023次运动后动点P 的坐标为.三、解答题10.如图,在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:4A (_________,_________),8A (_________,_________),12A (_________,_________);(2)写出点4n A 的坐标(n 是正整数);(3)指出蚂蚁从点2021A 到点2022A 的移动方向.。
7.1.2 平面直角坐标系 七年级数学下册(人教版)
D(____,____)
0
-3
例如,由点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y
轴上的坐标是4,我们说点A的横坐标是3,纵坐标是4,有序数对(3,4)就叫
做点A的坐标,记作A(3,4).
自学导航
原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?
原点O的坐标为(0,0);x轴上的点的纵
所以三角形ABC的边AB=9,边AB上的高为4,
1
所以三角形ABC的面积为 ×9×4=18.
2
迁移应用
1三角形OAB的面积为
( C )
A.1
B.2
C.3
D.4
2. 若三角形ABC的三个顶点的坐标分别为A (-3,-1),B (2,-1),C(1,3),则三角
所以点C与点B的纵坐标相同,点C与点D的横坐标
相同,所以点C( 3,-5).
迁移应用
1.已知点A (m+1,-2)和点B(3,m-1),若直线AB// x轴,则m的值为( C )
A.2
B.-4
C.-1
D.3
2.平面直角坐标系中,直线a经过点A(-2,3),B (4,3),则直线a还经过点( C )
A.(-5,4)
B.(3,-8)
C.(0,3)
D.(3,-3)
3.在平面直角坐标系中,AB//y轴,AB=5,点A的坐标为(-5,3),则点B的坐标
为( C )
A.(-5,8)
B.(0,3)
C.(-5,8)或(-5,-2)
D.(0,3)或(-10,3)
迁移应用
4.在平面直角坐标系中,已知点A(-3,2),B(1,4),经过点A 的直线l//x轴,C
7.1.2平面直角坐标系(1) (教学课件)- 人教版数学七年级下册
答案图
5.(补图题)(人教7下P68、北师8上P66)如图,正方形ABCD的边长为6.(1)如果以点A为原点,AB所在直线为x轴,建立平面直角坐标系,在图中画出y轴,并写出正方形的顶点A,B,C,D的坐标;(2)请另建立一个平面直角坐标系,这时正方形的顶点A,B,C,D的坐标又分别是什么?
四
三
二
一
(1)点A( , ),在第 象限; (2)点B( , ),在第 象限; (3)点C( , ),在第 象限; (4)点D( , ),在第 象限.
二
2
-2
三
-2
y轴
向右
x轴
知识点二:点的坐标(1)有了平面直角坐标系,平面内的点就可以用一个有序数对来表示,这个有序数对就是点的坐标.(2)我们用有序数对表示平面上的点,这对数叫做 ,表示方法为(a,b),a是点对应 上的数值,b是点对应 上的数值. (3)注意:坐标平面内的点与有序数对是一一对应的关系.
点的位置
横坐标符号
纵坐标符号
第一象限
第二象限
第三象限
第四象限
轴
轴
+
+
-
+
-
-
+
-
纵坐标为 0
横坐标为 0
归纳:轴、轴不属于任何象限
新知探究
知识点1:象限点的特征
练习巩固
1.点 <m></m> 在第____象限;2.下列各点中,在第三象限的点是( )A. <m></m> B. <m></m> C. <m></m> D. <m>3.在平面直角坐标系中,点 <m></m> 在( )A.第二象限 B. <m></m> 轴上 C.第四象限 D. <m></m> 轴上4.点 <m></m> 在直角坐标系的 <m></m> 轴上,则 <m></m> ____ ,点 <m></m> 的坐标为______;5.点 <m></m> 在直角坐标系的 <m></m> 轴上,则点 <m></m> 的坐标为________;</m>
平面直角坐标系内点的坐标特征
1、平面直角坐标系内点的坐标特征2、《平面直角坐标系》错解剖析3、坐标、棋盘、考题4、坐标方法的应用5、《平面直角坐标系》考点聚焦6、《平面直角坐标系》考点例析1、平面直角坐标系内点的坐标特征在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
平面直角坐标系将平面分成四个象限,在坐标轴上以及四个象限内的各点的坐标各有特征。
现就有关点的坐标特征归纳如下。
一、各象限内点的坐标特征如图,点P(a,b)在各象限内的特点:①点P在第一象限⇔a>0,b>0;②点P在第二象限⇔a<0,b>0;③点P在第三象限⇔a<0,b<0;④点P在第二象限⇔a>0,b<0;例1 、若a>0,则点P(-a,2)应在()A.第一象限内B.第二象限内C.第三象限内D.第四象限内解析:因为a>0,所以-a<0.根据各象限内的坐标特点可知,点P(-a,2)应在第二象限内,故应选(C)。
二、坐标轴上的点的坐标特征在x轴上的点的纵坐标为0,即x轴上的点的坐标可记作(x,0),如点(-3,0)在x 轴上;在y轴上的点的横坐标为0,即y轴上的点的坐标可记作(0,y),如点(0,-3)在y 轴上;原点的坐标为(0,0)。
归纳:点P(a,b)在坐标轴上的特点:①点P在x轴上⇔a为任何实数,b=0;②点P在y轴上⇔a=0,b为任何实数;③点P在原点⇔a=0,b=0;例2、若点A(2、n)在x轴上则点B(n-2 ,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限析解:因为点A(2、n)在x轴上,所以n=0,所以n-2 =-2,n+1=1,因此点B的坐标为(-2,1),故点B在第二象限内,选(B).三、点的坐标与点到坐标轴的距离的关系点到直线的距离,也就是这一点到直线的垂线段的长度。
根据点在平面直角坐标系中的特点,点P(a,b)到x轴的距离为|b|,到y轴的距离为|a|。
如图点A(-2,3)到x轴的距离为AD=OE=|3|=3,到y轴的距离为AE=OD=|-2|=2.例3 、P(3,-4)到x轴的距离是.解析:根据上面的结论可知,点P到x轴的距离为|-4|=4,到y轴的距离为|3|=3,所以应填4.四、象限角的平分线上的点的坐标特征①若P(a,b)在第一、三象限的角平分线上⇔横、纵坐标相等,即a=b;②若P(a,b)在第二、四象限的角平分线上⇔横、纵坐标互为相反数,即a=-b或a+b=0;例4 已知点P(a+3,7-a)位于象限的角平分线上,则点P的坐标为_______。
平面直角坐标系
D.凡是两条互相垂直的直线都能组成平面直角坐标系
针对练习
1.下面四个图形中,是平面直角坐标系的是( D)
y
3y
2
1
-3 -2 -1 O 1 2 3 x
(A)
3y
2 1
-3 -2 -1-1 O1 2 3 x
-2
-3(C)
3 2 1O -1 -2 -3 x
正方形ABCD的边长为4,请建立一个平面直角 坐标系,并写出正方形的四个顶点A,B,C,D在这个 平面直角坐标系中的坐标.
D
C
A
B
y 4D
(A) O
C
B 4x
解:如图,以顶点A为原点,AB所 在直线为x轴,AD所在直线为y轴建 立平面直角坐标系. 此时,正方形四个顶点A,B,C,D的坐 标分别为: A(0,0), B(4,0), C(4,4), D(0,4).
4.如果点M(3,x)在第一象限,则x的取值范围是 ____x_>__0____.
5.若第二象限内的点P(x,y)满足|x|=3,y2=25,则
点P的坐标是_(__-_3__,__5_)__.
6.如图所示,在平面直角坐标系中,描出以下各点:A (4,3),B(-2,3),C(-3,-1),D(2,-2),E(0, -1),F(-1,0),G(0,0).并指出各点所在的象限 或坐标轴.
注意:坐标轴上的点不属于任何一个象限.
活动1: 观察坐标系,填写各象限内的点的坐标的特征:
y
点的位置
横坐标的 符号
纵坐标的 符号
5
4
B3
A
第一象限 +
+
2 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1.2 平面直角坐标系内点的坐标特征
弋阳二中徐美魁
课后作业:
一、巩固练习
1.点(3,-2)在第_____象限;点(-1.5,-1)在第_______象限;点(0,3)在____轴
上;若点(a+1,-5)在y轴上,则a=______.
2.点A在x轴上,距离原点4个单位长度,则A点的坐标是_______________。
3.点 M(- 8,12)到 x轴的距离是_________,到 y轴的距离是________.
4.若点P在第三象限且到x轴的距离为 2 ,到y轴的距离为1.5,则点P的坐标是
________。
5.如果点P(x,y)的坐标满足xy>0,那么点P在第象限;如果满足xy<0,那么点P在
第象限;如果满足xy=0,•那么点P在.
6.实数 x,y满足 (x-1)2+ |y| = 0,则点 P( x,y)在【】.
(A)原点(B)x轴正半轴(C)第一象限(D)任意位置
7.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点
C的坐标为
二、布置作业:
已知:点P(2m+4,m-1)。
试分别根据下列条件,求出P点的坐标。
(1)点P在y轴上;
(2)点P到x轴的距离为2;
(3)点P的纵坐标比横坐标大3;
(4)点P在过点A(2,-3)且与x轴平行的直线上。