高中数学必修2立体几何教材分析报告和教学建议

合集下载

学习“教材分析与教学指导——数学(必修2)立体几何初步.doc

学习“教材分析与教学指导——数学(必修2)立体几何初步.doc

学习“教材分析与教学指导——数学(必修2)立体几何初步”今天下午系统地学习了人教A版高中数学教材分析与教学指导——数学(必修2)立体几何初步,并观看了专家的“教学指导视频”、研读了一线名师的“教学设计”等栏目.做了简单的学习笔记,摘录如下:第一章空间几何体特点1 .立体几何的内容安排,遵循从整体到局部、具体到抽象的原则;现在的教材(数学2 ),依据新的课程标准的要求,先从对空间几何体的整体感受入手,再研究组成空间几何体的点、直线和平面.这种安排就是从关注学生的角度出发的.特点2 .强调几何直观,渗透公理化思想,引进合情推理,进行适当的几何推理;高中立体几何课程历来以培养逻辑思维能力为主要目标的.而新课标更加强调空间想象能力的培养,强调空间观念的建立.更加关注通过对整体图形的把握去培养和发展空间想象能力.要求学生获得数学结论的过程中,在空间观念形成的过程中,应当经历合情推理-演绎推理的过程来进行.从而将合情推理引入课程.在大量的实际背景,直观操作和感受的基础上,引导学生归纳、概括出若干定理,让学生感受公理化思想(而不是进行严格的公理化的训练)和了解证明的含义.使学生经历观察、实验、猜想、证明等数学活动,发展合情推理能力和初步的演绎推理的能力.特点3 .从整套教材来看,几何教学、学习的要求不是一步到位,而是分阶段,分层次,多角度.第一层次:对几何体的认识,依赖于学生的直观感受,不做任何推理的要求;第二层次:以长方体为载体(包括其它的实物模型、身边的实际例子)对图形(模型)进行观察、实验和说理.引入合情推理;第三层次:严格的推理证明.如线面平行、垂直的性质定理的证明;第四层次:空间向量与立体几何,用代数的方法研究几何问题.在选修系列2部分:(空间向量与立体几何).第二章点、直线、平面之间的位置关系以长方体为载体,使学生在直观感知的基础上,认识空间中点、线、面之间的位置关系;通过对大量图形的观察、实验、操作和说理, 使学生进一步了解平行、垂直关系的基本性质以及判定方法,学会准确地使用空间几何的数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题.专家给出教学建议如下:教学建议1 :充分借助长方体、正方体等几何体模型.空间几何体,特别是长方体、正方体,其中的棱与棱、棱与面、面与面之间的位置关系,是研究直线与直线、直线与平面、平面与平面的位置关系的直观载体.在空间点、直线、平面的位置关系,直线、平面平行的判定及其性质,直线、平面垂直的判定及其性质的教学中,都可以以长方体、正方体等几何体为直观载体,按照操作加以确认,用精确语言表达;再将直线、平面平行和垂直的性质定理进行严密的论证和计算.教学建议2 :教学中可以通过“观察”、“思考”、“探究”等操作形式展现学生学习思维的过程.重在引导学生看实物模型以及长方体,其目的是提高学生的空间想象能力,加深对所学知识的理解和记忆.应借助现代信息技术工具, 看表现空间点、直线与平面位置关系的各种图形,获得丰富的感性材料.在引导学生观察模型时,应引导学生学会有目的地、有序地、全面地观察模型体现的点、直线、平面之间的关系.侧重于从学生的实际生活和生产实际中提出与数学有关的问题,放手让学生去想去议,调动学生思维的积极性和学习交流.当学生经过思考、讨论后,真正实现由感性认识向理性认识的过渡,达到巩固所学知识的目的,激发学生的理性思维,引导学生由直观感知、操作确认到思辨论证的过渡.着眼于促使学生独立思考和自主探索,给学生自主探索的机会, 让学生在讨论的基础上发现问题和解决问题;安排适量的、具有一定探索意义和开放性的问题,给学生比较充分的思考的空间和时间,在借助图形直观进行合情推理的过程中,增强学生探究的好奇心,加深对数学的理解,培养学生乐于钻研、勤于思考的习惯,激发出潜在的创造力,让学生在不断探索与创造的氛围中发展解决问题的能力,体会数学的价值.教学建议3 :引入合情推理,突出几何直观,渗透公理化思想.本章内容削弱了以演绎推理为主要形式的定理证明,减少了定理的数量,删去了大量的几何证明题,淡化了几何证明的技巧,降低了论证过程形式化的要求.如本章给出的4个公理、9个定理中只有4个性质定理需要证明,其余4个判定定理只需通过直观感知、操作确认,归纳得出.。

人教课标版(B版)高中数学必修2《立体几何初步》教学建议

人教课标版(B版)高中数学必修2《立体几何初步》教学建议

高中数学B版必修2第一章教学建议第一章立体几何初步这一章的立意是,先通过直观认识空间几何体的性质,然后建立空间图形性质之间的逻辑关系。

直观是通过观察、分析来认识几何体的特征,形成不同的几何体的概念。

并非是停留在“幼儿识图”的水平。

1.1 空间几何体教材是通过“物体占有空间的部分”来描述几何体的,说明几何体已是抽象的几何概念。

在小学和初中,主要是通过几何体具有“长、宽、高”度(三个度量)来理解几何体。

这一节,将通过静态和动态观察,认识各种不同几何体的特征。

1.1.1 空间几何体的基本元素从静态的观点,观察几何体,把一个几何体分解为点、线(段)、面(片)。

应注意,这里的线,应包括曲线;面应包括曲面。

建议增加观察柱面的例子。

应向学生指出,在几何体中,线线相交确定交点的位置,面面相交确定交线的位置。

从动态的方面观察,几何体可看作面运动的轨迹。

在直观几何中,困难是理解几何体的高度和线线、线面、面面之间的距离。

教材是以长方体为例进一步感知距离和高这两个概念的。

在学习点、线、面的逻辑关系时, 再给出严格的定义。

理解空间点、线、面位置关系的关键,是理解异面直线的概念。

在直观立体几何中,应把它作为重点考察对象,但由于课标对异面直线不作要求,教材编写时,只是提及,没有作细致的考察。

建议对异面直线作认真的考察,强化学生对异面直线的理解。

1.1.2 棱柱、棱锥和棱台的结构特征1. 建议先复习集合的特征性质描述法。

在此基础上引导学生探索各种几何体的特征性质。

试验表明,学生会积极地参加探索,找出各种几何体的特征性质。

通过探索过程,不仅能使学生更深刻地理解各种几何体的定义,而且也会加深学生对集合性质描述法的理解2. 用各种几何体的包含关系,理解特征性质之间的关系。

1.1.3圆柱、圆锥和圆台和球的结构特征教学建议同上节。

1.1.4 投影与直观图1.这一节的重点是,通过观察和实验发现平行投影的性质。

在此基础上,介绍画直观图的方法。

从教材分析谈高中立体几何教学

从教材分析谈高中立体几何教学
2、立体几何位置关系之间关系转化密切:
三 几点教学建议
(四)不可忽视推理论证,知识、方法、思维系统化;利用 好转化化归思想,形成一定的立体几何解题策略.
3、不可忽视推理论证,不可忽视知识、方法、思维系统 化;利用好转化化归思想,形成一定的立体几何解题 策略.(文科应稍加强)
(3)引导学生掌握立体几何问题解决的常见策略: ① 立体问题平面化(即将一平面图形从几何体中 “抓出”,使之正对我们“立起”)思维策略 (尤其是立体计算时); ②运动变化、发展拓广的思维策略; ③转化化归、逆向推理的思维策略(经常是在证明 平行、垂直关系时用到); ④ 以算代证; ⑤模型化 ⑥整合(垂直、平行、图形对条件的整合)
2、有关判定和性质定理: 在学习完某种位置关系后可以接着先学习该种位置关系 的判定,再学习新的的位置关系的判定和性质.
三 几点教学建议
(三)根据实际情况适当补充一些概念: 1、在学习完线面垂直的基础上,可适当补充给出长方体、 直棱柱、正棱锥、正棱柱等概念; (1)体现立体几何概念的严谨性; (2)方便利用资料 ; 2、根据学生的实际补充球的性质和球与一些简单几何体 的关系;
2 3
DC1.求
二面角面角D OF D1的余弦值.
uuur uuur
uuuur
AA1 CC1 C1 DC1
uuur DF uuur
u23uuDuuurCuur1
F
AA1 DD1 D1
三 几点教学建议
(五)四部曲利用空间向量解决立体问题; 2、模型化推导计算公式:
(1)线面成角:
r uuur
sin | cos | rn AuBuur
| n | | AB |
三 几点教学建议
(五)四部曲利用空间向量解决立体问题; 2、模型化推导计算公式: (2)二面角:

高中数学必修2教学建议

高中数学必修2教学建议

高中数学必修2教学建议一、教材分析(一)课标内容与要求1.空间几何初步(18课时)(1)空间几何体①利用实物模型、计算机软件观察大量立体图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描绘现实生活中简单物体的结构.②能画出简单立体图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的视图,会用材料将上述的视图复原为立体模型,并会用斜二侧法画出它们的直观图.③通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解立体图形的不同表示形式.④完成实习作业,如画出校舍某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).(2)点、线、面之间的位置关系①借助长方体模型,在直观认识和理解空间线面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下公理.公理:◆如果一条直线上的两点在一个平面内,那么这条直线在此平面内.◆过不在一条直线上的三点,有且只有一个平面.◆如果两个平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆平行于同一条直线的两条直线平行.◆空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.②以空间几何的上述定义和公理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定.通过直观感知、操作确认,归纳出以下判定定理:◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直.◆一个平面过另一个平面的垂线,则两个平面垂直.通过直观感知、操作确认,归纳出以下性质定理,并用综合法或反证法加以证明:◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行.◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行.◆垂直于同一个平面的两直线平行.◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.③能运用已获得的结论证明一些空间位置关系的简单命题.2.解析几何初步(18课时)(1)直线与方程①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素.②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率计算公式.③能根据斜率判定两条直线平行或垂直.④根据确定直线位置的几何量,探索并掌握直线方程的几种形式(点斜式、两点式及一1。

立体几何初步教材分析及教学建议

立体几何初步教材分析及教学建议

一、教材的特点、理念 二、新教材与旧教材的区别 三、教学标高如何确定
四、教学建议
二.新教材与原有教材的区别
一方面,立体几何初步增加了三视图, 三视图是把空间物体反映在平面上的一种重 要方法,实际上,三视图从细节上刻画了几 何体的结构特点,根据三视图,我们就可以 得到一个精确的空间几何体。
二.新教材与原有教材的区别
1.熟悉必修2立体几何初步的整体结构
必修2 立体几何 初步
选修2-1 空间向量与立体 几何(文理)
四、教学建议
1.熟悉必修2立体几何初步的整体结构
☆一方面不要将选修系列中的立体几何学习内
容前移到“初步”中来。
☆另一方面对于增加的内容、要求加强的知识
点,我们一定要讲到位。
四、教学建议
2.要充分利用好长方体模型
四、教学建议
四、教学建议
四、教学建议
1.熟悉必修2立体几何初步的整体结构 2.要充分利用好长方体模型 3.鼓励学生积极参与 4.注重图形语言、文字语言、符号语 言的相互转化
四、教学建议
5.教学中要提高概念教学的水平
6.教材是“范本”,教学用书供参考
7.在教学中,适当引入现代教育技术
四、教学建议
不要过分的追求空间几何推理的严谨性,更 重要的是要突出几何直观以及平行和垂直关系的 相互转化来帮助提高学生的空间想象能力。
一、教材的特点、理念 二、新教材与旧教材的区别 三、教学标高如何确定
四、教学建议
三.教学标高如何确定
1、学习内容与要求 2、测试要点与标准
3、与高考试题的衔接
三.教学标高如何确定 1、学习内容与要求
在新课改中老师比较关心的几个问题: 新课标下的教材有怎样的变化?为什么 有这样的变化?

高中数学人教A版2019必修第二册 第八章《立体几何初步》本章教材分析

高中数学人教A版2019必修第二册 第八章《立体几何初步》本章教材分析

《立体几何初步》教材分析一、本章知能对标二、本章教学规划本章的内容主要包括两部分,第一部分是基本立体图形,主要是对空间几何体的认识.教材从对空间几何体的整体观察入手,通过认识柱、锥、台、球等基本立体图形的组成元素及其相互关系,帮助学生认识这些图形的几何结构特征,学习它们在平面上的直观图表示以及它们的表面积和体积的计算;第二部分是基本图形位置关系,主要是对组成立体图形的几何元素之间的位置关系的认识,教材从组成立体图形的基本元素——点、直线、平面出发,研究平面基本性质,认识空间点、直线、平面的位置关系,重点研究直线、平面的平行和垂直这两种特殊的位置关系.三、本章教学目标1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.会用斜二测法画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简单组合体)的直观图.3.知道棱柱、棱锥、棱台、球的表面积和体积公式的计算,能用公式解决简单的实际问题.4.以长方体为载体,在直观感知的基础上,认识空间中点、直线、平面之间的位置关系.5.通过对大量图形的观察、实验、操作和说理,进一步了解平行、垂直的判定方法及基本性质.6.学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题.四、本章教学重点难点重点:1.多面体与旋转体及基本几何体的结构特征,用斜二测法画出空间几何体的直观图.2.4个基本事实、等角定理、直线与直线、直线与平面、平面与平面平行和垂直的判定与性质..难点:1.简单组合体的表面积和体积计算.2.理解异面直线,掌握线线、线面、面面平行与垂直的关系和应用.五、课时安排建议本章教学约需14课时,具体安排如下:六、本章教学建议1.充分利用实物原型和长方体模型,帮助学生理解基本立体图形及位置关系,发展学生的数学抽象核心素养.本章教学中,长方体是一个基本的数学模型,在各种多面体中它是最基本的几何体,研究基本图形位置关系中,无论对于空间点、直线、平面位置关系的整体认识,还是对于研究空间直线、平面的平行、垂直关系,长方体都是一个基本模型.基本图形位置关系中的各种定理(判定定理、性质定理等)都可以在长方体中找到对应的图形.因此,在教学中,一定要充分理解长方体的作用.另外,在生活中,长方体形状的物体也是随处可见的,其中与学生最接近的就是学生所在的教室,在教学中也要利用好教室这个实物模型,以便将基本图形的位置关系在生活中找到对应的实例,加强直观性,以更好地培养学生的直观想象核心素养.2.重视研究方法的引导,让学生体会立体几何研究的基本思路和方法.在本章,基本立体图形和基本图形位置关系是主要的研究对象.对于基本立体图形和基本图形位置关系的教学,要注意加强“一般观念”的引导.首先要让学生明确研究对象,也就是要研究什么问题;其次要让学生知道怎么研究.使学生体会立体几何研究的基本思路和方法,逐步学会抽象数学对象,提出数学问题的方法,提升发现和提出问题的能力.3.把握好教学要求,循序渐进地培养推理能力.本章内容由于比较抽象,需要比较强的空间想象力,历来也是高中教学的难点.在教学中,要注意把握教学要求,教学要求应该适当,不要急于提高、增加难度,否则教学要求超出学生的理解和接受能力,就会挫伤学生的学习积极性,对后续教学带来不良影响.这就要求在教学中,注意了解每一部分内容在全章的地位、安排和要求,对于教学有整体的思考和把握,循序渐进.4.重视作图技能训练,培养学生空间想象力.我们知道,与平面图形可以在纸上或黑板上用直尺、圆规真实地画出来不同,立体图形是三维的,我们没有三维的纸或黑板,因此立体图形的直观图是在二维平面上表示三维图形.画直观图需要我们了解立体图形的结构特征;反过来,作出的直观图也可以引导我们想象它所代表的真实图形的样子.在二维平面上画三维图形,对于培养学生的空间想象力是有重要意义的.在教学中,在获得几何对象、描述概念、发现性质等各个环节中都要加强作图的训练,在解题教学中,也要把“观察图形”“根据题意作出图形”作为出发点.5.充分利用信息技术工具,为理解和掌握图形提供直观帮助,在本章的学习中,信息技术工具可以给我们提供一个仿真的三维空间的学习环境,帮助我们认识立体图形的结构特征,发现其中的基本位置关系,为把握和理解立体图形提供几何直观.在教学中,有条件的学校,应尽可能多地使用计算机或图形计算器等信息技术工具,为学生理解和掌握立体图形提供直观帮助.。

高中数学必修2《立体几何初步》教材分析和教学建议

高中数学必修2《立体几何初步》教材分析和教学建议

(2016广州二测) (10)如图,网格纸上的小正方形的边长为 1, 粗实线画出的是某几何体的三视图,则该 几何体的体积是 (A) 4 + 6 (B) 8 + 6 (C) 4 + 12 (D) 8 + 12
我们按正视图 → 侧视图 → 俯视图的顺 序切割 切割是红色部分,切割后的几何体是蓝 色部分,分别是从前到后切,从左到右切, 从上到下切(本题可以省略)
课本第65页例1证明线面垂直,其中证明 两直线垂直只用了平行关系转移,没有给 出利用线面垂直定义的典型例子,要通过 66页探究,第67页练习1及补充例题给予说 明。 例1.如图,已知 a∥b,a⊥,求证:b⊥
补充例题
如图, 在正方体 ABCD-A1B1C1D1 中, 求证: (1) AA1⊥BD D1 C1 (2) A1C⊥BD A1 D A B B1 C
思维提高一个层次,就需要构造三角 形,确定其中位线。如55页练习2,这是 比较典型的证明平行的例子
练习2. 如图,正方体ABCD-A1B1C1D1中,E 为 DD1 的中点,试判断 BD1 与平面 AEC 的位置 关系,并说明理由.
注意中位线的找法,要证明或判断线面平行的 线段为三角形底边(BD1) ,条件中存在中点的 线段为三角形的另一条边(DD1) ,由刚才两条 边可构成三角形(△BD1D) ,就可看到要寻找 的平行线(恰为要证明的平面外线段 BD1 的中 位线 EF) D1 C1 D1 C1 A1 E B1 A1 E B1 D C D F C A B A B
(1) 异面直线所成角
作角:在空间中找一点(一般优先考虑两线 段的端点或中点),作两直线的平行线 (如果点已在一直线上,则只需作另一直 线的平行线) 作平行线要考虑作出来三角形是否可以 求角,如果没有学习必修4,则要避免解斜 三角形问题。

人教课标版高中数学必修二第一章学情分析与教材分析-新版

人教课标版高中数学必修二第一章学情分析与教材分析-新版

第一章空间几何体(一)学情分析:本章内容是在义务教育阶段学习的基础上展开的.例如,对于棱柱,在义务教育阶段直观认识正方体、长方体等的基础上,进一步研究了棱柱的结构特征及其体积、表面积.因此,在教材内容安排中,特别注意了与义务教育阶段“空间与图形”相关内容的衔接.本章中的有关概念,主要采用分析详尽实例的共同特点,再抽象其本质属性空间图形而得到.教学中应充分使用直观模型,必要时要求学生自己制作模型,引导学生直观感知模型,然后再抽象出有关空间几何体的本质属性,从而形成概念.柱体、锥体、台体和球体是简单的几何体,繁复的几何体大都是由这些简单的几何体组合而成的.有关柱体、锥体、台体和球体的研究是研究比较繁复的几何体的基础.本章研究空间几何体的结构特征、三视图和直观图、表面积和体积等.运用直观感知、操作确认、度量计算等方法,认识和探索空间几何图形及其性质.(二)教材分析:1.核心素养我们在高中阶段要培养学生数学的三大能力:计算能力,思维能力,空间想象能力.本章的主要任务就是培养学生的空间想象能力.值得注意的是在教学中,要坚持循序渐进,逐步渗透空间想象能力面的训练.由于受有关线面位置关系知识的限制,在讲解空间几何体的结构时,我们应该多强调感性认识.要确凿把握这方面的要求,防止拔高教学.重视函数与信息技术整合的要求,通过电脑绘制简单几何体的模型,使学生初步感受到信息技术在学习中的严重作用.2.本章目标(1)认识柱、锥、台、球及其简单组合体的结构特征.①利用实物模型、计算机软件观察大量空间图形.②运用空间几何体的特征描述现实生活中简单物体的结构.(2)空间几何体的三视图和直观图①能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简捷组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图.②通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的例外表示形式.③完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(3)空间几何体的表面积和体积①了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).②会使用球、棱柱、棱锥、台的表面积和体积公式计算一些简单几何体的体积和表面积.3.课时安排本章教学时间约需12课时,详尽分配如下:3课时3课时1.1空间几何体的结构1.2空间几何体的三视图和直观图1.3空间几何体的表面积和体积章末检测题4.本章重点3课时空间几何体的三视图和直观图、空间几何体的表面积和体积.5.本章难点根据几何体的三视图还原直观图,并求直观图的体积和表面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点:球的表面积与体积公式的推导.
教学建议:
1.应从学生熟悉的正方体、长方体的侧面展开图入手探究展开图和表面积的关系.
2.通过对球的表面积、体积公式的运用,加深学生对公式的认识,突出公式在实际问题解决中的作用.
§3点、线、面之间的位置关系(10课时)
基本要求
发展要求
说明
1.了解平面的概念,掌握平面的画法及表示.了解平面的基本性质,即公理1、2、3及其推论1、推论2和推论3,了解平行公理(即公理4)与等角定理.
④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).
⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).
(2)点、直线、平面之间的位置关系
① 理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.
◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.
(1)正方体;(2)长方体;(3)三棱锥;(4)四棱锥;(5)三棱台.学生通过动手做,亲身体验柱、锥、台的结构特征,必会帮助学生逐步形成空间想像能力.
2.用斜二测画法画直观图,关键是掌握画水平放置的平面图形,它是画空间几何体直观图的基础.而水平放置的平面图形的画法可以归结为确定点的位置的画法.在平面上确定点的位置我们可以借助直角坐标系来完成,因此画水平放置的直角坐标系是学生首先要掌握的方法.通过例题的教学使学生明确画直观图的基本要求.
◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.
◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.
◆垂直于同一个平面的两条直线平行.
◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.
③ 能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.
②视图中缺少应有的线段,尤其是缺少该用虚线描绘的不可见的物体轮廓线、分界线和棱.如常将四棱锥S-ABCD的三视图作成图(10)而非图(11),即俯视图中缺少棱SC。
(10) (11)
③主视图、左视图和俯视图的大小不符合“长对正、高平齐、宽相等”的要求.
§2空间几何体的表面积与体积(3课时)
基本要求
发展要求
三、教材分析:
(一)教学目标:
1.理解柱、锥、台、球的结构特征,了解二面角及其平面角的概念,掌握空间点、直线、与平面之间的位置关系分类。
2.理解三视图画法的规则,能画简单几何体的三视图,掌握斜二测画法,能作简单几何体的直观图,了解柱、锥、台、球表面积和体积的计算公式,并能计算一些简单组合体的表面积和体积,理解并掌握平行关系和垂直关系的判断和性质,能利用公理和基本定理证明简单的几何命题。
高中数学必修2立体几何教材分析和教学建议
立体几何内容的设计:
1.定位:定位于培养和发展学生把握图形的能力,空间想象与几何直观能力、逻辑推理能力等。强调几何直观,合情推理与逻辑推理并重,适当渗透公理化思想。
2.内容处理与呈现:按照从整体到局部的方式展开:柱、锥、台、球 → 点、线、面→ 侧面积、表面积与体积的计算(如图1),而原教材是点、线、面→ 柱、锥、台、球,即从局部到整体(如图2),突出直观感知、操作确认,并结合简单的推理发现、论证一些几何性质.
难点:文字语言、符号语言与图形语言的转化;对异面直线的认识.
教学建议:
1.平面的基本性质虽仅为了解,但却是进一步研究空间点、线、面位置关系的基础,在教学中,可以先给出一些实物图片,旨在激发学生学习空间图形的兴趣,然后引入最简单的几何体——长方体模型,有关点、线、面用彩色来突出,让学生仔细的观察;设计一些实例,再给出实物图片,,让学生觉得四个公理确实是显而易见的;设计一幅实物图片和直观图形进行对比,使学生从平面到空间理解等角定理,显得更直观、更可信.
1.能用运动Байду номын сангаас观点整体认知柱、锥、台、球.
2.通过本节学习,进一步体会观察、比较、归纳、分析等一般科学方法的运用.
1.柱、锥、台、球的结构特征只须通过实例概括,不必证明.
2.空间几何体的性质不必深入挖掘.
重点:让学生感受大量空间实物及模型,概括出柱、锥、台、球的结构特征,会用斜二测画法画空间几何体的直观图.
立体几何初步是初等几何教育重要内容之一,它是在初中平面几何学习的基础上开设
的,以空间图形的性质、画法、计算以及它们的应用为研究对象,以演绎法为研究方法.通
过对三维空间的几何对象进行直观感知、操作确认、思辨论证,使学生的认识水平从平面图
形延拓至空间图形,完成由二维空间向三维空间的转化,发展学生的空间想象能力,逻辑推理能力和分析问题、解决问题的能力.
难点:如何让学生概括柱、锥、台、球的结构特征.
教学建议:
1.新课标在几何教学中强调几何学习的直观性,强调实物、模型对几何学习的作用.因此对柱、锥、台、球的学习需要从实物图形的感知出发,抽象出其本质特征,来建立多面体、旋转体的概念,进一步研究它们的结构和分类.课外可让学生动手做一做,更直接的感受空间几何图形的特征.如建议学生用纸板或游戏棒或细铁丝(作骨架)做出下列几何体的模型:
3.内容设计:螺旋上升,分层递进,逐步到位.在必修课程中,主要是通过直观感知、操作确认,获得几何图形的性质,并通过简单的推理发现、论证一些几何性质.进一步的论证与度量则放在选修2中用向量处理.教材在内容的设计上不是以论证几何为主线展开几何内容,而是先使学生在特殊情境下通过直观感知、操作确认,对空间的点、线、面之间的位置关系有一定的感性认识,在此基础上进一步通过直观感知、操作确认,归纳出有关空间图形位置关系的一些判定定理和性质定理,并对性质定理加以逻辑证明,不是不要证明,而是完善过程,既要发展演绎推理能力,也要发展合情推理能力。
2.了解异面直线的定义,会说明两条直线是异面直线,并能正确画出两条异面直线,在画图过程中感知两条异面直线所成的角.
3.通过直观感知、操作确认,归纳出直线与平面平行、垂直以及两平面的平行、垂直的判定定理.
4.通过直观感知、操作确认,归纳并能证明出直线与平面平行、垂直以及两平面的平行、垂直的性质定理.
5.能运用已获得的结论证明一些空间位置关系的简单命题.
(4)从能力上,着重考查空间想象能力,即空间形体的观察分析和抽象的能力,要求是“四会”:(1)会画图——根据题设条件画出适合题意的图形或画出自己想作的辅助线(面),作出图形要直观虚实分明;(2)会识图——根据题目所给的图形,想象出立体的形状和有关的线面关系;(3)会析图——对图形进行必要的分解、组合;(4)会复图——对图形或其某部分进行平移、翻折、旋转、展开或实行割补术;考查逻辑思维能力和运算能力;考察探索能力。
2、考查热点:
1.能画出简单空间图形的三视图与直观图,且会把三视图、直观图还原成空间图形。注重培养学生的空间想象能力,
2.注重线面关系(线线平行、线面平行、面面平行之间的转移;线线垂直、线面垂直、面面垂直之间的转移;还有平行与垂直关系的转移)。
(1)从命题形式上看,立体几何解答题往往会设计成几个小问题,此类题往往以多面体为依托,考查线线、线面、面面的位置关系;空间角、面积、体积等度量关系,强调作图、证明和计算相结合。
理解以下判定定理.
◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.
◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.
◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.
理解以下性质定理,并能够证明.
(2)从内容上看,(1)线线、线面、面面的平行与垂直问题,重点考查直线与直线、直线与平面的位置关系,这类题既可考查多面体的概念和性质,又能考查空间的线面关系,并将论证与计算有机地结合在一起,可以比较全面的考查学生的能力。(2)简单几何体的侧面积、表面积和体积问题。
(3)从方法上来看,着重考查公理化方法,如解答题注重理论推导和计算相结合;考查转化的思想方法,如常把立体几何问题转化为平面几何问题来解决;考查模型化方法和整体考虑问题、处理问题的方法,如有时把形体纳入不同的几何背景之中,从而宏观上把握形体,巧妙的把问题解决;考查等体积变换法,以及变化运动的思想方法等。
更多地强调从具体情境或前提出发,进行合情推理,转向更全面的教育价值。
(二)教材解读:
§11.1空间几何体(4课时)
基本要求
发展要求
说明
1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构,了解柱、锥、台、球的概念.
2.了解画立体图形三视图的原理,并能画出简单几何图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图.能识别上述的三视图表示的立体模型,会用斜二测法画出立体图形的直观图.
说明
1.了解柱、锥、台、球表面积的计算公式,并能计算一些简单组合体的表面积;
2.了解柱、锥、台、球的体积公式,并能计算一些简单组合体的体积.
1.初步体验将空间问题转化为平面问题的思想方法;
2.体会柱、锥、台之间的关系
3.初步体会“积分”思想的应用.
祖暅原理可向学生形象地介绍,但不作了解要求.
重点:让学生了解柱体、锥体、台体、球的表面积和体积计算公式.
3.新课程立体几何初步新增加了三视图以及与实物图之间的转换.新增这些内容的目的
就是为了让学生更好的认识我们所生活的这个三维空间,能够准确地描述现实世界与图形
之间的关系,能从课本还原到现实,来解决生活、生产中的各种问题,发展学生对数学知
识的应用意识.例如,平行关系和垂直关系中都是从生活中的平行或垂直关系出发,引入
◆公理2:过不在同一条直线上的三点,有且只有一个平面.
◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
相关文档
最新文档