苏教版高中数学教材必修2 (1)1
近年高中数学第1章立体几何初步第二节点、直线、面的位置关系1平面的基本性质及推论习题苏教版必修2(

2018高中数学第1章立体几何初步第二节点、直线、面的位置关系1 平面的基本性质及推论习题苏教版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高中数学第1章立体几何初步第二节点、直线、面的位置关系1 平面的基本性质及推论习题苏教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高中数学第1章立体几何初步第二节点、直线、面的位置关系1 平面的基本性质及推论习题苏教版必修2的全部内容。
平面的基本性质及推论(答题时间:40分钟)*1。
(福州检测)下列说法正确的是________。
①三点可以确定一个平面②一条直线和一个点可以确定一个平面 ③四边形是平面图形④两条相交直线可以确定一个平面*2.(扬州检测)经过空间任意三点可以作________个平面.**3.(1)三条直线两两平行,但不共面,它们可以确定______个平面。
(2)共点的三条直线可以确定________个平面. *4。
(宿迁检测)空间中可以确定一个平面的条件是________.(填序号) ①两条直线;②一点和一直线;③一个三角形;④三个点 **5。
(梅州检测)如图所示的正方体中,P 、Q 、M 、N 分别是所在棱的中点,则这四个点共面的图形是________。
(把正确图形的序号都填上)**6。
(福建师大附中检测)三个平面把空间分成7部分时,它们的交线有________条. **7。
证明:两两相交且不共点的三条直线在同一平面内.**8. 如图所示,已知四面体ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别是BC ,CD 上的点,且HCDHGC BG=2。
2021-2022学年新教材高中数学 全书要点速记学案(含解析)苏教版必修第二册

全书要点速记(教师用书独具)第9章平面向量要点1 向量的有关概念(1)向量:既有大小又有方向的量叫作向量,向量的大小叫作向量的模.(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:零向量与任一向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.要点2 向量的运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则交换律:a +b=b+a;结合律:(a +b)+c=a +(b+c)减法求a与b的相反向量-b的和的运算几何意义a-b=a+(-b)数乘求实数λ与向量a的积的运算|λa|=|λ||a|,当λ>0时,λa与a的方向相同;λ(μa)=(λμ)a;当λ<0时,λa与a 的方向相反;当λ=0时,λa=0(λ+μ)a =λa+μa;λ(a+b)=λa+λb数量积设两个非零向量a,b的夹角为θ,则数量|a||b|·cos θ叫作a与b的数量积,记作a·b向量a与向量b的数量积就是向量a在向量b上的投影向量与向量b的数量积a·b=b·a;(λa)·b=λ(a·b)=a·(λb);(a+b)·c=a·c+b·c要点3 两个重要定理(1)向量共线定理:向量b与非零向量a共线的充要条件是:有且只有一个实数λ,使得b=λa.(2)平面向量基本定理:如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.其中两个不共线的向量e1,e2叫作这个平面的一组基底.要点4 平面向量的坐标表示(1)向量及向量的模的坐标表示①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则AB→=(x2-x1,y2-y1),|AB→|=x2-x12+y2-y12.(2)平面向量的坐标运算设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1).(3)平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中a≠0,a,b共线⇔x1y2-x2y1=0.要点5 平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.结论符号表示坐标表示模|a|=a·a|a|=x21+y21夹角cos θ=a·b|a||b|cos θ=x1x2+y1y2x21+y21x22+y22a⊥b的充要条件a·b=0x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤x21+y21x22+y22第10章三角恒等变换要点1 两角和与差的余弦、正弦、正切公式(1)cos(α-β)=cos αcos β+sin αsin β(C(α-β));(2)cos(α+β)=cos αcos β-sin αsin β(C(α+β));(3)sin(α-β)=sin αcos β-cos αsin β(S(α-β));(4)sin(α+β)=sin αcos β+cos αsin β(S(α+β));(5)tan(α-β)=tan α-tan β1+tan αtan β(T(α-β));(6)tan(α+β)=tan α+tan β1-tan αtan β(T(α+β)).要点2 二倍角公式(1)基本公式:①sin 2α=2sin αcos α;②cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;③tan 2α=2tan α1-tan 2α.(2)降幂公式:cos 2α=1+cos 2α2;sin 2α=1-cos 2α2.第11章 解三角形要点1 正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理内容a sin A =b sin B =csin C=2Ra 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 变形①a =2R sin A ,b =2R sin B ,c =2R sinC ;②sin A =a 2R ,sin B =b2R ,sin C =c2R;③a ∶b ∶c =sin A ∶sin B ∶sin Ccos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab要点2 三角形常用面积公式 (1)S =12a ·h a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形内切圆半径).第12章 复数要点1 复数的有关概念 (1)复数的概念及分类:形如a +b i(a ,b ∈R )的数叫作复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数,若b ≠0,则a +b i 为虚数,若a =0且b ≠0,则a +b i 为纯虚数.(2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ).(3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ).(4)模:向量OZ →的模叫作复数z =a +b i 的模,记作|a +b i|或|z |,则|z |=|a +b i|=a 2+b 2(a ,b ∈R ).要点2 复数的几何意义复数z =a +b i 与复平面内的点Z (a ,b )及平面向量OZ →=(a ,b )(a ,b ∈R )是一一对应关系.要点3 复数的运算(1)设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R .(2)z ·z -=|z |2=|z -|2,|z 1·z 2|=|z 1|·|z 2|,⎪⎪⎪⎪⎪⎪z 1z 2=|z 1||z 2|,|z n |=|z |n .要点4 复数的乘方与i n (n ∈N *)的周期性 (1)复数范围内正整数指数幂的运算性质 设对任何z ,z 1,z 2∈C 及m ,n ∈N *,则z m z n =z m +n ,(z m )n =z nm ,(z 1z 2)n =z n 1z n2.(2)虚数单位i n (n ∈N *)的周期性i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i . *要点5 复数的三角形式 (1)复数的三角形式:复数z =a +b i(a ,b ∈R )的模为r ,辐角为θ,则z =r (cos θ+isin θ),其中r =a 2+b 2,cos θ=a r ,sin θ=br.则r (cos θ+isin θ)称为复数z 的三角形式.(2)复数的三角形式的运算设复数z 1=r 1(cos θ1+isin θ1),z 2=r 2(cos θ2+isin θ2). ①z 1z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];②z 1z 2=r 1r 2[cos(θ1-θ2)+isin(θ1-θ2)](其中z 2≠0). 第13章 立体几何初步要点1 多面体的结构特征 名称棱柱棱锥棱台图形含义一般地,由一个平面多边形沿某一方向平移形成的空间图形当棱柱的一个底面收缩为一个点时,得到的空间图形用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分侧棱 平行且相等相交于一点但不一定相等 延长线交于一点侧面 形状平行四边形 三角形梯形要点2 旋转体的结构特征 名称 圆柱 圆锥 圆台 球图形母线 互相平行且相等,垂直于底面 相交于一点延长线交于一点轴截面全等的矩形全等的等腰三全等的等腰梯圆角形形侧面展开图矩形扇形扇环要点3 圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrlS圆台侧=π(r1+r2)l要点4 柱、锥、台、球的表面积和体积名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=1 3 Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=4πR2V=43πR3要点5 用斜二测画法画水平放置平面图形的直观图的规则(1)在空间图形中取互相垂直的x轴和y轴,两轴交于O点,再取z轴,使∠xOz =90°,且∠yOz=90°.(2)画直观图时把它们画成对应的x′轴、y′轴和z′轴,它们相交于点O′,并使∠x′O′y′=45°(或135°),∠x′O′z′=90°,x′轴和y′轴所确定的平面表示水平面.(3)已知图形中平行于x轴、y轴或z轴的线段,在直观图中分别画成平行于x′轴、y′轴或z′轴的线段.(4)已知图形中平行于x 轴或z 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的一半.要点6 四个基本事实基本事实1:过不在一条直线上的三个点,有且只有一个平面.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内. 基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.基本事实4:平行于同一条直线的两条直线平行. 要点7 直线与直线的位置关系 (1)位置关系的分类⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行直线相交直线异面直线:不同在任何一个平面内,没有公共点(2)异面直线的判定定理定理文字语言符号表示 图形语言异面直线的判定定理过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线若l ⊂α,A ∉α,B ∈α,B ∉l ,则直线AB 与l 是异面直线(3)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任意一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫作异面直线a 与b 所成的角或夹角.②范围:⎝⎛⎦⎥⎤0,π2.(4)等角定理:如果空间中两个角的两边分别对应平行,那么这两个角相等或互补. 要点8 线面平行的判定定理和性质定理判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)⎭⎪⎬⎪⎫l∥aa⊂αl⊄α⇒l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)⎭⎪⎬⎪⎫l∥αl⊂βα∩β=b⇒l∥b要点9 面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)⎭⎪⎬⎪⎫a∥βb∥βa∩b=Pa⊂αb⊂α⇒α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行⎭⎪⎬⎪⎫α∥βα∩γ=aβ∩γ=b⇒a∥b要点10 线面垂直的判定定理与性质定理判定 定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a ,b ⊂αa ∩b =O l ⊥al ⊥b⇒l ⊥α性质 定理垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b要点11 直线和平面所成的角 (1)定义平面的一条斜线与它在这个平面内的射影所成的锐角,叫作这条直线与这个平面所成的角.若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是0°角.(2)范围:⎣⎢⎡⎦⎥⎤0,π2.要点12 平面与平面垂直 (1)二面角的有关概念①二面角:从一条直线出发的两个半平面所组成的图形叫作二面角;②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫作二面角的平面角.(2)平面和平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (3)平面与平面垂直的判定定理与性质定理文字语言 图形语言 符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直⎭⎪⎬⎪⎫l⊥αl⊂β⇒α⊥β性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl⊂βα∩β=al⊥a⇒l⊥α第14章统计要点1 简单随机抽样(1)简单随机抽样的概念:一般地,从个体数为N的总体中逐步不放回地取出n个个体作为样本(n<N),如果每个个体都有相同的机会被取到,那么这样的抽样方法称为简单随机抽样.常用的简单随机抽样方法有抽签法和随机数表法.(2)分层抽样的概念:当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几个部分,然后按各部分在总体中所占的比实施抽样,这样的抽样方法叫作分层抽样.要点2 频率直方图(1)频率直方图的定义把横轴均分成若干段,每一段对应的长度称为组距,然后以此线段为底作矩形,它的高等于该组的频率组距,这样得出一系列的矩形,每个矩形的面积恰好是该组的频率,这些矩形就构成了频率直方图.(2)频率折线图:如果将频率直方图中各个矩形的上底边的中点顺次连接起来,并将两端点向外延伸半个组距,就得到频率折线图,简称折线图.(3)频率直方图的相关计算:①频率组距×组距=频率.②频数样本容量=频率. ③平均数:在频率直方图中,样本平均数可以用每个小矩形底边中点的横坐标与小矩形的面积的乘积之和近似代替.④中位数:在频率直方图中,中位数左边和右边的直方图的面积应该相等. ⑤众数:众数是最高小矩形底边的中点所对应的数据. 要点3 用样本估计总体的集中趋势参数 名称优点缺点平均数 与中位数相比,平均数反映出样本数据中更多的信息,对样本中的极端值更加敏感任何一个数据的改变都会引起平均数的改变.数据越“离群”,对平均数的影响越大 中位数不受少数几个极端数据(即排序靠前或靠后的数据)的影响对极端值不敏感众数体现了样本数据的最大集中点众数只能传递数据中的信息的很少一部分,对极端值不敏感要点4 用样本估计总体的离散程度参数(1)极差:一组数据的最大值与最小值的差称为极差.极差刻画了一组数据的离散程度,一组数据的极差越小,说明这组数据相对集中. (2)方差和标准差:设一组样本数据x 1,x 2,…,x n 的平均数为x -,则称s 2=1n ∑i =1n (x i -x -)2为这个样本的方差,其算术平方根s =1n∑i =1nx i -x -2为样本的标准差,分别简称为样本方差、样本标准差.样本方差(标准差)越大,数据的离散程度越大;方差、标准差越小,数据的离散程度越小.(3)样本方差的其它计算公式①s 2=1n(∑i =1n x 2i -n x -2);②若取值为x 1,x 2,…,x n 的频率分别为p 1,p 2,…,p n .则其方差为s 2=∑i =1np i (x i-x -)2=p 1(x 1-x -)2+p 2(x 2-x -)2+…+p n (x n -x -)2.(4)分层抽样的方差如果总体分为k 层,第j 层抽取的样本为x j 1,x j 2,…,jjn j ,第j 层的样本量为n j ,样本平均数为x -j ,样本方差为s 2j ,j =1,2,3…,k ,记∑j =1kn j =n ,那么所有数据的样本方差为.要点5 百分位数(1)一组数据的k 百分位数的含义一般地,一组数据的k 百分位数是这样一个值p k ,它使得这些数据至少有k %的数据小于或等于p k .(2)计算有n 个数据的大样本的k 百分位数的步骤 第1步,将所有数值按从小到大的顺序排列. 第2步,计算k ·n100;第3步,如果结果为整数,那么k 百分位数位于第k ·n100位和下一位数之间,通常取两个位置上数值的平均数为k 百分位数;第4步,如果k ·n100不是整数,那么将其向上取整(即其整数部分加上1),在该位置上的数值为k 百分位数.(3)四分位数:我们把中位数、25百分位数和75百分位数称为四分位数.第15章 概率要点1 样本空间、随机事件等概念(1)试验:对某随机现象进行的实验、观察称为随机试验,简称试验. (2)样本点、样本空间、随机事件、基本事件等概念 ①把随机试验的每一个可能的结果称为样本点; ②所有样本点组成的集合称为样本空间,记为Ω; ③样本空间的子集称为随机事件,简称事件.④当一个事件仅包含一个样本点时,该事件为基本事件.Ω(全集)是必然事件,∅(空集)为不可能事件.要点2 事件的构成、事件的并与交①事件A 、B 的并(和):对于事件A 、B 、C 之间的关系为C =A ∪B ,因此“事件A 与B 至少有一个发生即为事件C 发生”.我们称C 是A 与B 的并,也称C 是A 与B 的和,记作C =A +B .②事件A 、B 的交(积):对于事件A 、B 、C 之间的关系为C =A ∩B ,因此“事件A 与B 同时发生即为事件C 发生”.我们称C 是A 与B 的交,也称C 是A 与B 的积,记作C =AB .要点3 随机事件的概率 (1)频数与频率在一定条件下,重复进行了n 次试验,如果某一随机事件A 出现了m 次,则事件A出现的频数是m ,称事件A 出现的次数与试验总次数的比mn为随机事件A 出现的频率.(2)概率的统计定义一般地,对于给定的随机事件A ,在相同的条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们把这个常数作为随机事件A 发生的概率,记作P (A ).因此,若随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,可以用事件A 发生的频率m n 来估计随机事件的概率,即P (A )≈mn.(3)必然事件和不可能事件的概率把必然事件Ω和不可能事件∅当成随机事件的两种特殊情况来考虑,则P (Ω)=1,P (∅)=0.所以对任何一个事件A ,都有0≤P (A )≤1. 要点4 古典概型(1)在样本空间为Ω={ω1,ω2,ω3,…,ωn }的一次试验中,每个基本事件{ωk }(k =1,2,3,…,n )发生的可能性都相同,则称这些基本事件为等可能基本事件.(2)具有以下两个特点:①样本空间Ω只含有有限个样本点; ②每个基本事件的发生都是等可能的.将满足上述条件的随机试验的概率模型称为古典概型.(3)在古典概型中,如果样本空间Ω={ω1,ω2,…,ωn }(其中,n 为样本点的个数),那么每一个基本事件{ωk }(k =1,2,…,n )发生的概率都是1n.如果事件A 由其中m 个等可能基本事件组合而成,即A 中包含m 个样本点,那么事件A 发生的概率为P (A )=m n.要点5 互斥事件 (1)互斥事件的定义一次试验中,样本空间Ω={ω1,ω2,ω3,…,ωn },随机事件A ,B ⊆Ω,满足AB =∅,即事件A 、B 不可能同时发生,称A ,B 为互斥事件,如果事件A 和事件B 互斥,是指事件A 和事件B 在一次试验中不能同时发生,也就是说,事件A 和事件B 同时发生的交(和)概率为0,即P (AB )=0.(2)对立事件的定义一次试验中,样本空间Ω={ω1,ω2,ω3,…,ωn },随机事件A ,C ⊆Ω,满足AC=∅且A+C=Ω,即互斥事件A,C中必有一个发生,称A,C为对立事件,记作C=A-或A=C-.(3)概率加法公式①如果事件A,B互斥,那么事件A+B发生的概率,等于事件A,B分别发生的概率的和,即P(A+B)=P(A)+P(B).这就是概率满足的第三个基本性质.②一般地,如果事件A1,A2,…,A n中任意两个事件都是互斥事件,那么称事件A1,A2,…,A n两两互斥.那么P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n),即彼此互斥事件和的概率等于每个事件概率的和.(4)对立事件的一个重要公式对立事件A与A-必有一个发生,故A+A-是必然事件,从而P(A)+P(A-)=P(A+A-)=1.由此,我们可以得到一个重要公式:P(A-)=1-P(A).要点6 相互独立事件(1)相互独立事件的概念一般地,如果事件A是否发生不影响事件B发生的概率,那么称A、B为相互独立事件.(2)相互独立事件的概率计算①两个事件A,B相互独立的充要条件是P(AB)=P(A)P(B).②若事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率P(A1A2…A n)=P(A1)P(A2)…P(A n).(3)相互独立事件的性质如果事件A与B相互独立,那么A与B-,A-与B,A-与B-也相互独立.。
高中数学2.1直线与方程2.1.3两条直线的平行与垂直第一课时两条直线的平行课件苏教版必修2

[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1) 不 重 合 的 两 条 直 线 的 倾 斜 角 相 等 , 则 它 们 一 定 互 相 平
行.
(√ )
(2) 如 果 两 条 直 线 互 相 平 行 , 那 么 它 们 的 斜 率 一 定 相 等 .
(×)
(3)直线 l1:ax+y+2a=0 与 l2:x+ay+2=0 互相平行,则
[活学活用] 1.若直线 l1:ax+y+2a=0 与 l2:x两直线平行,所以 a2-1=0,解得 a=±1.
答案:±1
2.直线 l1 经过 A(3,4),B(5,8),直线 l2 经过点 M(1,-2),N(0, b),且 l1∥l2,则实数 b=________. 解析:∵k1=85- -43=2,k2=b-+12=-(b+2), 又∵l1∥l2,∴k1=k2, 即-b-2=2,∴b=-4. 答案:-4
应用两直线平行求参数值
[典例] 已知直线 l1:mx+y-(m+1)=0,l2:x+my-2m =0,当 m 为何值时,
(1)直线 l1 与 l2 互相平行? (2)直线 l1 与 l2 重合? [解] (1)若 l1∥l2,需满足
m2-1=0, -2m2+m+1≠0,
解得 m=-1.
[解] (1)k1=1,k2=33- -11=1,k1=k2, ∴l1 与 l2 重合或 l1∥l2. (2)l1 与 l2 都与 x 轴垂直,通过数形结合知 l1∥l2. (3)k1=01- -10=-1,k2=2-0--31=-1,k1=k2,数形结合 知 l1∥l2.
判断两条直线平行的方法 (1)①若两条直线 l1,l2 的斜率都存在,将它们的方程都化成 斜截式.如:l1:y=k1x+b1,l2:y=k2x+b2; 则kb11= ≠kb22, ⇒l1∥l2. ②若两条直线 l1,l2 的斜率都不存在,将方程化成 l1:x=x1, l2:x=x2,则 x1≠x2⇒l1∥l2. (2)若直线 l1:A1x+B1y+C1=0(A1,B1 不全为 0),l2:A2x+ B2y+C2=0(A2,B2 不全为 0),由 A1B2-A2B1=0 得到 l1∥l2 或 l1, l2 重合;排除两直线重合,就能判定两直线平行.
【优化方案】2012高中数学 第1章1.2.1平面的基本性质课件 苏教版必修2

1.2.1 平 面 的 基 本 性 质
课前自主学案
课堂互动讲练
知能优化训练
课前自主学案
温故夯基 1.空间物体的三视图:_______、_______、 .空间物体的三视图: 正视图 、 左视图 、 俯视图 _______. _______. 2.斜二测画法: .斜二测画法: 45°或135°; ° ° (1)斜:∠x′O′y′= ____________; 斜 ′ ′ ′ (2)二测:横_____,纵_____. 二测: 不变 , 折半 . 二测
3.平面的基本性质 平面的基本性质 (1)公理 : 公理1: 公理 文字语言: ①文字语言:如果一条直线上的两点在一个 平面内,那么这条直线上_________都在这 平面内,那么这条直线上 所有的点 都在这 个平面内. 个平面内. ⊂ 符号语言: ②符号语言:若A∈α,B∈α,则______. ∈ , ∈ , AB⊂α (2)公理 : 公理2: 公理 文字语言:如果两个平面有一个公共点, ①文字语言:如果两个平面有一个公共点, 那么它们还有其他公共点,这些公共点的集 那么它们还有其他公共点, 合是_________________________. 合是 经过这个公共点的一条直线 .
思考感悟 2.“线段AB在平面 内,直线 不全在平面 . 线段 在平面 在平面α内 直线AB不全在平面 α内”这一说法是否正确,为什么? 内 这一说法是否正确,为什么? 提示:不正确. 提示:不正确. 在平面α内 ∵线段AB在平面α内, 线段AB在平面 上的所有点都在平面α内 ∴线段AB上的所有点都在平面 内, 线段 上的所有点都在平面 上的A、 两点一定在平面 两点一定在平面α内 ∴线段AB上的 、B两点一定在平面 内, 线段 上的 在平面α内 公理 公理1) ∴直线AB在平面 内.(公理 直线 在平面
高中数学 第2章 函数2.1.1函数的概念和图象(一)配套课件 苏教版必修1

2.1.1 函数的概念和图象(一)
【学习要求】 1.理解函数的概念,明确决定函数的三个要素; 2.学会求某些函数的定义域; 3.掌握判定两个函数是否相同的方法; 4.理解静与动的辩证关系. 【学法指导】 通过实例,进一步体会函数是描述变量之间的依赖关系的重要 数学模型,在此基础上学习用集合与对应的语言来刻画函数, 体会对应法则在刻画函数概念中的作用,感受学习函数的必要 性与重要性.
第二十一页,共24页。
练一练•当堂检测(jiǎn cè)、目标达成 落实处 2.下列关于函数与区间的说法正确的是___④_____.(填序号)
①函数定义域必不是空集,但值域可以是空集; ②函数定义域和值域确定后,其对应法则也就确定了; ③数集都能用区间表示; ④函数中一个函数值可以有多个自变量值与之对应. 解析 函数的值域不可能为空集,故①错; 当两函数的定义域和值域分别相同时,但两函数的对应法则可 以不同,故②错; 由于整数集没法用区间表示,故③错. 只有④正确.
(3) 若 f(x) 是 偶 次 根 式 , 那 么 函 数 的 定 义 域 是 ____根__号__(ɡ_ē_n__h_à_o_)_内__的_式__子__不__小__于__零___的实数的集合; (4)若 f(x)是由几个部分的数学式子构成的,那么函数的定义域是 ____使__各__部__分__式__子_都__有__意__义___________的实数的集合(即使每个部 分有意义的实数的集合的交集); (5)若 f(x)是由实际问题列出的,那么函数的定义域是使解析式本 身有意义且符合____实__际__意__义______的实数的集合.
第三页,共24页。
填一填·知识要点(yàodiǎn)、记下 疑难点 2.求函数的定义域实质上是求使函数表达式有意义的自变量的取
【优化方案】2012高中数学 第1章1.2.3第二课时直线与平面垂直及直线与平面所成的角课件 苏教版必修2

同理可证 BD1⊥B1C. 又 B1C∩AC=C, ∩ = , ∴BD1⊥平面 AB1C. 又 EF⊥A1D,A1D∥B1C,∴EF⊥B1C. ⊥ , ∥ , ⊥ 又 EF⊥AC,∴EF⊥面 AB1C. ⊥ , ⊥ ∴EF∥BD1. ∥
直线与平面所成的角 求直线与平面所成的角, 求直线与平面所成的角,关键是找到直线在 该平面内的射影, 继而构成一个三角形, 该平面内的射影 , 继而构成一个三角形 , 求 角的大小. 角的大小.
第二课时 直线与平面垂直及直线与 平面所成的角
学习目标 1.掌握直线与平面垂直的定义与判定定理及 掌握直线与平面垂直的定义与判定定理及 性质定理, 性质定理,并能灵活应用判定定理证明直线 与平面垂直; 与平面垂直; 2.知道直线与平面所成角的概念,并能解 .知道直线与平面所成角的概念, 决简单的线面角问题. 决简单的线面角问题.
变 式 训 练 2 如 图 , 在 正 方 体 ABCD - A1B1C1D1 中 , E ∈ A1D , F ∈ AC , 且 EF⊥A1D,EF⊥AC. ⊥ , ⊥ 求证: ∥ 求证:EF∥BD1.
证明: 如图, 连结 AB1、 1C、 、 1D1, B 、 BD、 B 证明: 如图, ∵DD1⊥面 ABCD,AC⊂面 ABCD, , ⊂ , ∴DD1⊥AC. 又 AC⊥BD,BD∩DD1=D, ⊥ , ∩ , ∴AC⊥面 BDD1B1,BD∩DD1=D, ⊥ ∩ , ∴AC⊥BD1. ⊥
3.直线与平面所成的角 . (1)定义:平面的一条斜线和它在平面上的 定义: 定义 射影 所成的 锐角,叫做这条直线和这个平 ____所成的 所成的____, 面所成的角. 面所成的角.
如图, ∠PAO 就是斜线 与平面α所成的 就是斜线AP与平面 如图,______就是斜线 与平面 所成的 角. (2)当直线 与平面垂直时 , 它们所成的 当直线AP与平面垂直时 当直线 与平面垂直时, 角是____. 角是 直角. (3)当直线与平面平行或在平面内时 , 它 当直线与平面平行或在平面内时, 当直线与平面平行或在平面内时 们所成的角是___. 们所成的角是 0° ° ≤ ° (4)线面角 的范围是0°≤θ≤90° 线面角θ的范围是 ° 线面角 的范围是____________.
新教材苏教版高中数学必修第二册第十章三角恒等变换 知识点考点重点难点解题规律归纳总结

第十章三角恒等变换10.1两角和与差的三角函数....................................................................................... - 1 -10.1.1两角和与差的余弦.................................................................................... - 1 -10.1.2两角和与差的正弦.................................................................................... - 5 -10.1.3两角和与差的正切.................................................................................... - 8 -10.2二倍角的三角函数............................................................................................. - 11 -10.3几个三角恒等式................................................................................................. - 15 - 10.1两角和与差的三角函数10.1.1两角和与差的余弦知识点两角和与差的余弦公式(1)两角差的余弦公式C(α-β):cos(α-β)=cos αcos β+sin αsin β.(2)两角和的余弦公式C(α+β):cos(α+β)=cos αcos β-sin αsin β.cos(90°-30°)=cos 90°-cos 30°成立吗?[提示]不成立.重点题型类型1两角和与差的余弦公式的简单应用【例1】求下列各式的值:(1)cos 40°cos 70°+cos 20°cos 50°;(2)cos 7°-sin 15°sin 8°cos 8°;(3)12cos 15°+32sin 15°.[解](1)原式=cos 40°cos 70°+sin 70°sin 40°=cos(70°-40°)=cos 30°=3 2.(2)原式=cos(15°-8°)-sin 15°sin 8°cos 8°=cos 15°cos 8°cos 8°=cos 15°=cos(60°-45°)=cos 60°cos 45°+sin 60°sin 45°=2+6 4.(3)∵cos 60°=12,sin 60°=32,∴12cos 15°+32sin 15°=cos 60°cos 15°+sin 60°sin 15°=cos(60°-15°)=cos45°=2 2.1.两角和与差的余弦公式中,α,β可以是单个角,也可以是两个角的和或差,在运用公式时常将两角的和或差视为一个整体.2.在运用公式化简求值时,要充分利用诱导公式构造两角和与差的余弦结构形式,然后逆用公式求值.提醒:要重视诱导公式在角和函数名称的差异中的转化作用.类型2已知三角函数值求角【例2】已知锐角α,β满足sin α=55,cos β=31010,求α+β的值.以同角三角函数的基本关系为切入点,求得cos α,sin β的值,在此基础上,借助cos(α+β)的公式及α+β的范围,求得α+β的值.[解]因为α,β为锐角,且sin α=55,cos β=31010,所以cos α=1-sin2α=1-15=255,sin β=1-cos2β=1-910=1010,故cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22.由0<α<π2,0<β<π2,得0<α+β<π.因为cos(α+β)>0,所以α+β为锐角,所以α+β=π4.已知三角函数值求角,一般分三步:第一步:求角的某一三角函数值(该函数在所求角的取值区间上最好是单调函数);第二步:确定角的范围,由题意进一步缩小角的范围; 第三步:根据角的范围写出所求的角. 类型3 给值求值问题【例3】 (对接教材P 51例3)已知sin α=-45,sin β=513,且π<α<3π2,π2<β<π,求cos(α-β).[解] ∵sin α=-45,π<α<3π2, ∴cos α=-1-sin 2α=-35.又∵sin β=513,π2<β<π, ∴cos β=-1-sin 2β=-1213,∴cos(α-β)=cos αcos β+sin αsin β=⎝ ⎛⎭⎪⎫-35×⎝ ⎛⎭⎪⎫-1213+⎝ ⎛⎭⎪⎫-45×513=1665.1.(变条件)若将本题改为已知sin α=-45,sin β=513,且π<α<2π,0<β<π2,求cos(α-β).[解] ∵sin β=513,0<β<π2, ∴cos β=1-sin 2β=1213. 又sin α=-45,且π<α<2π,①当π<α<3π2时,cos α=-1-sin 2α=-35,∴cos(α-β)=cos αcos β+sin αsin β=⎝ ⎛⎭⎪⎫-35×1213+⎝ ⎛⎭⎪⎫-45×513=-5665;②当3π2<α<2π时,cos α=1-sin 2α=35, ∴cos(α-β)=cos αcos β+sin αsin β=35×1213+⎝ ⎛⎭⎪⎫-45×513=1665.综上所述,cos(α-β)=-5665或1665.2.(变条件)若将本例改为已知sin α=-45,π<α<3π2,cos(α-β)=1665,π2<β<π.求sin β.[解] ∵sin α=-45,且π<α<3π2, ∴cos α=-1-sin 2α=-35. 又∵π2<β<π, ∴-π<-β<-π2, ∴0<α-β<π. 又cos(α-β)=1665,∴sin(α-β)=1-cos 2(α-β) =1-⎝ ⎛⎭⎪⎫16652=6365, ∴cos β=cos [α-(α-β)]=cos α·cos(α-β)+sin α·sin(α-β) =⎝ ⎛⎭⎪⎫-35×1665+⎝ ⎛⎭⎪⎫-45×6365=-1213, ∴sin β=1-cos 2β=513.1.利用和(差)角的余弦公式求值时,不能机械地从表面去套公式,而要变通地从本质上使用公式,即把所求的角分解成某两个角的和(差),并且这两个角的正、余弦函数值是已知的或可求的,再代入公式即可求解.2.在将所求角分解成某两角的和(差)时,应注意如下变换:α=(α+β)-β,α=β-(β-α),α=(2α-β)-(α-β),2α=[(α+β)+(α-β)],2α=[(β+α)-(β-α)]等.提醒:注意角的范围对三角函数值符号的限制.10.1.2 两角和与差的正弦知识点 两角和与差的正弦公式 (1)两角和的正弦公式:S (α+β):sin(α+β)=sin αcos β+cos αsin β. (2)两角差的正弦公式:S (α-β):sin(α-β)=sin αcos β-cos αsin β. (3)辅助角公式a sin x +b cos x =a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2sin x +b a 2+b 2cos x , 令cos φ=a a 2+b 2,sin φ=ba 2+b 2,则有a sin x +b cos x =a 2+b 2(cos φsin x +sin φcos x )=a 2+b 2sin(x +φ),其中tan φ=ba ,φ为辅助角.重点题型类型1 两角和与差的正弦公式的简单应用 【例1】 求下列各式的值: (1)sin 163°sin 223°+sin 253°sin 313°; (2)2cos 55°-3sin 5°sin 85°.(1)从角和“形”入手,转化成两角和(差)的正弦求值. (2)注意角的差异与变换:55°=60°-5°,85°=90°-5°.[解] (1)原式=sin 163°sin(90°+133°)+sin(90°+163°)·sin(180°+133°) =sin 163°cos 133°-cos 163°sin 133° =sin(163°-133°)=sin 30°=12. (2)原式=2cos (60°-5°)-3sin 5°sin (90°-5°)=cos 5°+3sin 5°-3sin 5°cos 5°=cos 5°cos 5°=1.1.对于非特殊角的三角函数式,要想利用两角和与差的正弦、余弦公式求出具体数值,一般有以下三种途径:(1)化为特殊角的三角函数值; (2)化为正负相消的项,消去求值;(3)化为分子、分母形式,进行约分再求值.2.在进行求值过程的变换中,一定要本着先整体后局部的基本原则,先整体分析三角函数式的特点,如果整体符合三角公式,则整体变形,否则进行各局部的变换.提醒:在逆用两角和与差的正弦和余弦公式时,首先要注意结构是否符合公式特点,其次注意角是否满足要求.类型2 给值求值【例2】 已知0<β<π4,π4<α<3π4,cos ⎝ ⎛⎭⎪⎫π4-α=35,sin ⎝ ⎛⎭⎪⎫3π4+β=513,求cos(α+β)的值.注意⎝ ⎛⎭⎪⎫3π4+β-⎝ ⎛⎭⎪⎫π4-α=π2+(α+β),可通过求出3π4+β和π4-α的正、余弦值来求cos (α+β).[解] 由0<β<π4,π4<α<3π4得 -π2<π4-α<0,3π4<3π4+β<π. ∴cos ⎝ ⎛⎭⎪⎫3π4+β=-1213,sin ⎝ ⎛⎭⎪⎫π4-α=-45,cos(α+β)=sin ⎝ ⎛⎭⎪⎫π2+α+β=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫3π4+β-⎝ ⎛⎭⎪⎫π4-α=sin ⎝ ⎛⎭⎪⎫3π4+βcos ⎝ ⎛⎭⎪⎫π4-α-cos ⎝ ⎛⎭⎪⎫3π4+βsin ⎝ ⎛⎭⎪⎫π4-α=513×35-⎝ ⎛⎭⎪⎫-1213×⎝ ⎛⎭⎪⎫-45=-3365.解此类问题的关键是把“所求角”用“已知角”表示出来(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(3)角的拆分方法不唯一,可根据题目合理选择拆分方式. 类型3 形如a sin x +b cos x 的函数的化简及应用【例3】 (对接教材P 54探究)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6-2cos x ,x ∈⎣⎢⎡⎦⎥⎤π2,π,求函数f (x )的值域.等式a sin x +b cos x =A sin (x +φ)中A 和φ一定存在吗?它们与a ,b 有什么关系?[解] f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6-2cos x=3sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π6,∵π2≤x ≤π, ∴π3≤x -π6≤5π6. ∴12≤sin ⎝ ⎛⎭⎪⎫x -π6≤1.∴函数f (x )的值域为[1,2].1.(变结论)本例条件不变,将函数f (x )用余弦函数表示. [解] f (x )=3sin x -cos x =2⎝ ⎛⎭⎪⎫32sin x -12cos x=2⎝ ⎛⎭⎪⎫sin x sin π3-cos x cos π3=-2⎝ ⎛⎭⎪⎫cos x cos π3-sin x sin π3=-2cos ⎝ ⎛⎭⎪⎫x +π3.2.(变结论)本例条件不变,求函数f (x )的单调区间. [解] f (x )=2sin ⎝ ⎛⎭⎪⎫x -π6,由2k π-π2≤x -π6≤2k π+π2,得2k π-π3≤x ≤2k π+2π3,与π2≤x ≤π取交集得π2≤x ≤2π3,∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π2,2π3;由2k π+π2≤x -π6≤2k π+3π2,得2k π+2π3≤x ≤2k π+5π3,与π2≤x ≤π取交集得2π3≤x ≤π, ∴函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤2π3,π.此类问题的求解思路如下:首先将函数f (x )化简为f (x )=a sin x +b cos x 的形式;,然后借助辅助角公式化f (x )为f (x )=a 2+b 2sin (x +φ)的形式;最后,类比y =sin x 的性质,树立“x +φ”的团体意识研究y =f (x )的性质.10.1.3 两角和与差的正切知识点 两角和与差的正切公式T(α+β):tan(α+β)=tan α+tan β1-tan αtan β.T(α-β):tan(α-β)=tan α-tan β1+tan αtan β.公式T(α±β)有何结构特征和符号规律?[提示](1)结构特征:公式T(α±β)的右侧为分式形式,其中分子为tan α与tan β的和或差,分母为1与tan αtan β的差或和.(2)符号规律:分子同,分母反.重点题型类型1条件求值问题【例1】已知tan(α+β)=5,tan(α-β)=3,求tan 2α,tan 2β,tan⎝⎛⎭⎪⎫2α+π4.2α=(α+β)+(α-β),2β=(α+β)-(α-β),tan⎝⎛⎭⎪⎫2α+π4可以用tan 2α表示出来.[解]tan 2α=tan[(α+β)+(α-β)]=tan(α+β)+tan(α-β)1-tan(α+β)tan(α-β)=5+31-5×3=-47,tan 2β=tan[(α+β)-(α-β)]=tan(α+β)-tan(α-β)1+tan(α+β)tan(α-β)=5-31+5×3=18,tan⎝⎛⎭⎪⎫2α+π4=1+tan 2α1-tan 2α=1-471+47=311.求解此类问题的关键是明确已知角和待求角的关系;求解时要充分借助诱导公式、角的变换技巧等实现求值.倘若盲目套用公式,可能带来繁杂的运算.类型2 给值求角【例2】 已知tan α,tan β是方程x 2+33x +4=0的两根,且α,β∈⎝ ⎛⎭⎪⎫-π2,π2,求α+β.利用根与系数的关系求tan α+tan β及tan αtan β的值,进而求出tan (α+β)的值,然后由α+β的取值范围确定α+β的值.[解] 因为tan α,tan β是方程x 2+33x +4=0的两根,所以tan α+tan β=-33<0,tan αtan β=4>0,所以tan α<0,tan β<0.又因为α,β∈⎝ ⎛⎭⎪⎫-π2,π2,所以α,β∈⎝ ⎛⎭⎪⎫-π2,0,所以-π<α+β<0.又因为tan(α+β)=tan α+tan β1-tan αtan β=-331-4=3,所以α+β=-2π3.1.给值求角的一般步骤 (1)求角的某一三角函数值; (2)确定角的范围;(3)根据角的范围写出所求的角. 2.选取函数时,应遵照以下原则 (1)已知正切函数值,选正切函数;(2)已知正、余弦函数值,选正弦或余弦函数.若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.类型3 T (α±β)公式的变形及应用【例3】 已知△ABC 中,tan B +tan C +3tan B tan C =3,且3tan A +3tan B =tan A tan B -1,试判断△ABC 的形状.当一个代数式中同时出现“tan α+tan β”及“tan α tan β”两个团体时,我们可以联想哪些公式解题?[解] ∵3tan A + 3 tan B =tan A tan B -1, ∴3(tan A +tan B )=tan A tan B -1, ∴tan A +tan B 1-tan A tan B=-33,∴tan(A +B )=-33.又∵0<A +B <π,∴A +B =5π6,∴C =π6. ∵tan B +tan C +3tan B tan C =3,tan C =33, ∴tan B +33+tan B =3,tan B =33, ∴B =π6,∴A =2π3,∴△ABC 为等腰三角形.1.公式T (α+β),T (α-β)是变形较多的两个公式,公式中有tan α·tan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β)).三者知二可表示或求出第三个.2.一方面要熟记公式的结构,另一方面要注意常值代换.提醒:当一个式子中出现两角正切的和或差时,常考虑使用两角和或差的正切公式.10.2 二倍角的三角函数知识点 倍角公式 (1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)tan 2α=2tan α1-tan α.(1)T 2α对任意角α都成立吗?(2)倍角公式中的“倍角”只能是2α吗?[提示] (1)不是.所含各角要使正切函数有意义.(2)倍角公式中的“倍角”具有相对性,对于两个角的比值等于2的情况都成立,如6α是3α的2倍,3α是3α2的2倍.这就是说,“倍”是相对而言的,是描述两个数量之间的关系的.重点题型类型1 直接应用二倍角公式求值【例1】 (对接教材P 63例1)已知sin 2α=513,π4<α<π2,求sin 4α,cos 4α,tan 4α的值.[解] 由π4<α<π2,得π2<2α<π. 又因为sin 2α=513, 所以cos 2α=-1-sin 22α =-1-⎝ ⎛⎭⎪⎫5132=-1213. 于是sin 4α=2sin 2αcos 2α =2×513×⎝ ⎛⎭⎪⎫-1213=-120169;cos 4α=1-2sin 22α=1-2×⎝ ⎛⎭⎪⎫5132=119169;tan 4α=sin 4αcos 4α=-120169119169=-120119.对二倍角公式的理解及二倍角公式的应用形式对于“二倍角”应该有广义上的理解,如:8α是4α的二倍角;6α是3α的二倍角;4α是2α的二倍角;3α是32α的二倍角;α2是α4的二倍角;α3是α6的二倍角;…,又如α=2·α2,α2=2·α4,….类型2逆用二倍角公式化简求值【例2】化简:2cos2α-12tan⎝⎛⎭⎪⎫π4-αsin2⎝⎛⎭⎪⎫π4+α.[解]原式=2cos2α-12sin⎝⎛⎭⎪⎫π4-αcos⎝⎛⎭⎪⎫π4-α·cos2⎝⎛⎭⎪⎫π4-α=2cos2α-12sin⎝⎛⎭⎪⎫π4-α·cos⎝⎛⎭⎪⎫π4-α=2cos2α-1cos 2α=cos 2αcos 2α=1.1.三角函数的化简有四个方向,即分别从“角”“函数名”“幂”“形”着手分析,消除差异.2.解决此类非特殊角的求值问题,其关键是利用公式转化为特殊角求值,要充分观察角与角之间的联系,看角是否有倍数关系,能否用二倍角公式求值,是否是互余关系,能否进行正弦与余弦的互化;要充分根据已知式的结构形式,选择公式进行变形并求值.类型3活用“倍角”关系巧解题【例3】已知sin⎝⎛⎭⎪⎫π4-x=513,0<x<π4,求cos 2xcos⎝⎛⎭⎪⎫π4+x的值.本题中角“π4-x”与角“π4+x”有什么关系?如何借助诱导公式实现cos 2x与sin⎝⎛⎭⎪⎫π4+x的转换?[解]∵⎝⎛⎭⎪⎫π4-x+⎝⎛⎭⎪⎫π4+x=π2,∴sin⎝⎛⎭⎪⎫π4-x=cos⎝⎛⎭⎪⎫π4+x=513,又0<x<π4,∴π4<x+π4<π2,∴sin⎝⎛⎭⎪⎫π4+x=1213.∴cos 2xcos⎝⎛⎭⎪⎫π4+x=sin⎝⎛⎭⎪⎫π2+2xcos⎝⎛⎭⎪⎫π4+x=2sin⎝⎛⎭⎪⎫π4+x cos⎝⎛⎭⎪⎫π4+xcos⎝⎛⎭⎪⎫π4+x=2sin⎝⎛⎭⎪⎫π4+x=2413.1.(变结论)本例条件不变,求cos 2x.[解]∵0<x<π4,∴0<π4-x<π4,由sin⎝⎛⎭⎪⎫π4-x=513,得cos⎝⎛⎭⎪⎫π4-x=1213,cos 2x=sin⎝⎛⎭⎪⎫π2-2x=sin 2⎝⎛⎭⎪⎫π4-x=2sin⎝⎛⎭⎪⎫π4-x cos⎝⎛⎭⎪⎫π4-x=2×513×1213=120169.2.(变结论)本例条件不变,求sin 2x-2sin2x1-tan x的值.[解]∵⎝⎛⎭⎪⎫π4-x+⎝⎛⎭⎪⎫π4+x=π2,∴cos⎝⎛⎭⎪⎫π4+x=sin⎝⎛⎭⎪⎫π4-x=513.∵sin 2x-2sin2x1-tan x=2sin x cos x-2sin2x1-sin xcos x=2sin x(cos x-sin x)cos x-sin xcos x=2sin x cos x=sin 2x,又sin 2x =-cos ⎝ ⎛⎭⎪⎫π2+2x =1-2cos 2⎝ ⎛⎭⎪⎫π4+x =1-2×25169=119169.∴sin 2x -2sin 2x 1-tan x=119169.当遇到π4±x 这样的角时可利用角的互余关系和诱导公式,将条件与结论沟通.cos 2x =sin ⎝ ⎛⎭⎪⎫π2-2x =2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x .类似这样的变换还有:(1)cos 2x =sin ⎝ ⎛⎭⎪⎫π2+2x =2sin ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x ;(2)sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =2cos 2⎝ ⎛⎭⎪⎫π4-x -1;(3)sin 2x =-cos ⎝ ⎛⎭⎪⎫π2+2x =1-2cos 2⎝ ⎛⎭⎪⎫π4+x 等.提醒:在使用二倍角公式时要特别注意公式中的系数,防止出错.10.3 几个三角恒等式知识点1 积化和差与和差化积公式 (1)积化和差公式sin αcos β=12[sin(α+β)+sin(α-β)],cos αsin β=12[sin(α+β)-sin(α-β)], cos αcos β12[cos(α+β)+cos(α-β)], sin αsin β=-12[cos(α+β)-cos(α-β)]. (2)和差化积公式sin α+sin β=2sin α+β2cos α-β2, sin α-sin β=2cos α+β2sin α-β2, cos α+cos β=2cosα+β2cos α-β2, cos α-cos β=-2sinα+β2sin α-β2.知识点2 半角公式与降幂公式半角公式降幂公式sin α2=±1-cos α2, cos α2=±1+cos α2, tan α2=±1-cos α1+cos α,tan α2=sin α1+cos α=1-cos αsin αsin 2α=1-cos 2α2, cos 2α=1+cos 2α2, tan 2α=1-cos 2α1+cos 2α设tan α2=t ,则sin α=2t 1+t 2,cos α=1-t 21+t 2,tan α=2t1-t 2.重点题型类型1 应用和差化积或积化和差求值【例1】 求sin 220°+cos 250°+sin 20°·cos 50° 的值. [解] 原式=1-cos 40°2+1+cos 100°2+12(sin 70°-sin 30°)=1+12(cos 100°-cos 40°)+12sin 70°-14 =34+12(-2sin 70°sin 30°)+12sin 70° =34-12sin 70°+12sin 70° =34.套用和差化积公式的关键是记准、记牢公式,为了能够把三角函数式化为积的形式,有时需要把常数首先化为某个角的三角函数,然后再化积,有时函数不同名,要先化为同名再化积,化积的结果能求值则尽量求出值来.类型2 万能代换公式的应用 【例2】 设tan θ2=t ,求证:1+sin θ1+sin θ+cos θ=12(t +1).利用万能代换公式,分别用t 表示sin θ,cos θ,代入待证等式的左端即可证明.[证明] 由sin θ=2tan θ21+tan 2θ2及cos θ=1-tan 2θ21+tan 2θ2,得1+sin θ=⎝ ⎛⎭⎪⎫1+tan θ221+tan 2θ2=(1+t )21+t 2, 1+sin θ+cos θ=2⎝ ⎛⎭⎪⎫1+tan θ21+tan 2θ2=2(1+t )1+t2, 故1+sin θ1+sin θ+cos θ=12(t +1).在万能代换公式中不论α的哪种三角函数(包括sin α与cos α)都可以表示成tan α2=t 的“有理式”,将其代入式子中,就可将代数式表示成t 的函数,从而就可以进行相关代数恒等式的证明或三角式的求值.类型3 f (x )=a sin 2ωx +b sin ωx cos ωx +c cos 2ωx 的性质【例3】 求函数f (x )=53cos 2x +3sin 2x -4sin x cos x ,x ∈⎣⎢⎡⎦⎥⎤π4,7π24的最小值,并求其单调减区间.[解] f (x )=53×1+cos 2x 2+3×1-cos 2x2-2sin 2x =33+23cos 2x -2sin 2x=33+4⎝ ⎛⎭⎪⎫32cos 2x -12sin 2x=33+4⎝ ⎛⎭⎪⎫sin π3cos 2x -cos π3sin 2x=33+4sin ⎝ ⎛⎭⎪⎫π3-2x =33-4sin ⎝ ⎛⎭⎪⎫2x -π3,∵π4≤x ≤7π24, ∴π6≤2x -π3≤π4. ∴sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤12,22.∴当2x -π3=π4,即x =7π24时, f (x )取最小值为33-22.∵y =sin ⎝ ⎛⎭⎪⎫2x -π3在⎣⎢⎡⎦⎥⎤π4,7π24上单调递增,∴f (x )在⎣⎢⎡⎦⎥⎤π4,7π24上单调递减.1.(变结论)本例中,试求函数f (x )(x ∈R )的对称轴方程. [解] f (x )=33-4sin ⎝ ⎛⎭⎪⎫2x -π3,令2x -π3=π2+k π,k ∈Z ,得x =k π2+5π12,k ∈Z . 所以函数f (x )的对称轴方程为x =k π2+5π12,k ∈Z .2.(变条件)本例中,函数解析式变为f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6+2sin 2⎝ ⎛⎭⎪⎫x -π12(x ∈R ),求f (x )的单调减区间.[解] ∵f (x )=3sin 2⎝ ⎛⎭⎪⎫x -π12+1-cos 2⎝ ⎛⎭⎪⎫x -π12=2⎣⎢⎡⎦⎥⎤32sin 2⎝ ⎛⎭⎪⎫x -π12-12cos 2⎝ ⎛⎭⎪⎫x -π12+1=2sin ⎝ ⎛⎭⎪⎫2x -π3+1,由2k π+π2≤2x -π3≤2k π+3π2,k ∈Z , 得k π+5π12≤x ≤k π+11π12,k ∈Z ,∴f (x )的单调减区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12,k ∈Z .1.应用公式解决三角函数综合问题的三个步骤 (1)运用和、差、倍角公式和重要恒等式化简. (2)统一化成f (x )=a sin ωx +b cos ωx +k 的形式.(3)利用辅助角公式化为f (x )=A sin(ωx +φ)+k 的形式,研究其性质. 2.对三角函数式化简的常用方法 (1)降幂化倍角; (2)升幂角减半;(3)利用f (x )=a sin x +b cos x =a 2+b 2sin(x +φ)⎝ ⎛⎭⎪⎫其中tan φ=b a ,化为“一个角”的函数.。
〖高中数学必修苏教版目录〗

高中数学新课标苏教版教材目录数学1第1章集合§1.1集合的含义及其表示§1.2子集、全集、补集§1.3交集、并集第2章函数概念与基本初等函数Ⅰ§2.1函数的概念和图象§函数的概念和图象§函数的表示方法§函数的简单性质§映射的概念§2.2指数函数§分数指数幂§指数函数§2.3对数函数§对数§对数函数§2.4幂函数§2.5函数与方程§二次函数与一元二次方程§用二分法求方程的近似解§2.6函数模型及其应用数学2第3章立体几何初步§3.1空间几何体§棱柱、棱锥和棱台§圆柱、圆锥、圆台和球§中心投影和平行投影§直观图画法§空间图形的展开图§柱、锥、台、球的体积§3.2点、线、面之间的位置关系§平面的基本性质§空间两条直线的位置关系§直线与平面的位置关系§平面与平面的位置关系第4章平面解析几何初步§4.1直线与方程§直线的斜率§直线的方程§两条直线的平行与垂直§两条直线的交点§平面上两点间的距离§点到直线的距离§4.2圆与方程§圆的方程§直线与圆的位置关系§圆与圆的位置关系§4.3空间直角坐标系§空间直角坐标系§空间两点间的距离数学3第5章算法初步§5.1算法的意义§5.2流程图§5.3基本算法语句§5.4算法案例第6章统计§6.1抽样方法§6.2总体分布的估计§6.3总体特征数的估计§6.4线性回归方程第7章概率§7.1随机事件及其概率§7.2古典概型§7.3几何概型§7.4互斥事件及其发生的概率数学4第8章三角函数§8.1任意角、弧度§8.2任意角的三角函数§8.3三角函数的图象和性质第9章平面向量§9.1向量的概念及表示§9.2向量的线性运算§9.3向量的坐标表示§9.4向量的数量积§9.5向量的应用第10章三角恒等变换§10.1两角和与差的三角函数§10.2二倍角的三角函数§10.3几个三角恒等式数学5第11章解三角形§11.1正弦定理§11.2余弦定理§11.3正弦定理、余弦定理的应用第12章数列§12.1等差数列§12.2等比数列§12.3数列的进一步认识第13章不等式§13.1不等关系§13.2一元二次不等式§13.3二元一次不等式组与简单的线性规划问题§13.4基本不等式选修系列11-1第1章常用逻辑用语§1.1命题及其关系§1.2简单的逻辑联结词§1.3全称量词与存在量词第2章圆锥曲线与方程§2.1圆锥曲线§2.2椭圆§2.3双曲线§2.4抛物线§2.5圆锥曲线的共同性质第3章导数及其应用§3.1导数的概念§3.2导数的运算§3.3导数在研究函数中的应用§3.4导数在实际生活中的应用1-2第1章统计案例§1.1独立性检验§1.2线性回归分析第2章推理与证明§2.1合情推理与演绎推理§2.2直接证明与间接证明第3章数系的扩充与复数的引入§3.1数系的扩充§3.2复数的四则运算§3.3复数的几何意义第4章框图§4.1流程图§4.2结构图选修系列22-1第1章常用逻辑用语§1.1命题及其关系§1.2简单的逻辑连接词§1.3全称量词与存在量词第2章圆锥曲线与方程§2.1圆锥曲线§2.2椭圆§2.3双曲线§2.4抛物线§2.5圆锥曲线的统一定义§2.6曲线与方程第3章空间向量与立体几何§3.1空间向量及其运算§3.2空间向量的应用2-2第1章导数及其应用§1.1导数的概念§1.2导数的运算§1.3导数在研究函数中的应用§1.4导数在实际生活中的应用§1.5定积分第2章推理与证明§2.1合情推理与演绎推理§2.2直接证明与间接证明§2.3数学归纳法第3章数系的扩充与复数的引入§3.1数系的扩充§3.2复数的四则运算§3.3复数的几何意义2-3第1章计数原理§1.1两个基本原理§1.2排列§1.3组合§1.4计数应用题§1.5二项式定理第2章概率§2.1随机变量及其概率分布§2.2超几何分布§2.3独立性§2.4二项分布§2.5离散型随机变量的均值与方差§2.6正态分布第3章统计案例§3.1独立性检验§3.2线性回归分析主要编写人员情况主编单墫副主编李善良陈永高主要编写人员数学与应用数学方面:单墫陈永高苏维宜蒋声丁德成洪再吉许道云孙智伟李跃文王晓谦尤建功秦厚荣唐忠明钱定边傅珏生葛福生夏建国孙智伟汪任观数学教育与数学史方面:李善良赵振威葛军徐稼红周焕山朱家生高中数学教师与教研员:仇炳生冯惠愚张乃达祁建新樊亚东石志群董林伟张松年陈光立陆云泉孙旭东于明寇恒清王红兵卫刚单墫 1943年生,南京师范大学数学系教授,博士生导师,享受政府特殊津贴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
直线CD⊥平面_____.
D
苏教版高中数学教材必修2
B 第1章
C
立体几何初步
1.2 点、线、面之间的位置关系
直线与平面垂直的性质定理:
如果两条直线同时垂直于一个平面, b’b 那么这两条直线平行. a 已知:a⊥,b⊥. a⊥ a∥b b⊥ 求证:a∥b. O
* 线面垂直 线线平行
—— 直线a的垂面;
P —— 垂足.
a⊥,l⊂ a⊥l.
第1章 立体几何初步
苏教版高中数学教材必修2
1.2 点、线、面之间的位置关系
过一点有 无数
条直线与已知直线垂
直;
过一点有且只有一 条直线与已知平面垂 直; 过一点有且只有一 个平面与已知直线垂 直.
苏教版高中数学教材必修2 第1章 立体几何初步
EF,则四边形BCFE为( C )
A.空间四边形
P
F E D C B
第1章 立体几何初步
B.平行四边形
C.梯形 A
苏教版高中数学教材必修2
1.2 点、线、面之间的位置关系
例.在空间四边形ABCD中,AC=BD=a, 与直线AC,BD都平行的平面分别交 AB,BC,CD,AD于E,F,G,H.
①求证:四边形EFGH
关系.
P N A L N D O
第1章 立体几何初步
M
B 苏教版高中数学教材必修2
C
1.2 点、线、面之间的位置关系
练习-填空
1.过直线外一点与已知直线平行的直线有 ________条. 1 2.过直线外一点与已知直线平行的平面有 无数 ________个. 3.过平面外一点与已知平面平行的直线有 无数 ________条. 4.过平面外一点与已知平面平行的平面有 ________个. 1
第1章
立体几何初步
苏教版高中数学教材必修2 第1章 立体几何初步
1.2 点、线、面之间的位置关系
直线与平面平行的性质定理: 如果一条直线和一个平面平行,经过这 条直线的平面和这个平面相交,那么这条直 线就和交线平行. 已知:a∥,a,∩=l. a∥ a 求证:a∥l. a∥l ∩=l
a
l
* 线面平行 线线平行
苏教版高中数学教材必修2 第1章 立体几何初步
1.2 点、线、面之间的位置关系
例.如图,∩=CD,∩=EF, ∩=AB,AB∥. 求证:CD∥EF. A D F E
立体几何初步
B
C
第1章
苏教版高中数学教材必修2
1.2 点、线、面之间的位置关系
苏教版高中数学教材必修2 第1章 立体几何初步
1.2 点、线、面之间的位置关系
从平面外一点A引这个平面的垂线, a 垂足P A ——点A在这个平面内的射影;
P
点A与垂足P间的线段 垂线段AP的长度
——点A到这个平面的垂线段; ——点A到这个平面的距离 .
苏教版高中数学教材必修2 第1章 立体几何初步
苏教版高中数学教材必修2 第1章 立
P
A
l
一条直线和一个
平面相交但是不 垂直,称这条直 线为这个平面的斜线; 斜线和平面的交点叫 做斜足;
R
Q
A’
从平面外一点向平面引斜线,点与斜足间的线
段叫做点到平面的斜线段; 过垂足和斜足的直线叫做斜线在这个平面内的
判断:
1.a∥b,b∥c,则a∥c. T
2.a⊥b,b⊥c,则a∥c. F 3.a⊥b,b∥c,则a⊥c. T
苏教版高中数学教材必修2
第1章
立体几何初步
1.2 点、线、面之间的位置关系
直线与平面垂直:
如果一条直线a与一个平面内的任意一
条直线都垂直.
记作:a⊥.
a P l
a —— 平面的垂线;
射影;垂足和斜足间的线段叫做这个点到平面
的斜线段在这个平面内的射影.立体几何初步 苏教版高中数学教材必修2 第1章
1.2 点、线、面之间的位置关系
例.已知P 为正方形ABCD所在平面外一 点,且PB⊥平面ABCD,PB=AB=a.
求点P 到直线 AC 的距离. P a B
a A O D
第1章 立体几何初步
求证:MN∥面BCE.
A
D M P C
苏教版高中数学教材必修2 第1章
N B
F
Q
E
立体几何初步
K
1.2 点、线、面之间的位置关系
例.设P为正方形ABCD所在平面外的一点,
PA⊥平面ABCD,AE⊥PB于点E.
求证:AE⊥PC.
P
①异面直线所成角;
E
②线面垂直的性质.
A
D
B
C
苏教版高中数学教材必修2
苏教版高中数学教材必修2 第1章 立体几何初步
1.2 点、线、面之间的位置关系
练习.
5.过两条异面直线中的一条有
______个平面与另一条直线 1 平行.
a M
b
a’
苏教版高中数学教材必修2
第1章
立体几何初步
1.2 点、线、面之间的位置关系
练习.
6.P 为△ABC所在平面外一点,M、N分
别是PC、AC上的点,过MN作平面平行于
1.2 点、线、面之间的位置关系
一条直线与一个平面平行,直线上各点到 平面的距离相等. ——直线和平面的距离. * 线面距 点面距
苏教版高中数学教材必修2
第1章
立体几何初步
1.2 点、线、面之间的位置关系
直线到平面的距离 :
①平行于平面的直线和平面间的距离处处相 等; ②直线上有两点到平面的距离相等, 若此两点在平面同侧,则直线与平面平行; 若此两点在平面异侧,则直线和平面相交, 且交点是连结此两点的线段的中点; ③如果一个平面经过一条线段的中点, 那么线段的两个端点到平面的距离相等.
1.2 点、线、面之间的位置关系
§3 直线与平面的位置关系
b c n
a
m
l
苏教版高中数学教材必修2
第1章
立体几何初步
1.2 点、线、面之间的位置关系
直线a与平面的位置关系: 有无数公共点 有一个公共点 a在内
a
没有公共点 a与平行
a
a与相交
a A
a
a∩=A
a
苏教版高中数学教材必修2 第1章
1.2 点、线、面之间的位置关系
例1.求证:空间四边形相邻两边中点的连
线,平行于经过另外两边的平面.
已知:在空间四边形ABCD中,E,F 分别是AB,AD的中点. 求证:EF∥平面BCD.
E
B
苏教版高中数学教材必修2 第1章 立体几何初步
A F D
C
1.2 点、线、面之间的位置关系
练习.如图,P为平行四边形ABCD所在的 平面外一点. M,O 分别是PD,AC的中点. M,N 分别是PD,PC的中点.试判 判断MO与平面PAB的关系. 断MN与四棱锥P-ABCD各面的位置
BC,并画出此平面与其他各面的交线. P R M B
S
A
C第1章 N
立体几何初步
苏教版高中数学教材必修2
1.2 点、线、面之间的位置关系
练习-判断. 7.若直线a∥b,则a平行于经过b的任何平 面. F 8.若直线和平面满足a∥,b∥, 则 a∥b. F 9.若直线a∥,那么在内可以找到无数 组直线与a 平行.T 10.若直线a∥,那么a与内任意一条直 线都平行.F
1.2 点、线、面之间的位置关系
直线与平面垂直的判定定理1: 如果一条直线和一个平面内的两条相交 直线垂直,那么这条直线垂直于这个平面. l⊥a
l⊥b
a⊂ l⊥ * 线线垂直 线面垂直
第1章 立体几何初步
b⊂
a∩b=A
苏教版高中数学教材必修2
1.2 点、线、面之间的位置关系
直线与平面垂直的判定定理2: 求证: 如果两条平行直线中的一条垂直于一 个平面,那么另一条也垂直于这个平面.
1.2 点、线、面之间的位置关系
例.在正方体ABCD-A1B1C1D1中,
求:①A1D与平面ABCD所成的角;
②A1C与平面ABCD所成角的正弦.
③A1B与平面A1B1CD所成的角的余弦 . D1 C
1
A1
B1 D
C B 第1章
立体几何初步
苏教版高中数学教材必修2
A
1.2 点、线、面之间的位置关系
证明两直线平行:
①平行公理;
②平面内两直线无公共点; ③线面平行性质定理.
判定定理 _________→ 线线平行 线面平行 性质定理 ←_________
苏教版高中数学教材必修2 第1章 立体几何初步
1.2 点、线、面之间的位置关系
例.如图,点P为平行四边形ABCD所在平
面外一点,过BC的平面与面PAD交于
苏教版高中数学教材必修2 第1章 立体几何初步
b
1.2 点、线、面之间的位置关系
直线与平面平行的判定定理: 如果平面外一条直线和这个平面内的一 条直线平行,那么这条直线和这个平面平 行. a a∥b a a∥ b b * 线线平行 线面平行
苏教版高中数学教材必修2 第1章 立体几何初步
已知:a∥b,a⊥. a∥b 求证:b⊥. b⊥ a⊥
苏教版高中数学教材必修2
a
b
n
第1章
P
m
立体几何初步
1.2 点、线、面之间的位置关系
练习.
1.如图,已知△ADB和△ADC都是以D为直
角顶点的直角三角形,
且AD=BD=CD,∠BAC=60°,
则直线AD⊥平面_____;