氢谱解析核磁共振碳谱幻灯片资料

合集下载

氢谱解析PPT课件

氢谱解析PPT课件
CH3H CH3Li -1.95
0.98
CH3Cl
CH3Br
第16页/共69页
• 相邻电负性基团的个数
CH3Cl CHCl3
3.05
7.27
CH2Cl2 5.30
• 与电负性基团相隔的距离(键数)
CH3OH CH3CH2CH2OH
CH3CH2OH
3.39 第17页/共691页.18
(2) 各向异性效应
第12页/共69页
核磁共振氢谱
第13页/共69页
低场
高场
乙苯的1HNMR
• 横坐标为化学位移值,代表谱峰位置;
• 台阶状的积分曲线高度表示对应峰的面积。 在1H谱中峰面积与相应的质子数目成正比自旋耦合引
第一节 1H 的化学位移
1.影响化学位移的因素 2. 各类1H的化学位移
第11页/共69页
耦合常数J表示耦合的磁核之间的相互干扰 程度,以赫兹为单位。J和外加磁场无关,而与 两个核在分子中相隔的化学键数目和种类有 关。所以通常在J的左上角标以两核相距的 化学键数目,在键的右下角标明相互耦合的 两个核的种类。如1H-C-C-1H中两个1H之间 相隔三个键,其耦合常数表示为3JH-H。
第9页/共69页
化学位移的测定
测定时一般将TMS作为内标和样品一起溶解于合适的溶剂中,氢谱和碳谱 所用溶剂一般为氘代溶剂,常用的氘代溶剂有氘代氯仿,氘代丙酮,重水等。 测定化学位移有两种实验方法:
扫场:固定照射电磁波频率,不断改变外磁场强度B0,从低场向高场变
化,当B0正好与分子中某一种化学环境的核共振频率满足共振条件时,产生吸 收信号,出现吸收峰。
扫频:固定磁场强度B0,改变照射频率v。
一般仪器大多采用扫场的方法

核磁共振氢谱解析 ppt课件

核磁共振氢谱解析 ppt课件

NMR发展
近二十多年发展 高强超导磁场的NMR仪器,大大提高灵敏度和分辨率; 脉冲傅立叶变换NMR谱仪,使灵敏度小的原子核能被测定; 计算机技术的应用和多脉冲激发方法采用,产生二维谱,对判断化合 物的空间结构起重大作用。 英国R.R.Ernst教授因对二维谱的贡献而获得1991年的Nobel奖。
磁体:提供强而均匀的磁场
样品管:直径4mm, 长度15cm,质量均匀的玻璃管 射频振荡器:在垂直于主磁场方向提供一个射频波照射样品
扫描发生器:安装在磁极上的Helmholtz线圈,提供一个附加可
变磁场,用于扫描测定 射频接受器 :用于探测NMR信号,此线圈与射频发生器、扫描
部东 部西 部北 度季四第 度季三第 度季二第 度季一第 09 08 07 06 05 04 03 02 01 0
NMR谱的结构信息
化学位移 偶合常数 积分高度
让处于外磁场的自旋核接受一定频率的 电磁波辐射,而辐射的能量又恰好等于高低 两种不同取向的能量差时,质子就吸收电磁 辐射,从低能态跃迁到高能态而产生共振现 象,称为核磁共振(NMR)。 以吸收的能量的强度为纵坐标,以吸收 的频率为横坐标,用记录仪描绘下来,分子 中各个核在核磁共振谱上即出现吸收峰,成 为核磁共振谱图。
常用溶剂的化学位移值
溶剂 CCl4 CS2 CDCl3 (CD3)2CO (CD3)2SO D2O 苯d6 (C6D6) 二氧六环d6 CF3COOH 还己烷-d12 吡啶-d5 CD3OH 7.27 2.05 2.50 4.8(变化大与样品浓度及温度有关) 7.20 3.55 12.5 1.63 6.98, 7.35, 8.50 3.35 128.0(3) 67.4 116.5(4), 163.3(4) 26.3(7) 149.3(3),123.5(3), 135.5(3) 49.0(7) δ 1H δ 13C 96.1 192.8 77.1(3) 30.3(7), 207.3 39.5(7)

核磁共振氢谱及碳谱(NMR)PPT课件

核磁共振氢谱及碳谱(NMR)PPT课件
核磁共振氢谱及碳谱
13C 谱
碳谱的特点
13C谱测定的困难:
1. 天然丰度低:~1.1%; 而 1H: 99.98%
2. 相 对 灵 敏 度 低 : gCgH/4, 因 此 其 相 对 灵 敏 度 为 (gC/gH)3=0.016。
3. 再考虑到弛豫等因素,总体来讲,13C的灵敏度要比 1H低约6000倍。
1H耦合的碳谱无法解释,因为往往会重叠在一起 。
ppt精选版
3
碳谱的特点
3. 由于碳谱的化学位移范围很大,在较为复杂的分子中, 1H耦合的碳谱无法解释,因为往往会重叠在一起 。 因此实际上我们通常使用的13C谱是质子去耦谱。
ppt精选版
4
碳谱的特点
13C谱的优点:
1. C构成化合物的骨架,因而C谱能够提供结构鉴定的 重要信息
160 140 120 100 90 80 70 60 50 40 30 ppm
• 对C而言,C=1.988,即C的信号强度最大可达到原来
的3倍,再加上谱线有几条合并成1条,总的强度增加
就更大。
ppt精选版
32
1H去耦脉冲序列
x
y
I
x
S
y, -y b
y
ppt精选版
Deco up le
33
1H去耦脉冲序列
小,|p|减小,dC减小。
• 如电子体系:电子密度r与dC有一个线性关

dC = 160r + 287.5 (ppm)
即电子密度r越大,化学位移越小
ppt精选版
11
烷烃中C的化学位移
• 取代基电负性对化学位移的影响
a. 取代基电负性越大,相邻的a-C原子越往低场移,

核磁共振氢谱PPT课件

核磁共振氢谱PPT课件


m=I, I-1, I-2, ……-I
• 每种取向各对应一定能量状态
• I=1/2的氢核只有两种取向
• I=1的核在B0中有三种取向
.
10
z
z
z
m =+1
m =
B0
m = +1/2
m =
m =
m =
m = 1/2
m = 1
m = 1 m = 2
I = 1/2
I=1
I=2
I=1/2的氢核 与外磁场平行,能量较低,m=+1/2, E 1/2= -B0
与外磁场方向相反, 能量较高, m= -1/2, .
E -1/2=1B1 0
• 核磁矩与外磁场相互作用而产生的核磁场作用能 E, 即各能级的能量为 E=-ZB0
E 1/2= -B0 E-1/2= B0
.
12
I=1/2的核自旋能级裂分与B0的关系
• 由式 E = -ZB0及图可知1H核在磁场 中,由低能 级E1向高能级E2跃迁,所需能量为 △E=E2-E1= B0 -(-B0) = 2 B0
代入上式得: h I(I1) 2
当I=0时,P=0,原子核没有自旋现象,只有I﹥0,原 子核才有自旋角动量和自旋现象
.
9
二、核自旋能级和核磁共振
(一)核自旋能级
• 把自旋核放在场强为B0的磁场中,由于磁矩 与磁 场相互作用,核磁矩相对外加磁场有不同的取向,共 有2I+1个,各取向可用磁量子数m表示
.
6
• 自旋角动量
– 一些原子核有自旋现象,因而具有自旋角动 量。由于核是带电粒子,故在自旋同时将产 生磁矩。核磁矩与角动量都是矢量,磁矩的 方向可用右手定则确定。

图谱解析 核磁共振图谱-氢谱ppt课件

图谱解析 核磁共振图谱-氢谱ppt课件
16H2 z 27H0z2.7p 0pm
6M 0 H1z0 M 0Hz
23
SKLF
0:60MHz 100MHz 200MHz 400MHz
H0:1.4092T 2.3488T 4.6975T 9.3951T
1ppm= 60Hz 100Hz 200Hz 400Hz
100MHz 10 8 6 4 2 0
=60 MHz
B0
图4.8 核磁共振的吸收过程;当 v = 吸收发生
15
SKLF
共振
噢,我明白了!
当入射射线的振荡电场的频率同原子 核进动产生的电场频率一样时,两个 电场将会发生耦合,能量将会发生转 移,从而引起自旋形状的改动。我们 就说这种原子核入射的电磁射线发生 了共振。
16
SKLF
4.5 原子核自旋形状的数量分布
例如,在60MHz的磁场中, CH3Br 的化 学位移为162 Hz ,而在100MHz 中其化学位 H 3C 移为270 Hz.
CH 3 Si CH 3 CH 3
TMS
22
SKLF
化学位移( ), 同场强无关的表示方法
(化学位移Hz)
(核磁共振频率MHz) 特定质子的 值通常是一样的,不需求再思索丈量 频率了。
由于地球重力磁场 的影响,顶端沿着 本人轴进动.
当有外加磁场存在 时,原子核开场沿 着本身自旋的轴以 角速度进动 (拉莫 尔频率).
14
SKLF
, 同外加磁场的强度成比例;外加磁场强度越大, 进动的速率越大.
• 由于原子核带有电荷,原子核进动将产生同样频率的振 荡电场。
• 假设有一样频率的射线照射进动质子,此时射线的能量 将被吸收.
rohsolvrohsolvsolv45sklf412412磁各向异性磁各向异性环电流74ppm图图421421苯的抗磁的各向异性苯的抗磁的各向异性46sklf422乙炔的抗磁的各向异性乙炔的抗磁的各向异性23ppm47sklfch263155108070051图423由于在一些常见的重键系统中电子的存在致使构成各向异性48sklf图图424424一些实践分子的各向异性效应一些实践分子的各向异性效应49sklf413413n1n1分叉法那么n1法那么每种一样类型的质子的吸收意味着被相邻碳上的化学等价质子n个分裂为n1clchcl395ppm双峰577ppm三重50sklf图图425112425112三氯乙烷的三氯乙烷的1hnmr1hnmr图谱图谱51sklfch3ch2i图426426乙基碘的乙基碘的1hnmr1hnmr图谱图谱52sklf图图4274272硝基丙烷的硝基丙烷的1hnmr1hnmr图谱图谱53sklf自旋自旋裂分给出了一种新型的构造信息它阐明相邻碳上有多少个质子致使产生多重峰

核磁氢谱解析ppt课件

核磁氢谱解析ppt课件
如果有氢与氢的重合现象,特别是在做二维谱时想看 到相关氢的信号,此时可以加少量的氘代苯或氘代乙腈, 它们会对样品分子的不同部位产生不同的屏蔽作用,可以 使原来相互重叠的峰分开。
6)空间因素 比如受空间上某些大基团的影响,或者羰
基,苯环等对该位置的氢有屏蔽或去屏蔽的影 响,范德华力的影响等。
7)氢键的影响
三键,双键,苯环由于磁各项异性都会产生屏蔽区和去屏蔽区,所以 这些也是影响化学位移的重要因素,经常借此因素来区分异构体。单 键也有磁各向异性,所以C3CH>C2CH2>CCH3
4) 共轭作用和诱导作用(对不饱和烷烃影响) 对不饱和烷烃共轭作用和诱导作用要综合考虑。
共轭作用有p-π共轭给电子,π-π共轭吸电子;诱导效 应主要是吸电子效应。
3)磁各向异性 根据S-P杂化原理, 炔烃应该比烯烃更低场,苯环与烯烃相近.但实
际并不然.炔氢相对于烯氢是处于较高场,是因为炔氢处于叁键轴外,当 叁键与外磁场平行时, π电子环电流绕轴运动产生的感应磁场与外加磁 场相反,对质子起强烈的屏蔽作用,这是炔烃的一个很重要的特点.
芳环氢相对烯氢处于较低场,这样的现象是因为芳环π电子也有 环电流的纯在,产生与外磁场方向相同的磁场,对芳环氢有去屏蔽作用. 烯烃也有磁各向异性,但苯环的磁各向异性较强.
单键,三键,双键,苯环由于磁各向异性都会产生屏蔽区和去 屏蔽区,所以这些也是影响饱和烷烃化学位移的因素.(后面 会介绍,详细请看仪器分析化学课本)请结合以上说明通过 下面的列表来查看不同取代基对饱和烷烃的影响。
2)S-P杂化 从sp3(碳碳单键)到sp2(碳碳双键)s 电子的成分从25%增加到33%,键电子 更靠近碳原子,因而对相连的氢原子有 去屏蔽作用,即共振位移移向低场. (芳 环与烯烃比饱和烷烃的化学位:活泼氢的谱图:通常表现为宽峰,有时候也会有 偶合裂分,并受温度的影响化学位移有明显变化。

《核磁共振氢谱》课件


芳烃的氢谱解析
芳烃的氢谱特征
芳烃的氢谱峰形较复杂,有多个峰,且峰与峰之间的距离较近。
芳烃的氢谱解析要点
根据峰的数量和位置,确定芳烃的类型和碳原子数;根据峰的强度 和形状,确定氢原子的类型和数量。
实例分析
以苯为例,其氢谱有多个峰,分别对应于不同位置上的氢原子。
PART 04
氢谱解析中的常见问题与 解决策略
偶合常数
当两个氢原子之间的距离足够近时, 它们的核磁共振信号会发生偶合,导 致峰分裂成双重峰。偶合常数是衡量 两个氢原子之间距离的指标。
氢谱解析的一般步骤
确定峰的位置和强度
根据核磁共振氢谱中的峰位置和强度,可以推断出分子中氢原子 的类型和数量。
确定氢原子的连接关系
通过分析峰的偶合常数,可以确定氢原子之间的连接关系,从而确 定分子的结构。
峰的简化问题
总结词
峰的简化问题是指某些情况下氢谱峰的数量过多,使得解析变得复杂。
详细描述
在某些情况下,由于分子结构中存在多个等效氢原子,会产生大量的重叠峰。这增加了氢谱解析的难 度。解决策略包括利用分子对称性来简化氢谱,以及利用去偶技术来消除某些峰的干扰,从而使得氢 谱更加简洁明了。
解析中的不确定性问题
多核共振技术
总结词
多核共振技术能够同时研究多个原子核的相 互作用和动态行为,有助于更全面地了解分 子结构和化学反应过程。
详细描述
多核共振技术是一种新兴的技术,它通过同 时研究多个原子核的相互作用和动态行为, 能够提供更全面、更深入的分子结构和化学 反应过程信息。这一技术的应用,将有助于 推动化学、生物学、物理学等领域的发展, 为解决复杂体系的研究提供新的手段。
2023-2026
ONE

核磁共振氢谱PPT课件


TMS
7.0 6.0 5.0 4.0 3.0 2.0 1.0 0
图1:乙基苯(10% CCpplt精4 选溶版液)于100兆赫的NMR
25
2. 化学位移的表示
由于化学位移的差别范围很小(10×10-6), 所以精确测出绝对数 值比较困难。现均以相对数表示:即以被测质子共振时的磁场 强度B0样与某一标准物质的质子共振时的磁场强度B0标之差和标 准物质共振时磁场强度B0标的比值δ来表示:
ppt精选版
24
例如: 图1给出了乙基苯在100MHz时的高分辨率核
磁共振图谱. 在乙基苯的分子中, -CH3 上的三个质子, -CH2- 上的两个质子, C6H5-上的五个质子.它们在 不同的磁场强度下产生共振吸收峰, 也就是说,它们
有着不同的化学位移.
C6H5-
3H 2H
-CH3
5H
-CH2-
21
高场
低频
0
ppm
ppt精选版
28
位移的标准
四甲基硅烷 Si(CH3)4 (TMS)
规定:TMS=0
为什么用TMS作为基准?
(1 ) 12个氢处于完全相同的化学环境,只产生一个吸收峰;
(2)屏蔽强烈,位移最大(0)。与一般有机化合物中的质子峰 不重叠;
(3)化学惰性;易溶于有机溶剂;沸点低,易回收。
H+
H+
H+
自旋
H+
β
能量较高 ΔE
H+
H+
H+
α 自旋
H+
能量较低
没有磁场
有磁场B0
质子在没有磁场和有磁场情况下的磁矩方向 ppt精选版
B0

《核磁共振氢谱解析》PPT课件


在解析糖类的氢谱时,需要注意 区分不同糖环类型的影响,以便 准确推断出糖类分子的结构特征 。
由于糖类分子结构的复杂性,其 氢谱信号可能会出现重叠现象, 需要仔细解析以获得准确的结论 。
05
氢谱解析的挑战与展望
复杂样品与混合物的解析
挑战
复杂样品和混合物中的多种成分可能 导致谱线重叠和干扰,增加了氢谱解 析的难度。
峰面积
表示某一峰的强度或高 度,通常与产生该峰的
质子数成正比。
积分线
对谱线进行积分,得到 积分线,可以用于定量
分析。
校正因子
由于不同化学环境对质 子自旋耦合的影响,需 要引入校正因子来准确
计算质子数。
03
氢谱解析实践
简单分子的氢谱解析
总结词
掌握基础解析方法
01
总结词
熟悉常见峰型
03
总结词
注意杂质的干扰
解决方案
采用先进的谱图解析技术和化学位移 差异法,结合分子结构和物理状态信 息,对重叠的谱线进行分离和鉴别。
高磁场下的氢谱解析
挑战
高磁场条件下,氢谱的分辨率和灵敏度得到提高,但同时也带来了谱线复杂化 和解析难度增加的问题。
解决方案
利用高磁场下的多量子跃迁和异核耦合等效应,结合计算机模拟和量子化学计 算,对高磁场下的氢谱进行解析。
氢谱解析技巧与注意事项
总结词
重视峰的归属与确认
总结词
在复杂氢谱中,应注意分辨和区分重 叠的峰,运用适当的技巧和方法进行 解析。
详细描述
在解析氢谱时,应重视每个峰的归属 与确认,确保解析结果的准确性。
详细描述
注意峰的重叠与分辨
04
氢谱解析案例分析
案例一:醇类的氢谱解析

《核磁共振氢谱》课件

《核磁共振氢谱》课件课程目标:1. 理解核磁共振氢谱的基本原理2. 学会分析核磁共振氢谱图3. 掌握核磁共振氢谱在有机化学中的应用第一部分:核磁共振氢谱的基本原理1. 核磁共振现象核磁共振的定义核磁共振的产生条件核磁共振的物理过程2. 核磁共振氢谱的化学位移化学位移的定义化学位移的影响因素化学位移的计算方法3. 核磁共振氢谱的耦合常数耦合常数的定义耦合常数的影响因素耦合常数的计算方法4. 核磁共振氢谱的积分强度积分强度的定义积分强度的影响因素积分强度的计算方法第二部分:核磁共振氢谱的解析1. 核磁共振氢谱图的解读谱线的数量和位置谱线的形状和积分强度谱线的耦合情况2. 等效氢的判断等效氢的定义等效氢的判断方法等效氢的例外情况3. 核磁共振氢谱的应用实例简单有机化合物的分析复杂有机化合物的分析手性化合物的分析第三部分:核磁共振氢谱的实验操作1. 核磁共振氢谱的样品制备样品的选择和制备方法样品的纯化和干燥样品的装载和测试2. 核磁共振氢谱的仪器操作核磁共振仪的基本结构核磁共振仪的操作步骤核磁共振氢谱的获取和保存3. 核磁共振氢谱的数据处理核磁共振氢谱的数据分析核磁共振氢谱的峰拟合核磁共振氢谱的定量分析第四部分:核磁共振氢谱的实践练习1. 练习题目简单有机化合物的核磁共振氢谱分析复杂有机化合物的核磁共振氢谱分析手性化合物的核磁共振氢谱分析2. 练习解答分析过程和思路核磁共振氢谱的解析步骤最终答案和讨论总结:核磁共振氢谱是一种重要的有机化学分析方法,通过对氢原子的核磁共振现象进行研究,可以得到有机化合物的结构和性质信息。

通过对核磁共振氢谱的基本原理、解析方法和实验操作的学习,可以更好地理解和应用核磁共振氢谱,为有机化学研究和教学提供有力的工具。

科学性:1. 内容准确:课件中的概念、原理和实验操作应基于有机化学和核磁共振氢谱的现有科学知识,确保无误。

2. 信息更新:课件中所引用的文献和数据应是最新的,以保证教学内容的时效性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CH 3
非常好的对称性,分子中有9个碳
=10 50 ppm 只可能出现三个峰
CH 3
1r-3-反-5-反三甲基环己烷
分子中有9个碳 =10 50 ppm
出现6个共振峰
CH 3 CH 3
CH 3
CH 3 CH 3
CH 3
CH 3 CH 3
CH 3
官能团的信息: 不能从 1H 谱中得到, 只能从 13C 谱中得到有关的结构信息
13C 谱 化学位移范围大 300 ppm
1H 谱的 20~30 倍
分辨率高 谱线之间分得很开,容易识别
13C 自然丰度 1.1%, 不必考虑 13C 与 13C 之间的耦合, 只需考虑同 1H 的耦合。
4.4.2 13C NMR化学位移
(即有几种不同种类的碳原子)
2. 不完全去耦(偏共振去耦) off-resonance decoupled
进行1H去耦时,将去耦频率放在偏离1H共振中心 频率几百到几千赫兹处,这样谱中出现几十赫兹 的JC-H, 而长距离耦合则消失了, 从而避免谱峰 交叉现象,便于识谱。
利用不完全去耦技术可以在保留NOE使信号增强 的同时,仍然看到CH3四重峰,CH2三重峰和CH 二重峰,不与1H直接键合的季碳等单峰。
4
3
5
O
O 确定糠醛中3位碳和4位碳的归属 CH
分别照射3位及4位质子,则3位碳及 4位碳的二重峰将分别成为单峰, 于是就可确定信号归属。
13C NMR的应用
13C NMR
分子结构
了解分子中碳的种数 提供碳在分子中所处环境的信息
CH 3 Cl
CH 3
CH 2
KOH
C2H5OH
or
反应产物 质子去偶13C NMR谱图 判定它的消去方向
65~85 100~150 170~210
40~80 110~160 30~65
sp3:
=0~100 ppm
sp2:
=100~210 ppm
羰基碳: =170~210 ppm
13C NMR 谱
不一定解析每一个峰
峰的个数分子的对称性
特征共振峰的信息可能结构
开链烷烃
取代基对13C的值影响
i = 2.6+9.1n+9.4n2.5n
§4-4 核磁共振碳谱
4.4.1 引言
12C 98.9% 磁矩=0,
没有NMR
13C 1.1% 有磁矩(I=1/2), 有NMR 灵敏度很低, 仅是 1H 的 1/6700
计算机的问世及谱仪的不断改进, 可得很好的碳谱
C H 有机化合物的骨架元素
在有机物中,有些官能团不含氢 例如:-C=O,-C=C=C-,-N=C=O等
通过比较宽带去耦和不完全去耦的碳谱 可以: 得出各组峰的峰形 从而可以判断分辨出各种CH基团
峰的分裂数与直接相连的氢有关 一般也遵守n+1规律
二氯乙酸
13C NMR图谱
质 子 去 耦
偏 共 振 去 耦
2-丁酮
13C NMR图谱
质 子 去 耦
偏 共 振 去 耦
选择性去耦
选择某特定的质子作为去耦对象,用去耦频率照射 该特定的质子,使被照射的质子对13C的耦合去掉, 13C成为单峰,以确定信号归属。
i为i碳原子的化学位移
n,n 和 n 分别为 i 碳原子, 和 位所连碳原子的个数
正戊烷
C1 和 C5,C2 和 C4 是对称的三个共振峰 CH3—CH2—CH2—CH2—CH3 1 2 34 5
1(C1和C5) = -2.6+9.1(1)+9.4(1)-2.5(1) =13.4ppm (实测13.7ppm)
2(C2和C4) = -2.6+9.1(2)+9.4(1)-2.5(1) =22.5ppm (实测22.6ppm)
3(C3) = -2.6+9.1(2)+9.4(2) =34.4ppm (实测34.5ppm)
4.4.3 13C 谱中的耦合问题
1. 全去耦方法(宽带去耦,质子去耦, BB去耦)
proton decoupled 每一种化学等价的碳原子只有一条谱线 由于有NOE作用使得谱线增强,信号更易得到 但由于NOE作用不同: 峰高不能定量反应碳原子的数量 只能反映碳原子种类的个数
1-甲基环己烯 5个sp3杂化的碳,=10~50ppm 应有五个峰; 2个sp2杂化的碳,=100~150ppm 应呈现两个峰
甲叉基环己烷 对称分子 5个sp3杂化碳,但因对称性,=10~50ppm 只出现3个峰
产物的质子去偶13C NMR谱图与1-甲基环己烯相符
全顺式1,3,5-三甲基环己烷
CH 3
化学位移 1) TMS为参考标准,c=0 ppm 2) 以各种溶剂的溶剂峰作为参数标准
碳的类型 化学位移(ppm)
C-I
C-Br
C-Cl
—CH3 —CH2 —CH—
0~40 25~65 35~80
8~30 15~55 20~60
碳的类型
化学位移 (ppm)
C—(炔) =C—(烯)
C=O
C-O C6H6(苯) C-N
相关文档
最新文档