浙教版数学七年级下册(Z)单元测试.docx

合集下载

第一单元《平行线》单元测试卷(困难)(含答案)

第一单元《平行线》单元测试卷(困难)(含答案)

浙教版初中数学七年级下册第一单元《平行线》单元测试卷(困难)(含答案解析)考试范围:第一单元;   考试时间:120分钟;总分:120分,学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。

第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。

第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。

答案写在试卷上均无效,不予记分。

第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1. 下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有( )A. 2个B. 3个C. 4个D. 5个2. 下列说法错误的是( )A. 在同一平面内,不相交的两条线段必然平行B. 在同一平面内,不相交的两条直线必然平行C. 在同一平面内,垂直于同一条直线的两条直线互相平行D. 过直线外一点,有且仅有一条直线与这条直线平行3. 给出下列判断:①两条不相交的直线叫做平行线;②不相等的两个角一定不是对顶角;③若两个角的一边在同一直线上,另一对边互相平行,则这两个角相等;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,其中正确的有( )A. 1个B. 2个C. 3个D. 4个4. 如图所示,与∠α构成同位角的角的个数为( )A. 1B. 2C. 3D. 45. 如图所示的四个图形中,∠1和∠2是同位角的是( )A. ②③B. ①②③C. ①②④D. ①④6. 以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( )A. 如图1所示,展开后测得∠1=∠2B. 如图2所示,展开后测得∠1=∠2且∠3=∠4C. 如图3所示,测得∠1=∠2D. 如图4所示,展开后再沿CD折叠,两条折痕的交点为点O,测得OA=OB,OC=OD7. 下列说法中正确的个数有()①两点之间的所有连线中,线段最短;②过一点有且只有一条直线与已知直线垂直;③平行于同一直线的两条直线互相平行;④直线外一点到这条直线的垂线段叫做点到直线的距离.A. 4个B. 3个C. 2个D. 1个8. 如图,已知∠1=∠2,那么( )A. AB//CD,根据两直线平行,内错角相等B. AD//BC,根据两直线平行,内错角相等C. AB//CD,根据内错角相等,两直线平行D. AD//BC,根据内错角相等,两直线平行9. 如图1是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是( )A. 165°B. 150°C. 135°D. 120°10. 如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=1CD.点E,F分别在2边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF//AB,则CM的长为( )A.2√33B. 3√34C. 5√36D. √311. 如图,AB//CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°,②OF平分∠BOD,③∠POE=∠BOF,④∠POB=2∠DOF.其中正确的个数为( )A. 4B. 3C. 2D. 112. 如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,将△ABC沿直线BC向右平移2个单位得到△DEF,连接AD,则下列结论:①AC//DF,AC=DF②ED⊥DF③四边形ABFD的周长是16④点B到线段DF的距离是4.2其中正确的个数有( )A. 1B. 2C. 3D. 4第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 平面上不重合的四条直线,可能产生交点的个数为______个.14. 如图,△ABC为等腰直角三角形,∠C=90°,将△ABC按如图方式进行折叠,使点A与BC 边上的点F重合,折痕分别与AC、AB交于点D、点E.下列结论:①∠1=∠2;②∠1+∠2=90°;③∠3+∠B=90°;④DF//AB.其中一定正确的结论有______.(填序号)15. 已知∠1的两边分别平行于∠2的两边,若∠1=40°,则∠2的度数为______.16. 如图,多边形ABCDEFGHIJ的相邻两边互相垂直,要求出它的周长,至少需要知道条边的边长.三、解答题(本大题共9小题,共72分。

浙教版七年级数学下册第3章整式的乘除单元达标测试题(word解析版)

浙教版七年级数学下册第3章整式的乘除单元达标测试题(word解析版)

浙教版七年级数学下册《第3章整式的乘除》单元达标测试题(附答案)一、选择题(本题共计10小题,每题3分,共计30分,)1.下列计算正确的是()A.(2a﹣1)2=4a2﹣1B.3a6÷3a3=a2C.(﹣ab2)4=﹣a4b6D.﹣2a+(2a﹣1)=﹣12.若m、n、p是正整数,则(x m•x n)p=()A.x m•x np B.x mnp C.x mp+np D.x mp•np3.下列各式运算正确的是()A.5a2﹣3a2=2B.a2⋅a3=a6C.(a10)2=a20D.x(a﹣b+1)=ax﹣bx4.若5x=a,5y=b,则52x﹣y=()A.B.a2b C.D.2ab5.计算(ab2)3的结果,正确的是()A.a3b6B.a3b5C.ab6D.ab56.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)2×(22)3中,结果等于66的是()A.①②③B.②③④C.②③D.③④7.若x2+2mx+16是完全平方式,则(m﹣1)2+2的值是()A.11B.3C.11或27D.3或118.若2a=3,2b=5,2c=15,则()A.a+b=c B.a+b+1=c C.2a+b=c D.2a+2b=c9.若x+m与x+乘积的值不含x项,则m的值为()A.B.4C.﹣D.﹣410.下列计算中,正确的是()A.(﹣2a﹣5)(2a﹣5)=25﹣4a2B.(a﹣b)2=a2﹣b2C.(x+3)(x﹣2)=x2﹣6D.﹣a(2a2﹣1)=﹣2a3﹣a二、填空题(本题共计7小题,每题3分,共计21分,)11.已知2a2+2b2=10,a+b=3,则ab=.12.已知x+y=﹣4,x﹣y=2,则x2﹣y2=.13.已知(x﹣a)(x+a)=x2﹣9,那么a=.14.若n为正整数,且x2n=5,则(3x3n)2﹣45(x2)2n的值为.15.已知x﹣y=5,xy=3,则(x+y)2=.16.有9张边长为a的正方形纸片,9张边长分别为a,b(a<b)的长方形纸片,10张边长为b 的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长为.17.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.三、解答题(本题共计8小题,共计69分,)18.若(x﹣2)x+1=1,求x的值.19.若5x﹣3y+2=0,求(102x)3÷(10x•103y)的值.20.计算:(3x3y2z﹣1)﹣2•(5xy﹣2z3)2.21.计算(1)(﹣a2b3)3•(﹣2a2b)3;(2)(a2)5+(﹣a2•a3)2+(﹣a2)5﹣a•a9;(3)2(x+1)+x(x+2)﹣(x﹣1)(x+5)22.先化简,再求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=﹣1,y=﹣2023.23.计算(×××…××1)10•(10×9×8×7×…×3×2×1)10.24.乘法公式的探究及应用.(1)如图1,是将图2阴影部分裁剪下来,重新拼成的一个长方形,面积是;如图2,阴影部分的面积是;比较图1,图2阴影部分的面积,可以得到乘法公式;(2)运用你所得到的公式,计算下列各题:①103×97;②(2x+y﹣3)(2x﹣y+3).25.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.参考答案一、选择题(本题共计10小题,每题3分,共计30分,)1.解:A、原式=4a2﹣4a+1,不符合题意;B、原式=a3,不符合题意;C、原式=a4b8,不符合题意;D、原式=﹣2a+2a﹣1=﹣1,符合题意,故选:D.2.解:(x m•x n)p=(x m+n)p=x(m+n)p=x mp+np,故选:C.3.解:∵5a2﹣3a2=2a2≠2,故选项A错误;a2⋅a3=a5≠a6,故选项B错误;(a10)2=a20,故选项C正确;x(a﹣b+1)=ax﹣bx+x≠ax﹣bx,故选项D错误;故选:C.4.解:52x﹣y=52x÷5y=5x×5x÷5y已知5x=a,5y=b,所以上式=.故选:A.5.解:(ab2)3=a3b6.故选:A.6.解:①63+63=2×63;②(2×63)×(3×63)=6×66=67;③(22×32)3=(62)3=66;④(33)2×(22)3=36×26=66.所以③④两项的结果是66.故选:D.7.解:∵x2+2mx+16是完全平方式.∴m2=16.∴m=±4.当m=4时,(m﹣1)2+2=9+2=11.当m=﹣4时(m﹣1)2+2=25+2=27.故答案为:C.故选:C.8.解:∵2a×2b=2a+b=3×5=15=2c,∴a+b=c,故选:A.9.解:(x+m)(x+)=x2+(m+)x+m,∵乘积中不含x项,∴m+=0,即m=﹣.故选:C.10.解:A、(﹣2a﹣5)(2a﹣5)=25﹣4a2,正确;B、(a﹣b)2=a2﹣2ab+b2,错误;C、(x+3)(x﹣2)=x2+x﹣6,错误;D、﹣a(2a2﹣1)=﹣2a3+a,错误,故选:A.二、填空题(本题共计7小题,每题3分,共计21分,)11.解:∵2a2+2b2=10,∴a2+b2=5,∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∴5+2ab=9,∴2ab=4,∴ab=2,故答案为:2.12.解:当x+y=﹣4,x﹣y=2时,原式=(x+y)(x﹣y)=﹣4×2=﹣8.故答案为:﹣8.13.解:根据平方差公式,(x﹣a)(x+a)=x2﹣a2,由已知可得,a2=9,所以,a=±=±3.故答案为:±3.14.解:当x2n=5时,原式=9x6n﹣45x4n=9(x2n)3﹣45(x2n)2=9×53﹣45×52=9×53﹣9×53=0.故答案为:0.15.解:将x﹣y=5两边平方得:(x﹣y)2=25,即(x+y)2=x2+y2+2xy=x2+y2﹣2xy+4xy=(x﹣y)2+4xy,把xy=3代入得:(x+y)2=(x﹣y)2+4xy=25+4×3=37.故答案为:37.16.解:假设正方形的边长为xa+yb,其中x、y为正整数.则(xa+yb)2≤9a2+9b2+10ab,x2a2+2xyab+y2b2≤9a2+9b2+10ab,即(9﹣x2)a2+(9﹣y2)b2+(10﹣2xy)ab≥0.∵a<b,∴9﹣y2≥0,y≤3.当y取最大值3时,由10﹣2xy≥0,得x≤1,即x取最大值1.∴拼成得正方形边长最长为:3b+a.故答案为:3b+a.17.解:a2﹣b2=(a+b)(a﹣b).三、解答题(本题共计9小题,共计69分,)18.解:①依题意得:x+1=0,且x﹣2≠0解得x=﹣1.②依题意得:x﹣2=1,即x=3时,也符合题意;③依题意得:当x﹣2=﹣1即x=1时,也符合题意.综上所述,x的值是﹣1或3或1.19.解:5x﹣3y+2=0则5x﹣3y=﹣2.原式=106x÷10x+3y=106x﹣x﹣3y=105x﹣3y=10﹣2=.20.解:原式=3﹣2x﹣6y﹣4z2•25x2y﹣4z6=(×25)•x﹣6+2•y﹣4﹣4•z2+6=.21.解:(1)(﹣a2b3)3•(﹣2a2b)3=﹣a6b9•(﹣8a6b3)=a12b12;(2)(a2)5+(﹣a2•a3)2+(﹣a2)5﹣a•a9=a10+a10﹣a10﹣a10=0;(3)2(x+1)+x(x+2)﹣(x﹣1)(x+5)=2x+2+x2+2x﹣x2﹣5x+x+5=7.22.解:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x =(x2﹣4xy+4y2+x2﹣4y2﹣4x2+2xy)÷2x=(﹣2x2﹣2xy)÷2x=﹣x﹣y,当x=﹣1,y=﹣2023时,原式=1+2023=2022.23.解:(×××…××1)10•(10×9×8×7×…×3×2×1)10=(×××…××1×10×9×8×7×…×3×2×1)10=110=1;24.解:(1)由拼图可知,图形1的长为(a+b),宽为(a﹣b),因此面积为(a+b)(a﹣b),图形2的阴影部分的面积为两个正方形的面积差,即a2﹣b2,由图形1,图形2的面积相等可得,(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b),a2﹣b2,(a+b)(a﹣b)=a2﹣b2;(2)①103×97=(100+3)(100﹣3)=1002﹣32=10000﹣9=9991;②原式=(2x+y﹣3)=(2x)2﹣(y﹣3)2=4x2﹣(y2﹣6y+9)=4x2﹣y2+6y﹣9.25.解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab,故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=,∴m+n=5,m2+n2=20时,mn===,(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023,可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022),由(2)题结论a2+b2=(a+b)2﹣2ab可得,(a+b)2=a2+2ab+b2,又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4,且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30,∴(x﹣2022)2=()2====16.。

浙教版七年级数学下册试题第3章《整式的乘除》单元培优测试题.docx

浙教版七年级数学下册试题第3章《整式的乘除》单元培优测试题.docx

浙教版七年级数学下册试题第3章《整式的乘除》单元培优测试题.docx浙教版七下数学第3章《整式的乘除》单元培优测试题班级_________ 姓名_____________ 得分_____________注意事项:本卷共有三⼤题23⼩题,满分120分,考试时间120分钟.⼀、选择题(本题有10⼩题,每⼩题3分,共30分)下⾯每⼩题给出的四个选项中,只有⼀个是正确的.1﹒已知x a=2,x b=3,则x3a+2b等于()A﹒17 B﹒72 C﹒24 D﹒362﹒下列计算正确的是()A﹒(a2)3=a5B﹒(-2a)2=-4a2C﹒m3·m2=m6D﹒a6÷a2=a43﹒科学家在实验中测出某微⽣物约为0.0000035⽶,将0.0000035⽤科学记数法表⽰为()A﹒3.5×10-6B﹒3.5×106C﹒3.5×10-5D﹒35×10-54﹒下列计算不正确的是()A﹒(-2)3÷(-25)=14B﹒(-2×102)(-8×10-3)=1.6C﹒23×(12)-3=1D﹒(5)2×(-5)-2=15﹒下列计算正确的是()A﹒5x6·(-x3)2=-5x12B﹒(x2+3y)(3y-x2)=9y2-x4C﹒8x5÷2x5=4x5D﹒(x-2y)2=x2-4y26﹒已知M=20162,N=2015×2017,则M与N的⼤⼩是()A﹒M>N B﹒M<N C﹒M=N D﹒不能确定7﹒当x取任意实数时,等式(x+2)(x-1)=x2+mx+n恒成⽴,则m+n的值为()A﹒1 B﹒2 C﹒-1 D﹒-28﹒已知x2-4x-1=0,则代数式2x(x-3)-(x-1)2+3的值为()A﹒3 B﹒2 C﹒1D﹒-19﹒若x a÷y a=a2,()x yb=b3,则(x+y)2的平⽅根是()A﹒4B﹒±4C﹒±6D﹒1610.若代数式[2x3(2x+1)-x2]÷2x2与x(1-2x)的值互为相反数,则x的值是()A﹒0B﹒12C﹒4D﹒14⼆、填空题(本题有6⼩题,每⼩题4分,共24分)要注意认真看清题⽬的条件和要填写的内容,尽量完整地填写答案.11.计算:(-2ab2)3=_________.12.若ax3m y12÷3x3y2n=4x6y8,则(2m+n-a)n=____________﹒13.若(2x +3y )(mx -ny )=4x 2-9y 2,则mn =___________. 14.如图,在长为2a +3,宽为a +1的长⽅形铁⽚上剪去两个边长均为a -1(a >1)的正⽅形,则剩余部分的⾯积是______________ (⽤含a 的代数式表⽰). 15. 已知a +b =8,a 2b 2=4,则12(a 2+b 2)-ab =____________. 16.若2x 3-ax 2-5x +5=(2x 2+ax -1)(x -b )+3,其中a ,b 为整数,则1()ab -=_________. 三、解答题(本题有7⼩题,共66分)解答应写出⽂字说明,证明过程或推演步骤. 17.(8分)计算:(1)2-+11()3--×(3-2)0-9+2017(1)-﹒(2)(4ab 3+8a 2b 2)÷4ab + (a -b )(3a +b )﹒18.(10分)先化简,再求值:(1)[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y ,其中x =2017,y =2016﹒(2)(2m -12n )2+(2m -12n )(-2m -12n ),其中m ,n 满⾜⽅程组213211m n m n +=??-=?﹒19.(8分)⼩明与⼩亮在做游戏,两⼈各报⼀个整式,⼩明报的整式作被除式,⼩亮报的整式作除式,要求商式必须为2xy﹒若⼩明报的是x3y-2xy2,⼩亮应报什么整式?若⼩亮也报x3y-2xy2,那么⼩明能报⼀个整式吗?说说你的理由﹒20.(8分)观察下列关于⾃然数的等式:22﹣9×12=-5 ①52﹣9×22=-11 ②82﹣9×32=-17 ③…根据上述规律,解决下列问题:(1)完成第四个等式:112﹣9×_______=___________.(2)根据上⾯的规律,写出你猜想的第n个等式(等含n的等式表⽰),并验证其正确性.21.(10分)阅读下列材料,解答问题:在(x2+ax+b)(2x2-3x-1)的积中,x3项的系数为-5,x2的系数为-6,求a,b的值.解:(x2+ax+b)(2x2-3x-1)=2x4-3x3+2ax3-3ax2+2bx2-3bx6……①=2x4-(3-2a)x3-(3a-2b)x2-3bx……②根据对应项系数相等有325326aa b-=--=-,解得49ab==,……③(1)上述解答过程是否正确?(2)若不正确,从第⼏步开始出现错误?其它步骤是否还有错误?(3)请你写出正确的解答过程.22.(10分)⼀张如图1的长⽅形铁⽪,四个⾓都剪去边长为30cm 的正⽅形,再将四周折起,做成⼀个有底⽆盖的铁盒如图2,铁盒底⾯长⽅形的长为4a (cm ),宽为3a (cm ),这个⽆盖铁盒的各个⾯的⾯积之和称为铁盒的全⾯积. (1)请⽤含a 的代数式表⽰图1中原长⽅形铁⽪的⾯积. (2)若要在铁盒的各个⾯漆上某种油漆,每元钱可漆的⾯积为50a(cm 2),则油漆这个铁盒需要多少钱(⽤含a 的代数式表⽰)?(3)是否存在⼀个正整数a ,使得铁盒的全⾯积是底⾯积的正整数倍?若存在,请求出这个a 的值;若不存在,请说明理由.23.(12分)如果⼀个正整数能表⽰为两个连续偶数的平⽅差,那么称这个正整数为“神秘数”﹒如:4=22-02;12=42-22;20=62-42,因此4,12,20这三个数都是神秘数. (1)28和2016这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k +2和2k (其中k 取⾮负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平⽅差(k 取正数)是神秘数吗?为什么?浙教版七下数学第3章《整式的乘除》单元培优测试题参考答案Ⅰ﹒答案部分:⼀、选择题题号 1 2 3 4 5 6 7 8 9 10 答案BDACBACABD⼆、填空题11﹒-8a 3b 6﹒ 12﹒ 16﹒ 13﹒ 6﹒ 14﹒9a +1﹒ 15﹒ 0或8﹒ 16﹒14﹒三、解答题17.解答:(1)2-+11()3--×(3-2)0-9+2017(1)- =2+(-3)×1-3+(-1)=2-3-3-1 =-5﹒(2)(4ab 3+8a 2b 2)÷4ab + (a -b )(3a +b ) =b 2+2ab +3a 2+ab -3ab -b 2=3a 2﹒ 18.解答:(1)[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y =[2x 3y -2x 2y 2+x 2y 2-x 3y ] ÷x 2y =[x 3y -x 2y 2] ÷x 2y =x -y 当x =2017,y =2016时,原式=2017-2016=1﹒(2)解⽅程组213211m n m n +=??-=?,得31m n =??=-?,(2m -12n )2+(2m -12n )(-2m -12n ) =4m 2-2mn +14n 2-(2m -12n )(2m +12n )=4m 2-2mn +14n 2-4m 2+14n 2=-2mn +12n 2当m =3,n =-1时,原式=-2×3×(-1)+12×(-1)2=-512﹒ 19.解答:当⼩明报x 3y -2xy 2时,(x 3y -2xy 2)÷2xy =x 3y ÷2xy -2xy 2÷2xy =12x 2-y ,所以⼩亮报的整式是12x 2-y ;⼩明也能报⼀个整式,理由如下:∵(x 3y -2xy 2)·2xy =x 3y ·2xy -2xy 2·2xy =2x 4y 2-4x 2y 3,∴⼩明报的整式是2x 4y 2-4x 2y 3. 20.解答:(1)由①②③三个等式的规律,可得出第四个等式:112﹣9×42=-23,故答案为:42,-23.(2)猜想:第n 个等式为(3n -1)2-9n 2=-6n +1;验证:∵左边=(3n -1)2-9n 2=9n 2-6n +1-9n 2=-6n +1,右边=-6n +1,∴左边=右边,即(3n -1)2-9n 2=-6n +1﹒ 21.解答:(1)不正确,(2)从第①步开始出现错误,还有第③步也出现错误,(3)正确的解答过程如下:∵(x 2+ax +b )(2x 2-3x -1)=2x 4-3x 3-x 2+2ax 3-3ax 2-ax +2bx 2-3bx -b=2x 4+(2a -3)x 3+(-3a +2b -1)x 2+(-a -3b )x -b ,∴展开式中含x 3的项为(2a -3)x 3,含x 2的项为(-3a +2b -1)x 2,由题意,得2353216a a b -=-??-+-=-?,解得14a b =-??=-?﹒22.解答:(1)原长⽅形铁⽪的⾯积为(4a +60)(3a +60)=12a 2+420a +3600(cm 2);(2)油漆这个铁盒的全⾯积是:12a 2+2×30×4a +2×30×3a =12a 2+420a (cm 2),则油漆这个铁盒需要的钱数是:(12a 2+420a )÷50a =(12a 2+420a )×50a=600a +21000(元);(3)铁盒的全⾯积是:4a ×3a +4a ×30×2+3a ×30×2=12a 2+420a (cm 2),底⾯积是:4a ×3a =12a (cm 2),假设存在正整数n ,使12a 2+420a =n (12a 2),∵a 是正整数,∴(n -1)a =35,则a =35,n =2或a =7,n =6或a =1,n =36,所以存在铁盒的全⾯积是底⾯积的正整数倍,这时a =35或7或1. 23. 解答:(1)∵28=4×7=82-62,2016=4×504=5052-5032,∴28和2016这两个数是神秘数;(2)是4的倍数,理由如下:∵(2k +2)2-(2k )2=4k 2+8k +4-4k 2=8k +4=4(2k +1),⼜k 是⾮负整数,∴由这两个连续偶数2k +2和2k 构造的神秘数是4的倍数;(3)两个连续奇数的平⽅差不是神秘数,理由如下:设这两个连续奇数为2k +1,2k -1,则(2k +1)2-(2k -1)2=4k 2+4k +1-(4k 2-4k +1)=4k 2+4k +1-4k 2+4k -1=8k =4×2k ,由(2)知神秘数应为4的奇数倍,故两个连续奇数的平⽅差不是神秘数﹒Ⅱ﹒解答部分:⼀、选择题1﹒已知x a=2,x b=3,则x3a+2b等于()A﹒17 B﹒72 C﹒24 D﹒36解答:∵x a=2,x b=3,∴x3a+2b=(x a)3·(x b)2=8×9=72.故选:B.2﹒下列计算正确的是()A﹒(a2)3=a5B﹒(-2a)2=-4a2C﹒m3·m2=m6D﹒a6÷a2=a4解答:A﹒(a2)3=a6,故此项错误;B﹒(-2a)2=4a2,故此项错误;C﹒m3·m2=m5,故此项错误;D﹒a6÷a2=a4,故此项正确.故选:D.3﹒科学家在实验中测出某微⽣物约为0.0000035⽶,将0.0000035⽤科学记数法表⽰为()A﹒3.5×10-6B﹒3.5×106C﹒3.5×10-5D﹒35×10-5解答:0.0000035=3.5×10-6.故选:A.4﹒下列计算不正确的是()A﹒(-2)3÷(-25)=14B﹒(-2×102)(-8×10-3)=1.6C﹒23×(12)-3=1D﹒(5)2×(-5)-2=1解答:A﹒(-2)3÷(-25)=(-2)3÷(-2)5=(-2)-2=14,故此项正确;B﹒(-2×102)(-8×10-3)=[(-2)×(-8)]×(102×10-3)=16×110=1.6,故此项正确;C﹒23×(12)-3=23×23=8×8=64,故此项错误;D﹒(5)2×(-5)-2=(5)2×(5)-2=(5)0=1,故此项正确.故选:C.5﹒下列计算正确的是()A﹒5x6·(-x3)2=-5x12B﹒(x2+3y)(3y-x2)=9y2-x4C﹒8x5÷2x5=4x5D﹒(x-2y)2=x2-4y2解答:A﹒5x6·(-x3)2=5x6·x6=5x12,故此项错误;B﹒(x2+3y)(3y-x2)=9y2-x4,故此项正确;C﹒8x5÷2x5=4,故此项错误;D﹒(x-2y)2=x2-4xy+4y2,故此项错误.故选:B.6﹒已知M=20162,N=2015×2017,则M与N的⼤⼩是()A﹒M>N B﹒M<N C﹒M=N D﹒不能确定解答:∵N=2015×2017=(2016-1)(2016+1)=20162-1,M=20162,∴M>N﹒故选:A.7﹒当x取任意实数时,等式(x+2)(x-1)=x2+mx+n恒成⽴,则m+n的值为()A﹒1 B﹒2 C﹒-1 D﹒-2解答:∵(x+2)(x-1)=x2+x-2,⼜等式(x+2)(x-1)=x2+mx+n恒成⽴,∴m=1,n=-2,∴m+n=-1.故选:C.8﹒已知x2-4x-1=0,则代数式2x(x-3)-(x-1)2+3的值为()A﹒3 B﹒2 C﹒1D﹒-1解答:∵x2-4x-1=0,∴x2-4x=1,∴2x(x-3)-(x-1)2+3=2x2-6x-(x2-2x+1)+3=2x2-6x-x2+2x-1+3=x2-4x+2=3﹒故选:A﹒9﹒若x a÷y a=a2,()x yb=b3,则(x+y)2的平⽅根是()A﹒4B﹒±4C﹒±6D﹒16解答:由x a÷y a=a2,得x-y=2,由()x yb=b3,得xy=3,把x-y=2两边平⽅,得x2-2xy+y2=4,则x2+y2=4+2xy=10,∴(x+y)2=x2+y2+2xy=10+6=16﹒∴(x+y)2的平⽅根是±4﹒故选:B.10.若代数式[2x3(2x+1)-x2]÷2x2与x(1-2x)的值互为相反数,则x的值是()A﹒0B﹒12C﹒4D﹒14解答:∵代数式[2x3(2x+1)-x2]÷2x2与x(1-2x)的值互为相反数,∴[2x3(2x+1)-x2]÷2x2+x(1-2x)=0,(4x4+2x3-x2)÷2x2+x-2x2=02x2+x-12+x-2x2=02x-12=0,x=14,故选:D.⼆、填空题11.计算:(-2ab2)3=_________.解答:原式=-8a3b6·故答案为:-8a3b6﹒12.若ax3m y12÷3x3y2n=4x6y8,则(2m+n-a)n=____________﹒解答:∵ax3m y12÷3x3y2n=(a÷3)x3m-3y12-2n=4x6y8,∴a÷3=4,3m-3=6,12-2n=8,∴a=12,m=3,n=2,∴(2m+n-a)n=(6+2-12)2=16﹒故答案为:16﹒13.若(2x +3y )(mx -ny )=4x 2-9y 2,则mn =___________. 解答:∵(2x +3y )(2x -3y )=4x 2-9y 2,∴m =2,n =3,∴mn =6﹒故答案为:6﹒14.如图,在长为2a +3,宽为a +1的长⽅形铁⽚上剪去两个边长均为a -1(a >1)的正⽅形,则剩余部分的⾯积是______________(⽤含a 的代数式表⽰).解答:由题意,知:剩余部分的⾯积是(2a +3)(a +1)-2(a -1)2=2a 2+2a +3a +3-2(a 2-2a +1)=2a 2+5a +3-2a 2+4a -2=9a +1﹒故答案为:9a +1﹒15. 已知a +b =8,a 2b 2=4,则12(a 2+b 2)-ab =____________. 解答:∵a 2b 2=4,∴ab =±2,当ab =2时,a 2+b 2=(a +b )2-2ab =8-4=4,则12(a 2+b 2)-ab =12×4-2=0,当ab =-2时,a 2+b 2=(a +b )2-2ab =8+4=12,则12(a 2+b 2)-ab =1×12+2=8﹒故答案为:0或8﹒16.若2x 3-ax 2-5x +5=(2x 2+ax -1)(x -b )+3,其中a ,b 为整数,则1()ab -=_________. 解答:∵(2x 2+ax -1)(x -b )+3=2x 3+ax 2-x -2bx 2-abx +b +3 =2x 3-(2b -a )x 2-(ab +1)x +b +3,∴235b a a b -=??+=?,解得22a b =??=?,∴1()ab -=14-=14,故答案为:14﹒三、解答题17.(8分)计算:(1)2-+11()3--×(3-2)0-9+2017(1)-﹒解答:2-+11()3--×(3-2)0-9+2017(1)-=2+(-3)×1-3+(-1) =2-3-3-1=-5﹒(2)(4ab3+8a2b2)÷4ab+(a-b)(3a+b)解答:(4ab3+8a2b2)÷4ab+(a-b)(3a+b)=b2+2ab+3a2+ab-3ab-b2=3a2﹒18.(10分)先化简,再求值:(1)[2x(x2y-xy2)+xy(xy-x2)]÷x2y,其中x=2017,y=2016. 解答:[2x(x2y-xy2)+xy(xy-x2)]÷x2y=[2x3y-2x2y2+x2y2-x3y]÷x2y=[x3y-x2y2]÷x2y=x-y当x=2017,y=2016时,原式=2017-2016=1﹒(2)(2m-12n)2+(2m-12n)(-2m-1n),其中m,n满⾜⽅程组213211m nm n+=-=﹒解答:解⽅程组213211m nm n+=-=,得31mn==-,(2m-12n)2+(2m-12n)(-2m-12n)=4m2-2mn+14n2-(2m-12n)(2m+12n)=4m2-2mn+14n2-4m2+14n2=-2mn+1 2 n2当m=3,n=-1时,原式=-2×3×(-1)+ 12×(-1)2=-512﹒19.(8分)⼩明与⼩亮在做游戏,两⼈各报⼀个整式,⼩明报的整式作被除式,⼩亮报的整式作除式,要求商式必须为2xy﹒若⼩明报的是x3y-2xy2,⼩亮应报什么整式?若⼩亮也报x3y-2xy2,那么⼩明能报⼀个整式吗?说说你的理由﹒解答:当⼩明报x3y-2xy2时,(x3y-2xy2)÷2xy=x3y÷2xy-2xy2÷2xy=12x2-y,所以⼩亮报的整式是12x2-y;⼩明也能报⼀个整式,理由如下:∵(x3y-2xy2)·2xy=x3y·2xy-2xy2·2xy=2x4y2-4x2y3,∴⼩明报的整式是2x4y2-4x2y3.20.(8分)观察下列关于⾃然数的等式:22﹣9×12=-5 ①52﹣9×22=-11 ②82﹣9×32=-17 ③…根据上述规律,解决下列问题:(1)完成第四个等式:112﹣9×_______=___________. (2)根据上⾯的规律,写出你猜想的第n 个等式(等含n 的等式表⽰),并验证其正确性.解答:(1)由①②③三个等式的规律,可得出第四个等式:112﹣9×42=-23,故答案为:42,-23.(2)猜想:第n 个等式为(3n -1)2-9n 2=-6n +1;验证:∵左边=(3n -1)2-9n 2=9n 2-6n +1-9n 2=-6n +1,右边=-6n +1,∴左边=右边,即(3n -1)2-9n 2=-6n +1﹒21.(10分)阅读下列材料,解答问题:在(x 2+ax +b )(2x 2-3x -1)的积中,x 3项的系数为-5,x 2的系数为-6,求a ,b 的值. 解:(x 2+ax +b )(2x 2-3x -1)=2x 4-3x 3+2ax 3-3ax 2+2bx 2-3bx 6……①=2x 4-(3-2a )x 3-(3a -2b )x 2-3bx ……②根据对应项系数相等有325326a a b -=-??-=-?,解得49a b =??=?,……③(1)上述解答过程是否正确?(2)若不正确,从第⼏步开始出现错误?其它步骤是否还有错误?(3)请你写出正确的解答过程. 解答:(1)不正确,(2)从第①步开始出现错误,还有第③步也出现错误,(3)正确的解答过程如下:∵(x 2+ax +b )(2x 2-3x -1)=2x 4-3x 3-x 2+2ax 3-3ax 2-ax +2bx 2-3bx -b=2x 4+(2a -3)x 3+(-3a +2b -1)x 2+(-a -3b )x -b ,∴展开式中含x 3的项为(2a -3)x 3,含x 2的项为(-3a +2b -1)x 2,由题意,得2353216a a b -=-??-+-=-?,解得14a b =-??=-?﹒22.(10分)⼀张如图1的长⽅形铁⽪,四个⾓都剪去边长为30cm 的正⽅形,再将四周折起,做成⼀个有底⽆盖的铁盒如图2,铁盒底⾯长⽅形的长为4a (cm ),宽为3a (cm ),这个⽆盖铁盒的各个⾯的⾯积之和称为铁盒的全⾯积. (1)请⽤含a 的代数式表⽰图1中原长⽅形铁⽪的⾯积. (2)若要在铁盒的各个⾯漆上某种油漆,每元钱可漆的⾯积为50a(cm 2),则油漆这个铁盒需要多少钱(⽤含a 的代数式表⽰)?(3)是否存在⼀个正整数a ,使得铁盒的全⾯积是底⾯积的正整数倍?若存在,请求出这个a 的值;若不存在,请说明理由.解答:(1)原长⽅形铁⽪的⾯积为(4a +60)(3a +60)=12a 2+420a +3600(cm 2);(2)油漆这个铁盒的全⾯积是:12a2+2×30×4a +2×30×3a =12a 2+420a (cm 2),则油漆这个铁盒需要的钱数是:(12a 2+420a )÷50a =(12a 2+420a )×50a=600a +21000(元);(3)铁盒的全⾯积是:4a ×3a +4a ×30×2+3a ×30×2=12a 2+420a (cm 2),底⾯积是:4a ×3a =12a (cm 2),假设存在正整数n ,使12a 2+420a =n (12a 2),∵a 是正整数,∴(n -1)a =35,则a =35,n =2或a =7,n =6或a =1,n =36,所以存在铁盒的全⾯积是底⾯积的正整数倍,这时a =35或7或1.23.(12分)如果⼀个正整数能表⽰为两个连续偶数的平⽅差,那么称这个正整数为“神秘数”.如:4=22-02;12=42-22;20=62-42,因此4,12,20这三个数都是神秘数. (1)28和2016这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k +2和2k (其中k 取⾮负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平⽅差(k 取正数)是神秘数吗?为什么?解答:(1)∵28=4×7=82-62,2016=4×504=5052-5032,∴28和2016这两个数是神秘数;(2)是4的倍数,理由如下:∵(2k +2)2-(2k )2=4k 2+8k +4-4k 2=8k +4=4(2k +1),⼜k 是⾮负整数,∴由这两个连续偶数2k +2和2k 构造的神秘数是4的倍数;(3)两个连续奇数的平⽅差不是神秘数,理由如下:设这两个连续奇数为2k +1,2k -1,则(2k +1)2-(2k -1)2=4k 2+4k +1-(4k 2-4k +1)=4k 2+4k +1-4k 2+4k -1=8k =4×2k ,由(2)知神秘数应为4的奇数倍,故两个连续奇数的平⽅差不是神秘数.初中数学试卷⿍尚图⽂**整理制作。

2021-2022学年浙教版七年级数学下册《第2章二元一次方程组》单元达标测试题(附答案)

2021-2022学年浙教版七年级数学下册《第2章二元一次方程组》单元达标测试题(附答案)

2021-2022学年浙教版七年级数学下册《第2章二元一次方程组》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.方程x+y=6的正整数解有()A.5个B.6个C.7个D.无数个2.下列方程组中,属于二元一次方程组的是()A.B.C.D.3.一个长方形的周长为28厘米,长比宽的3倍少6厘米,则这个长方形的面积是()A.45平方厘米B.35平方厘米C.25平方厘米D.20平方厘米4.已知x,y满足,则x﹣y的值为()A.3B.﹣3C.5D.05.关于x、y的二元一次方程组的解满足x﹣3y=10+k,则k的值是()A.2B.﹣2C.﹣3D.36.由方程组可以得出关于x和y的关系式是()A.x+y=5B.2x+y=5C.3x+y=5D.3x+y=07.某车间有2个小组,甲组是乙组人数的2倍,若从甲组调8人到乙组,那么甲组人数比乙组人数的一半还多6人,则原来乙组的人数为()A.6B.8C.10D.128.如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是()A.60厘米B.80厘米C.100厘米D.120厘米二.填空题(共8小题,满分40分)9.已知二元一次方程3x+2y=7,用含x的式子表示y,则y=;若y的值为2,则x 的值为.10.在解方程组时,由于粗心,甲看错了方程组中的a,得到的解为乙看错了方程组中的b,得到的解为则原方程组的解.11.已知方程组和方程组的解相同,则(2a+b)2021=.12.关于x、y的方程组的解也是方程x+y=5的解,则m的值为.13.方程无解,则实数k的值为.14.同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地km.15.如果实数x,y满足方程组,那么(2x﹣y)2022=.16.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?由此可求出甲的钱数为钱.三.解答题(共5小题,满分40分)17.解方程组:(1);(2).18.已知关于x,y的方程组的解满足x+2y=3,求k的值.19.阅读下列解方程组的方法,然后回答问题.解方程组.解:由①﹣②,得2x+2y=2,即x+y=1③,③×16,得16x+16y=16④,②﹣④得x=﹣1,从而可得y=2,∴原方程组的解是.(1)请你仿照上面的解题方法解方程组:;(2)请大胆猜测关于x,y的方程组(a≠b)的解是什么?(不用写解答过程)20.千佛山、趵突泉、大明湖并称济南三大风景名胜区.为了激发学生个人潜能和团队精神,历下区某学校组织学生去千佛山开展为期一天的素质拓展活动.已知千佛山景区成人票每张30元,学生票按成人票五折优惠.某班教师加学生一共去了50人,门票共需810元.(1)这个班参与活动的教师和学生各多少人?(应用二元一次方程组解决)(2)某旅行网上成人票价格为28元,学生票价格为14元,若该班级全部网上购票,能省多少钱?21.我市对居民生活用水实行“阶梯水价”.小李和小王查询后得知:每户居民年用水量180吨以内部分,按第一阶梯到户价收费;超过180吨且不超过300吨部分,按第二阶梯到户价收费;超过300吨部分,按第三阶梯到户价收费.小李家去年1﹣9月用水量共为175吨,10月、11月用水量分别为25吨、22吨,对应的水费分别为118.5元、109.12元.(1)求第一阶梯到户价及第二阶梯到户价(单位:元/吨);(2)若小王家去年的水费不超过856元,试求小王家去年年用水量的范围(单位:吨,结果保留到个位).参考答案一.选择题(共8小题,满分40分)1.解:方程的正整数解有,,,,共5个,故选:A.2.解:A选项中xy的次数是2次,不符合题意.B选项中是分式方程,不符合题意.C选项3x=5y2是二元二次方程,不符合题意.D选项两个方程均含有2个未知数,且未知数次数为1,符合题意.故选:D.3.解:设这个长方形的长为x厘米,宽为y厘米,由题意得:,解得:,则这个长方形的面积为9×5=45(平方厘米),故选:A.4.解:第二个方程减第一个方程得:x﹣y=3,故选:A.5.解:原方程组中两个方程作差可得,(3x﹣4y)﹣(2x﹣y)=(5﹣k)﹣(2k+3),整理得,x﹣3y=2﹣3k,由题意得方程,2﹣3k=10+k,解得,k=﹣2,故选:B.6.解:,①+②得,3x+y=5,故选:C.7.解:设原来乙组有x人,甲组有y人,依题意,得:,解得:,即原来乙组有12人,故选:D.8.解:设小长方形地砖的长为x厘米,宽为y厘米,根据题意得:,解得:,则每个小长方形的周长=2(x+y)=120(厘米),故选:D.二.填空题(共8小题,满分40分)9.解:方程3x+2y=7,解得:y=;把y=2代入得:,去分母得:4=7﹣3x,解得:x=1,故答案为:;1.10.解:将代入方程4x﹣by=﹣4,代入方程ax+5y=10,可得,,解得,∴原方程组为,解得,故答案为:.11.解:由于两个方程组的解相同,所以解方程组,解得,把代入方程:ax﹣by=﹣4与bx+ay=﹣8中得:,解得:,则(2a+b)2021=(2﹣1)2021=1.故答案为:1.12.解:,①+②得,3x+3y=3m,∴x+y=m,∵关于x、y的方程组的解也是方程x+y=5的解,∴m=5.故答案为:5.13.解:,将①代入②得,2x+k=(k2﹣7)x+3,∴(k2﹣9)x=k﹣3,∵方程无解,∴k2﹣9=0,∴k=±3,当k=3时,k﹣3=0,x取任意数,∴k=﹣3时,方程无解,故答案为:﹣3.14.解:设甲车行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,如图:设AC=xkm,AB=ykm,依题意得:,解得:,∴乙在C地时加注行驶210﹣2×70=70(km)的燃料,AB的最大长度为140km.故答案为:140.15.解:,①+②,得:2x﹣y=1,则(2x﹣y)2022=12022=1.故答案为:1.16.解:设甲的钱数为x钱,乙的钱数为y钱,根据题意,得:,解得:,即甲的钱数为钱,乙的钱数为25钱,故答案为:.三.解答题(共5小题,满分40分)17.解:(1),将②代入①,得x+4x=10,解得x=2,将x=2代入②得,y=4,∴方程组的解为;(2),化简方程组得,,①+②,得8x=24,解得x=3,将x=3代入①得,y=﹣5,∴方程组的解为.18.解:,①+②得:5x+10y=k+5,∴x+2y=+1,∵x+2y=3,∴+1=3,∴k=10.19.解:(1),①﹣②,得2x+2y=2,即x+y=1③,③×2020得,2020x+2020y=2020④,④﹣②得,y=2,将y=2代入③得,x=﹣1,∴原方程组的解是;(2),①﹣②,得(a﹣b)x+(a﹣b)y=a﹣b,即x+y=1③,③×(a+2)得,(a+2)x+(a+2)y=a+2④,④﹣①得,y=2,将y=2代入③得,x=﹣1,∴原方程组的解为.20.解:(1)设参与活动的教师有x人,学生有y人,由题意得:,解得:,答:参与活动的教师有4人,学生有46人;(2)(30﹣28)×4+(15﹣14)×46=54(元),答:能省54元.21.解:设第一阶梯到户价为x元,第二阶梯到户价y元,由题意得:,解得:,答:第一阶梯到户价为3.86元,第二阶梯到户价为4.96元;(2)设小王家去年最多可用水为m(m>180)吨,由题意得:3.86×180+4.96(m﹣180)≤856,解得:m≤212.5,即最多可用水212.5吨≈212吨,∴小王家去年年用水量的范围为大于0吨小于212吨.。

第2章 一元二次方程 浙教版七年级数学下册单元测试卷(含答案)

第2章 一元二次方程 浙教版七年级数学下册单元测试卷(含答案)
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
20.(8分)在长方形ABCD中,AB=6 cm,BC=12 cm,点P从点A出发沿边AB向点B以1 cm/s的速度移动;同时点Q从点B出发沿边BC向点C以2 cm/s的速度移动,设运动时间为t.
(1)问几秒后△PBQ的面积等于8 cm2?
(2)是否存在t,使△PDQ的面积等于26 cm2?
21.(8分)随着阿里巴巴、京东、苏宁电商等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
A.12步B.24步C.36步D.48步
10.设关于x的方程ax2+(a+2)x+9a=0有两个不相等的实数根x1,x2,且x1<1<x2,那么实数a的取值范围是()
A.a<- B.- <a<0 C.a> D. <a<
二、填空题(每小题4分,共24分)
11.方程x2=6x的解是___.
12.已知方程x2-3x+k=0有两个不相等的实数根,则k的范围是____.
16.如图,在矩形ABCD中,AB=6 cm,BC=8 cm.现有两个动点P,Q分别从点A和点B同时出发,其中点P以1 cm/s的速度沿AB向终点B移动,点Q以2 cm/s的速度沿BC向终点C移动,其中一点到达终点,另一点也随之停止运动.连接PQ,若经过xs后P,Q两点之间的距离为4 cm,那么x的值为____.
三、解答题(共66分)
17.(16分)解下列方程:

2022-2023学年浙教版七年级数学下册第1章平行线 单元综合达标测试题 (含解析)

2022-2023学年浙教版七年级数学下册第1章平行线 单元综合达标测试题 (含解析)

2022-2023学年浙教版七年级数学下册《第1章平行线》单元综合达标测试题(附答案)一.选择题(共7小题,满分28分)1.如图,下列说法正确的是()A.∠1与∠2是同位角B.∠1与∠2是内错角C.∠1与∠3是同位角D.∠2与∠3是同旁内角2.如图,四边形ABCD中,∠1=∠3,AD∥BC,则下列等式不成立的是()A.∠1=∠2B.∠3=∠4C.∠2=∠3D.∠1+∠2+∠B=180°3.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上,如果∠2=42°,那么∠1的度数是()A.18°B.17°C.16°D.15°4.如图,在弯形管道ABCD中,若AB∥CD,拐角∠ABC=122°,则∠BCD的大小为()A.58°B.68°C.78°D.122°5.直线BD∥EF,两个直角三角板如图摆放,若∠CBD=10°,则∠1=()A.75°B.80°C.85°D.95°6.如图,△ABC沿BC方向平移得到△DEF,已知BC=5,EC=2,则平移的距离是()A.1B.2C.3D.47.如图,直线a∥b,点A在直线a上,点C、D在直线b上,且AB⊥BC,BD平分∠ABC,若∠1=32°,则∠2的度数是()A.13°B.15°C.14°D.16°二.填空题(共7小题,满分28分)8.如图,已知AB∥CD,∠1=55°,则∠2的度数为.9.如图,DE∥BC,CD平分∠ACB,∠ACB=58°,则∠EDC=.10.如图所示,要在竖直高AC为2米,水平宽BC为8米的楼梯表面铺地毯,地毯的长度至少需要米.11.∠1与∠2的两边分别平行,且∠2的度数比∠1的度数的3倍少40°,那么∠2的度数为.12.如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为.13.如图,AB∥CD,AD与BC相交于点F,BE平分∠ABC,DE平分∠ADC,∠AFB=96°,则∠BED的度数为度.14.太阳灶、卫星信号接收锅、探照灯以及其他很多灯具都与抛物线有关.如图,从点O 照射到抛物线上的光线OB,OC等反射以后沿着与POQ平行的方向射出.图中如果∠BOP=45°,∠QOC=68°,则∠ABO=,∠DCO=.三.解答题(共6小题,满分64分)15.如图,点D、E、F分别是三角形ABC的边BC、CA、AB上的点,且∠B+∠BDE=180°,∠A=∠FDE.求证:DF∥AC.16.如图,FG∥AC,∠1=∠2,DE与FC平行吗?为什么?17.如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是小王同学的说明过程,请你在括号内填上理由、依据或内容,请你帮助小王同学完成说明过程:∵DE∥BC(已知),∴∠3=∠EHC(),∵∠3=∠B(),∴∠B=∠EHC(等量代换),∴AB∥EH(),∴∠2+∠4=180°(),又∵∠1=∠4 (),∴∠1+∠2=180°().18.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.19.如图,点E在AB上,点F在CD上,CE、BF分别交AD于点G、H,已知∠A=∠AGE,∠D=∠DGC.(1)AB与CD平行吗?请说明理由;(2)若∠2+∠1=180°,且3∠B=∠BEC+20°,求∠C的度数.20.【提出问题】若两个角的两边分别平行,则这两个角有怎样的数量关系?【解决问题】分两种情况进行探究,请结合如图探究这两个角的数量关系.(1)如图1,AB∥EF,BC∥DE,试证:∠1=∠2;(2)如图2,AB∥EF,BC∥DE,试证:∠1+∠2=180°;【得出结论】由(1)(2)我们可以得到结论:若两个角的两边分别平行,则这两个角的数量关系为;【拓展应用】(3)若两个角的两边分别平行,其中一个角比另一个角的2倍少60°,求这两个角的度数.(4)同一平面内,若两个角的两边分别垂直,则这两个角的数量关系为.参考答案一.选择题(共7小题,满分28分)1.解:A、∠1和∠2不是同位角,故本选项不符合题意;B、∠1和∠2不是内错角,故本选项不符合题意;C、∠1和∠3是内错角,不是同位角,故本选项不符合题意;D、∠2和∠3是同旁内角,故本选项符合题意;故选:D.2.解:∵AD∥BC,∴∠2=∠3,∠1+∠2+∠B=180°,∵∠1=∠3,∴∠1=∠2,故A、C、D成立,不符合题意,根据题意不能判定∠3=∠4,故B不成立,符合题意,故选:B.3.解:如图,∵∠2+∠3=60°,∴∠3=60°﹣∠2=60°﹣42°=18°,根据平行线的性质可得,∠1=∠3=18°.故选:A.4.解:∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=122°,∴∠BCD=180°﹣122°=58°,故选:A.5.解:∵∠ABC=30°,∠CBD=10°,∴∠ABD=∠ABC+∠CBD=30°+10°=40°,∵BD∥EF,∴∠BAF=∠ABD=40°,∵∠EFD=45°,∴∠1=180°﹣∠BAF﹣∠EFD=180°﹣40°﹣45°=95°.故选:D.6.解:点B平移后对应点是点E.∴线段BE就是平移距离,∵已知BC=5,EC=2,∴BE=BC﹣EC=5﹣2=3.故选:C.7.解:延长CB交直线a于点E,如图,∵AB⊥BC,∠1=32°,∴∠ABC=90°,∴∠AEC=90°﹣∠1=58°,∵a∥b,∴∠ECF=∠AEC=58°,∵BD平分∠ABC,∴∠CBD=∠ABC=45°,∵∠ECF是△BCD的外角,∴∠2=∠ECF﹣∠CBD=13°.故选:A.二.填空题(共7小题,满分28分)8.解:∵AB∥CD,∠1=55°,∴∠3=∠1=55°,∴∠2=180°﹣∠3=125°,故答案为:125°.9.解:∵CD平分∠ACB,∠ACB=58°,∴∠ECD=∠ACB=29°,∵DE∥BC,∴∠EDC=∠ECD=29°.故答案为:29°.10.解:由题意可知,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,所以地毯的长度至少需要8+2=10(米).故答案为:10.11.解:如图1所示:①当∠1=∠2时,∵∠2=3∠1﹣40°,∴∠1=3∠1﹣40°,解得∠1=20°,∴∠2=20°;如图2:②当∠1+∠2=180°时,∵∠2=3∠1﹣40°,∴∠1+3∠1﹣40°=180°,解得∠1=55°,∴∠2=125°;故答案为:20°或125°.12.解:∵AB∥CD∥EF,∠ABC=125°,∠CEF=105°,∴∠BCD=∠ABC=125°,∠DCE=180°﹣∠CEF=75°,∴∠BCE=∠BCD﹣∠DCE=50°.故答案为:50°.13.解:如图,过点E作EP∥AB,∵AB∥CD,∴AB∥CD∥EP,∴∠ABE=∠BEP,∠CDE=∠DEP,∠ABC=∠BCD,∵∠ABC+∠BAD+∠AFB=180°,∴∠ABC+∠BAD=180°﹣∠AFB=84°,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC,∠CDE=∠ADC,∴∠ABE+∠CDE=(∠ABC+∠BAD)=42°,∴∠BED=∠BEP+∠DEP=∠ABE+∠CDE)=42°,故答案为:42.14.解:∵AB∥PQ,∴∠ABO=∠BOP=45°,∵CD∥PQ,∴∠DCO+∠QOC=180°,即∠DCO+68°=180°,解得∠DCO=112°.故答案为:45°;112°.三.解答题(共6小题,满分64分)15.证明:∵∠B+∠BDE=180°,∴AB∥DE,∴∠BFD=∠FDE,∵∠A=∠FDE,∴∠BFD=∠A,∴DF∥AC.16.解:DE∥FC,理由如下:∵FG∥AC,∴∠1=∠ACF,∵∠1=∠2,∴∠ACF=∠2,∴DE∥FC.17.解:∵DE∥BC(已知),∴∠3=∠EHC(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠EHC(等量代换),∴AB∥EH(同位角相等,两直线平行),∴∠2+∠4=180°(两直线平行,同旁内角互补),∵∠1=∠4(对顶角相等),∴∠1+∠2=180°(等量代换).18.解:(1)证明:∵FG∥AE,∴∠FGC=∠2,∵∠1=∠2,∴∠1=∠FGC,∴AB∥CD;(2)∵AB∥CD,∴∠ABD+∠D=180°,∴∠ABD=180°﹣112°=68°,∵BC平分∠ABD,∴∠ABC=ABD=34°,∵AB∥CD,∴∠C=∠ABC=34°.所以∠C的度数为34°.19.解:(1)AB∥CD,理由如下:∵∠A=∠AGE,∠D=∠DGC,∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD;(2)∵∠2+∠1=180°,∠CGD+∠2=180°,∴∠1=∠CGD,∴CE∥BF,∴∠C=∠BFD,∠BEC+∠B=180°,∵∠BEC=3∠B+20°,∴∠B=40°,∵AB∥CD,∴∠B=∠BFD,∴∠C=∠B=40°.20.【提出问题】(1)证明:如图1,∵AB∥EF,∴∠1=∠3,又∵BC∥DE,∴∠2=∠3,∴∠1=∠2;(2)证明:如图2,∵AB∥EF,∴∠1=∠4,∴∠2+∠4=180°,∴∠1+∠2=180°;【得出结论】解:由(1)(2)我们可以得到的结论是:若两个角的两边分别平行,则这两个角的数量关系是相等或互补,故答案为:相等或互补;【拓展应用】(3)解:设其中一个角为x,则另一角为2x﹣60°,当x=2x﹣60°时,解得x=60°,此时两个角为60°,60°;当x+2x﹣60°=180°,解得x=80°,则2x﹣60=100°,此时两个角为80°,100°;∴这两个角分别是60°,60°或80°,100°.(4)解:如图,这两个角之间的数量关系是:相等或互补.故答案为:相等或互补.。

2021-2022学年浙教版初中数学七年级下册第四章因式分解单元测试试题(精选)

2021-2022学年浙教版初中数学七年级下册第四章因式分解单元测试试题(精选)

第四章因式分解章节同步练习2022年·浙教版初中数学七年级下册知识点习题·定向攻克·含答案及详细解析浙教版初中数学七年级下册第四章因式分解单元测试(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)11x -,则2x x -的值为( )A.0和1B.0和2C.0和-1D.0或±12、下列各式中,因式分解正确的是( )A.()22121x x x x ++=++B.()()22a b a b a b +=+-C.()222412923a ab b a b ++=+D.()231x x x x -=- 3、下列各式由左到右的变形中,属于因式分解的是( )A.﹣a 2﹣ab ﹣ac =﹣a (a +b +c )B.x 2+x +1=(x +1)2﹣x C.(x +2)(x ﹣1)=x 2+x ﹣2D.a 2+b 2=(a +b )2﹣2ab 4、下列因式分解结果正确的是( )A.24(4)x x x x -+=-+B.224(4)(4)x y x y x y -=+-C.2221(1)x x x ---=-+D.256(2)(3)x x x x --=--5、下列分解因式正确的是( )A.222()m n m n +=+B.22164(4)(4)m n m n m n -=-+C.3223(3)a a a a a a -+=-D.22244(2)a ab b a b -+=- 6、下列因式分解正确的是( )A.3ab 2﹣6ab =3a (b 2﹣2b )B.x (a ﹣b )﹣y (b ﹣a )=(a ﹣b )(x ﹣y )C.a 2+2ab ﹣4b 2=(a ﹣2b )2D.﹣a 2+a ﹣14=﹣14(2a ﹣1)27、多项式(2)(22)(2)x x x +--+可以因式分解成()(2)x m x n ++,则m n -的值是( )A.-1B.1C.-5D.58、若a 是整数,则2a a +一定能被下列哪个数整除( )A.2B.3C.5D.79、已知下列多项式:①22484x xy y +-;②222x xy y -+-;③2244xy x y ++;④2414x x --.其中,能用完全平方公式进行因式分解的有( )A.①②③④B.①②③C.①②④D.②③④10、已知23m m -的值为5,那么代数式2203026m m -+的值是( )A.2030B.2020C.2010D.200011、下列因式分解正确的是( )A.3p 2-3q 2=(3p +3q )(p -q )B.m 4-1=(m 2+1)(m 2-1) C.2p +2q +1=2(p +q )+1 D.m 2-4m +4=(m -2)2 12、下列等式中,从左到右的变形是因式分解的是( )A.2x (x ﹣1)=2x 2﹣2xB.4m 2﹣n 2=(4m +n )(4m ﹣n ) C.﹣x 2+2x =﹣x (x ﹣2) D.x 2﹣2x +3=x (x ﹣2)+313、下列各式能用平方差公式分解因式的是( )A.22m n +B.()224x y --C.224a b --D.2294x y -+14、下列各式由左到右的变形中,属于因式分解的是( ).A.()()2212+-=+-x x x xB.()2111x x x x ++=++C.()2a ab ac a a b c ---=-++D.()2222a b a b ab +=+- 15、下列各式由左边到右边的变形,是因式分解的是( )A.x 2+xy ﹣4=x (x +y )﹣4B.2(1)y x x y x x x ++=++C.(x +2)(x ﹣2)=x 2﹣4D.x 2﹣2x +1=(x ﹣1)2二、填空题(10小题,每小题4分,共计40分)1、若a +b =2,ab =﹣3,则代数式a 3b +2a 2b 2+ab 3的值为______.2、若m 2=n +2021,n 2=m +2021(m ≠n ),那么代数式m 3-2mn +n 3的值 _________.3、分解因式:x 4﹣1=__________________.4、分解因式:236ab a -=___________.5、分解因式:22a b -=_________;322x y x y xy ++=______________.6、因式分解:2a 2-4a -6=________.7、请从24a ,2()x y +,16,29b 四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_____________________.8、将24a -分解因式________9、若a <b <0,则a 2﹣b 2___0.(填“>”,“<”或“=”)10、分解因式:()()m n a b b a -+-=_________.三、解答题(3小题,每小题5分,共计15分)1、因式分解(1)3263654a a a -+-(2)229()49()a x y b y x -+-2、已知实数x ,y ,z 满足5x y +=,29z xy y =+-,求23x y z ++的值.3、因式分解:(1)2m 2﹣4mn +2n 2;(2)x 4﹣1.---------参考答案-----------一、单选题1、B【分析】根据已知条件得出(x -1)3-(x -1)=0,再通过因式分解求出x 的值,然后代入要求的式子进行计算即可得出答案.【详解】1x =-,∴x -1=(x -1)3,∴(x -1)3-(x -1)=0,(x -1)[(x -1)2-1]=0,(x -1)(x -1+1)(x -1-1)=0, x (x -1)(x -2)=0,∴x 1=0,x 2=1,x 3=2,∴x 2-x =0或x 2-x =12-1=0或x 2-x =22-2=2,故选:B.【点睛】此题考查了立方根,因式分解的应用,解题的关键是通过式子变形求出x 的值.2、C【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:A .2221(1)x x x ++=+,故此选项不合题意;B .22a b +,无法分解因式,故此选项不合题意; 222.4129(23)C a ab b a b ++=+,故此选项符合题意;D .32(1)(1)(1)x x x x x x x -=-=-+,故此选项不合题意;故选:C .【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用提取公因式法以及公式法分解因式是解题关键.3、A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A、把一个多项式转化成了几个整式的积,故A符合题意;B、没把一个多项式转化成几个整式积,故B不符合题意;C、是整式的乘法,故C不符合题意;D、没把一个多项式转化成几个整式积,故D不符合题意;故选:A.【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解是把一个多项式转化成几个整式积.4、C【分析】根据提公因式法、平方差公式以及十字相乘法进行解答.【详解】解:A、原式=﹣x(x﹣4),故本选项不符合题意;B、原式=(2x+y)(2x﹣y),故本选项不符合题意;C、原式=﹣(x+1)2,故本选项符合题意;D、原式=(x+1)(x﹣6),故本选项不符合题意,故选:C.【点睛】本题主要考查了提公因式法、平方差公式以及十字相乘法因式分解,属于基础题.5、D【分析】本题考查的是提公因式法与公式法的综合运用,根据分解因式的定义,以及完全平方公式即可作出解答.【详解】A. m 2+n 2,不能因式分解;B.16m 2−4n 2=4(4m −2n )(4m +2n ),原因式分解错误;C. a 3−3a 2+a =a (a 2−3a +1),原因式分解错误; D.4a 2−4ab +b 2=(2a −b )2,原因式分解正确. 故选:D.【点睛】此题考查了运用提公因式法和公式法进行因式分解,熟练掌握公式法因式分解是解本题的关键.6、D【分析】根据因式分解的定义及方法即可得出答案.【详解】A :根据因式分解的定义,每个因式要分解彻底,由3ab 2﹣6ab =3a (b 2﹣2b )中因式b 2﹣2b 分解不彻底,故A 不符合题意.B :将x (a ﹣b )﹣y (b ﹣a )变形为x (a ﹣b )+y (a ﹣b ),再提取公因式,得x (a ﹣b )﹣y (b ﹣a )=x (a ﹣b )+y (a ﹣b )=(a ﹣b )(x +y ),故B 不符合题意.C :形如a 2±2ab +b 2是完全平方式,a 2+2ab ﹣4b 2不是完全平方式,也没有公因式,不可进行因式分解,故C 不符合题意.D :先将214a a -+-变形为()214414a a --+,再运用公式法进行分解,得()()22211144121444a a a a a -+-=--+=--,故D 符合题意. 故答案选择D .【点睛】本题考查的是因式分解,注意因式分解的定义把一个多项式拆解成几个单项式乘积的形式.7、D【分析】先提公因式()2x +,然后将原多项式因式分解,可求出m 和 n 的值,即可计算求得答案.【详解】解:∵()()()()()()()22222221223x x x x x x x +--+=+--=+-,∴2m =,3n =-,∴()235m n -=--=.故选:D .【点睛】本题考查了提公因式法分解因式,准确找到公因式是解题的关键.8、A【分析】根据题目中的式子,进行因式分解,根据a 是整数,从而可以解答本题.【详解】解:∵a 2+a =a (a +1),a 是整数,∴a (a +1)一定是两个连续的整数相乘,∴a (a +1)一定能被2整除,选项B 、C 、D 不符合要求,所以答案选A ,故选:A.【点睛】本题考查了因式分解的应用,准确理解题意并熟练掌握因式分解的方法是解题的关键.9、D【分析】根据完全平方公式的结构特点即可得出答案.【详解】解:①22484x xy y +-不能用完全平方公式分解;②()2222x y x xy y =---+-,能用完全平方公式分解; ③()222442xy x y x y ++=+,能用完全平方公式分解;④()2224114x x x =----,能用完全平方公式分解;故选:D.【点睛】本题考查了公式法分解因式,掌握a 2±2ab +b 2=(a ±b )2是解题的关键.10、B【分析】将2203026m m -+化简为220302(3)m m --,再将235m m -=代入即可得.【详解】解:∵2220302620302(3)m m m m -+=--,把235m m -=代入,原式=2030252020-⨯=,故选B.【点睛】本题考查了代数式求值,解题的关键是把掌握提公因式.11、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A:3p2−3q2=3(p2−q2)=3(p+q)(p−q),不符合题意;选项B:m4−1=(m2+1)(m2−1)=m4−1=(m2+1)(m+1)(m−1),不符合题意;选项C:2p+2q+1不能进行因式分解,不符合题意;选项D:m2−4m+4=(m−2)2,符合题意.故选:D.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.2x(x﹣1)=2x2﹣2x,原变形是整式乘法,不是因式分解,故此选项不符合题意;B.4m2﹣n2=(2m+n)(2m﹣n),故此选项不符合题意;C.﹣x2+2x=﹣x(x﹣2),把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;D.x2﹣2x+3=x(x﹣2)+3,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:C.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.13、D【分析】根据平方差公式逐个判断即可.【详解】解:A .是m 和n 的平方和,不是m 和n 的平方差,不能用平方差公式分解因式,故本选项不符合题意;B .()222244x y x y =+--是2x 和y 的平方和,不是2x 和y 的平方差,不能用平方差公式分解因式,故本选项不符合题意;C .22224(4)a b a b --=-+是2a 和b 的平方和的相反数,不能用平方差公式分解因式,故本选项不符合题意;D .2294(23)(23)x y x y x y -+=+-,能用平方差公式分解因式,故本选项符合题意;故选:D .【点睛】本题考查了平方差公式分解因式,能熟记公式a 2-b 2=(a +b )(a -b )是解此题的关键.14、C【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【详解】解:A 、是整式的乘法,故A 不符合;B 、没把一个多项式转化成几个整式积,故B 不符合;C、把一个多项式转化成几个整式积,故C符合;D、没把一个多项式转化成几个整式积,故D不符合;故选:C.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积.15、D【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;B.等式的右边不是整式的积,即从等式左边到右边的变形不属于因式分解,故本选项不符合题意;C.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;D.从等式左边到右边的变形属于因式分解,故本选项符合题意;故选:D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.二、填空题1、-12【分析】根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.【详解】解:∵a+b=2,ab=﹣3,∴a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=﹣3×4,=﹣12.故答案为:﹣12.【点睛】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键.2、-2021【分析】将两式m2=n+2021,n2=m+2021相减得出m+n=-1,将m2=n+2021两边乘以m,n2=m+2021两边乘以n再相加便可得出.【详解】解:将两式m2=n+2021,n2=m+2021相减,得m2-n2=n-m,(m+n)(m-n)=n-m,(因为m≠n,所以m-n≠0),m+n=-1,将m2=n+2021两边乘以m,得m³=mn+2021m①,将n2=m+2021两边乘以n,得n³=mn+2021n②,由①+②得:m³+n³=2mn+2021(m+n),m³+n³-2mn=2021(m+n),m ³+n ³-2mn =2021×(-1)=-2021.故答案为-2021.【点睛】本题考查因式分解的应用,代数式m 3-2mn +n 3的降次处理是解题关键.3、2(1)(1)(1)x x x ++-.【分析】首先把式子看成x 2与1的平方差,利用平方差公式分解,然后再利用一次即可.【详解】解:x 4﹣1=(x 2+1)(x 2﹣1)=(x 2+1)(x +1)(x ﹣1).故答案是:(x 2+1)(x +1)(x ﹣1).【点睛】本题主要考查了平方差公式,熟练公式是解决本题的关键.4、()()66a b b +-【分析】先提出公因式a ,再利用平方差公式进行因式分解即可.【详解】解:2236(36)(6)(6)-=-=+-ab a a b a b b ,故答案为:()()66a b b +-.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式因式分解的方法——提公因式法、公式法、十字相乘法、分组分解法,还要注意分解彻底,是解题的关键.5、()()a b a b +- 2(1)xy x +【分析】第1个式子利用平方差公式分解即可;第1个式子先提取公因式,再利用完全平方公式继续分解即可.【详解】解:22()()a b a b a b -=+-;32222(21)(1)x y x y xy xy x x xy x ++=++=+;故答案为:()()a b a b +-;2(1)xy x +.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.6、2(a -3)(a +1)a +1)(a -3)【分析】提取公因式2,再用十字相乘法分解因式即可.【详解】解:2a 2-4a -6=2(a 2-2a -3)=2(a -3)(a +1)故答案为:2(a -3)(a +1)【点睛】本题考查了本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法或十字相乘法分解因式,分解因式要彻底是解题关键.7、4a 2-16=4(a -2)(a +2)【分析】任选两式作差,例如,4a 2-16,运用平方差公式因式分解,即可解答.【详解】解:根据平方差公式,得,4a 2-16,=(2a )2-42,=(2a -4)(2a +4),=4(a -2)(a +2)故4a 2-16=4(a -2)(a +2),故答案为:4a 2-16=4(a -2)(a +2).【点睛】本题考查了运用平方差公式因式分解:把一个多项式化为几个整式的积的形式;属于基础题. 8、()()22a a +-【分析】原式利用平方差公式分解即可.【详解】解:24a -=()()22a a +-故答案为:()()22a a +-.【点睛】此题考查了因式分解,熟练掌握平方差公式是解本题的关键.9、>【分析】将a 2-b 2因式分解为(a +b )(a -b ),再讨论正负,和积的正负,得出结果.【详解】解:∵a <b <0,∴a +b <0,a -b <0,∴a 2-b 2=(a +b )(a -b )>0.故答案为:>.【点睛】本题考查了因式分解,解题的关键是先把整式a 2-b 2因式分解,再利用a <b <0得到a -b 和a +b 的正负,利用负负得正判断大小.10、()()a b m n --【分析】根据提公因式因式分解求解即可.【详解】解:()()()()()()m n m n a b b a a b a b m n b a -----+==--,故答案为:()()a b m n --.【点睛】本题考查了提公因式法因式分解,正确找出公因式是解本题的关键.三、解答题1、(1)()263a a --;(2)()()()3737x y a b a b -+- 【分析】(1)直接提取公因式﹣6a ,再利用完全平方公式分解因式得出答案;(2)直接提取公因式x ﹣y ,再利用平方差公式分解因式即可;【详解】解:(1)原式()2669a a a -=-+()263a a =--;(2)原式()()22949x y a b =-- ()()()3737x y a b a b -+-=【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键. 2、8【分析】先把5x y +=化为5,x y 再代入29z xy y =+-可得22(3)0z y +-=,利用非负数的性质求解,,z y 从而可得x 的值,再代入代数式23x y z ++求值即可.【详解】解:5x y +=,29z xy y =+-,5x y ∴=-,代入29z xy y =+-得:2(5)9z y y y =-+-,22(3)0z y +-=,0,30,z y可得:0z =,30y -=,3y ∴=,532x =-=,所以23223308x y z ++=+⨯+⨯=.【点睛】本题考查的是非负数的性质,二元方程组的代换思想,求解代数式的值,运用完全平方公式分解因式,掌握“把原条件转化为非负数的和”是解题的关键.3、(1)2(m ﹣n )2;(2)(x 2+1)(x +1)(x ﹣1).【分析】(1)综合利用提取公因式法和公式法进行因式分解即可;(2)利用两次平方差公式进行因式分解即可.【详解】解:(1)2m 2﹣4mn +2n 2=2(m 2﹣2mn +n 2)=2(m ﹣n )2;(2)x 4﹣1=(x 2+1)(x 2﹣1)=(x 2+1)(x +1)(x ﹣1).【点睛】本题考查了综合提取公因式法和公式法、公式法进行因式分解,因式分解的主要方法包括:提取公因式法、公式法、十字相乘法、分组分解法等,熟记各方法是解题关键.。

平行线 单元测试卷 2022-2023学年浙教版数学七年级下册

平行线 单元测试卷 2022-2023学年浙教版数学七年级下册

第1章 平行线 单元测试卷一、单选题(共10题;共30分)1. 如图,直线a ∥b ,∠1=50°,∠2=30°,则∠3的度数为( )A. 30°B. 50°C. 80°D. 100°2. 一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向平行行驶,那么这两个拐弯的角度可能是( )A. 先向左转130°,再向左转50°B. 先向左转50°,再向右转50°C. 先向左转50°,再向右转40°D. 先向左转50°,再向左转40°3. 下列图形中1∠与2∠是内错角的是A. B. C.D.4. 如图,以下条件能判定GE CH ∥的是( )A. ∠FEB =∠ECDB. ∠AEG =∠DCHC. ∠GEC =∠HCFD. ∠HCE =∠AEG5. 如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A. 14°B. 15°C. 16°D. 17°6. 如图,在“A”字型图中,AB 、AC 被DE 所截,则ADE ∠与DEC ∠是( )A. 内错角B. 同旁内角C. 同位角D. 对顶角7. 如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =30°,则∠C 为( )A. 30°B. 60°C. 80°D. 120°8. 如图,给出了过直线AB 外一点P ,作已知直线AB 的平行线的方法,其依据是( )A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 同旁内角互补,两直线品行D. 过直线外一点有且只有一条直线与这条直线平行9. 如图,直线l 1∥l 2,AB 与直线l 1垂直,垂足为点B ,若∠ABC=37°,则∠EFC的度数为( )A. 127°B. 133°C. 137°D. 143°10. 有下列说法:①三角形ABC在平移的过程中,对应线段一定相等;②三角形ABC在平移的过程中,对应线段一定平行;③三角形ABC在平移的过程中,周长不变;④三角形ABC在平移的过程中,面积不变.其中正确的有( )A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(共6题;共24分)11. 如图所示,与∠C构成同旁内角的有___________个.12. 如图,已知∠1=∠2,则图中互相平行的线段是___________;理由是:__________________________.13. 如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是____________°.14. 如图,三角形ABC经过平移得到三角形DEF,那么图中平行且相等的线段有_____对;若∠BAC=50°,则∠EDF=_____.15. 如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=_____°.16. 如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是______(填序号);能够得到AB∥CD的条件是_______.(填序号)三、解答题(共8题;共66分)17. 如图,李老师在黑板上画了一个图形,请你在这个图形中分别找出角A的一个同位角、内错角和同旁内角,并指出是哪两条直线被哪条直线所截形成的.18. 如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠=︒,试判断AB和CD的位置关系,并说明理由.25019. 如图,张三打算在院落里种上蔬菜,已知院落为东西长32m,南北宽20m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1m,求蔬菜的总种植面积是多少?20. 如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.21. 如图,B处在A处的南偏西42°的方向,C处在A处的南偏东16°的方向,C 处在B处的北偏东72°的方向,求从C处观测A、B两处的视角∠ACB的度数.22. 如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN 的度数.23. 如图,E 点为DF 上的点,B 为AC 上的点,12C D ∠=∠∠=∠,,求证:(1)BD CE∥(2)DF AC∥24. 如图,直线l 1∥l 2,∠BAE =125°,∠ABF =85°,则∠1+∠2等于多少度?第1章平行线单元测试卷一、单选题(共10题;共30分)【1题答案】【答案】D【解析】【分析】利用平角的定义求出∠4=100°,再利用平行线的性质可得出结果.【详解】∵∠1=50°,∠2=30°,∴∠4=100°,∵a∥b,∴∠3=∠4=100°,故选D.【点睛】本题考查了平行线的性质,解题的关键是:两直线平行,同位角相等.【2题答案】【答案】B【解析】【详解】根据同位角相等,两直线平行,可得B.【3题答案】【答案】A【解析】【详解】A. <2与<1是内错角,故此选项正确;B. <2与<1的对顶角是内错角,故此选项错误;C. <2与<1 是同旁内角,故此选项错误;D. <2与<1的邻补角是内错角,故此选项错误;故选A.点睛:本题主要考查的知识点为内错角,两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.掌握内错角的定义是解答本题的关键.【4题答案】【答案】C【解析】【详解】解:∠FEB=∠ECD,∠AEG=∠DCH,∠HCE=∠AEG,它们不是直线∥;GE、CH被某条直线截得的同位角或内错角,不能判定GE CH∵∠GEC=∠HCF.且它们是直线GE、CH被直线EC截得的内错角.∥∴GE CH故选C.【5题答案】【答案】C【解析】【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选C.【点睛】考查了平行线的性质,解题时注意:两直线平行,内错角相等.【6题答案】【答案】A【解析】【详解】试题分析:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故选A.考点:同位角、内错角、同旁内角.点评:正确记忆内错角的定义是解决本题的关键.【7题答案】【答案】A【解析】【分析】根据两直线平行,同位角相等可得∠EAD=∠B,再根据角平分线的定义求出∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=2×30°=60°,∴∠C=∠EAC﹣∠B=60°﹣30°=30°,故选:A.【点睛】本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.【8题答案】【答案】A【解析】【分析】由平行线的画法可知,∠2与∠1相等,根据图形判断出∠2与∠1的位置关系,由此可得答案.【详解】解:由平行线的画法可知,∠2与∠1相等,且∠2与∠1是一对同位角,所以画法的依据是:同位角相等,两直线平行.故选A.【点睛】本题考查的是平行线的原理,熟练掌握平行线的判定方法是解答本题的关键.【9题答案】【答案】A【解析】【详解】因为AB与直线l1垂直,垂足为点B,∠ABC=37°,所以∠CBD=90°-∠ABC=53°;又因为直线l1∥l2,所以∠CBD=∠BFG=53°(两直线平行,同位角相等),所以∠EFC=180°-∠BFG=127°.故选A【10题答案】【答案】C【解析】【详解】①∵平移不改变图形的大小,∴△ABC在平移过程中,对应线段一定相等,故正确;②∵经过平移,对应线段所在的直线共线或平行,∴对应线段一定平行错误;③∵平移不改变图形的形状和大小,∴△ABC在平移过程中,周长不变,故正确;④∵平移不改变图形的形状和大小且对应角相等,∴△ABC在平移过程中,面积不变,故正确;∴①、③、④都符合平移的基本性质,都正确.故选C.二、填空题(共6题;共24分)【11题答案】【答案】3【解析】【分析】据图形和同旁内角的定义,可知∠C构成同旁内角的有∠EBC、∠DBC、∠BDC,共3个.【详解】AC把EB、DC相截,与∠C构成同旁内角的有∠EBC;AC把BD、DC相截,与∠C构成同旁内角的有∠DBC;DC把BD、BC相截,与∠C构成同旁内角的有∠BDC;共3个.答案为3.【点睛】本题主要考查同旁内角的定义,注意区分同位角、内错角、同旁内角的差别.【12题答案】【答案】①. AD∥BC②. 内错角相等,两直线平行【解析】【详解】解:∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行).故答案为AD∥BC,内错角相等,两直线平行.【13题答案】【答案】105°【解析】【详解】由图a知,∠EFC=155°.图b中,∠EFC=155°,则∠GFC=∠EFC-∠EFG=155°-25°=130°.图c中,∠GFC=130°,则∠CFE=130°-25°=105°.故答案为105°.点睛:在长方形的折叠问题中,因为有平行线和角平分线,所以存在一个基本的图形等腰三角形,即图b中的等腰△CEF,其中CE=CF,这个等腰三角形是解决本题的关键所在.【14题答案】【答案】①. 6,②. 50°【解析】【分析】【详解】试题分析:根据平移的性质直接得出对应边平行且相等,对应角相等得出答案即可.解:∵三角形ABC经过平移得到三角形DEF,∴图中平行且相等的线段有:AB DE,AC DF,CB FE,AD BE,EB CF,AD CF,一共有六对,∵∠BAC=50°,∴∠EDF=50°.故答案为6,50°.点评:此题主要考查了平移的性质,熟练掌握平移的性质得出是解题关键.【15题答案】【答案】46【解析】【分析】根据平行线的性质和平角的定义即可得到结论.【详解】解:∵直线a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°−34°−100°=46°,故答案为:46.【16题答案】【答案】①. ①④②. ②③⑤【解析】【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,∴AB∥DC;③∵∠3=∠4,∴AB∥CD;④∵∠5=∠D,∴AD∥BC;⑤∵∠B+∠BCD=180°,∴AB∥CD,∴能够得到AD∥BC的条件是①④,能够得到AB∥CD的条件是②③⑤,故答案为①④,②③⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.三、解答题(共8题;共66分)【17题答案】【答案】见解析【解析】【详解】分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析即可.详解:∠A的同位角是∠BCE,是直线AB、BC被AE所截而成;∠A的内错角是∠ACF,是直线AB、GF被AC所截而成;∠A的同旁内角是∠B,是直线AC、BC被AB所截而成.点睛:此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.【18题答案】【答案】AB ∥CD ,理由见解析【解析】【分析】延长MF 交CD 于点H ,利用平行线的判定证明.【详解】解:延长MF 交CD 于点H ,∵∠1=90°+∠CHF ,∠1=140°,∠2=50°,∴∠CHF =140°-90°=50°,∴∠CHF =∠2,∴AB ∥CD .【点睛】本题主要考查了平行线的判定和外角定理,解题的关键是作出适当的辅助线求解.【19题答案】【答案】558【解析】【详解】试题分析:从平移的角度考虑本题,只需要将道路平移到边上去,即可求出总面积.试题解析:如图,将三条道路都平移到边上去,则空白部分的面积(即蔬菜的总种植面积)不变,因此,蔬菜的总种植面积为:()()()22021321558m -⨯-=.答:蔬菜的总种植面积是558平方米.【20题答案】【答案】∠PSQ=20°.【解析】【分析】首先利用平行线,垂线的定义和性质,然后根据平行线的性质求出∠APR=110°,∠APS =20°,再利用平行线的性质即可解题.【详解】∵AB∥EF,∴∠FRG=∠APR,∵∠FRG=110°,∴∠APR=110°,又∵PS⊥GH,∴∠SPR=90°,∴∠APS=∠APR-∠SPR=20°,∵AB∥CD,∴∠PSQ=∠APS=20°.【点睛】本题考查了平行线的性质,垂线的性质,中等难度,熟悉平行线的性质是解题关键.【21题答案】【答案】∠ACB=92°.【解析】【详解】试题分析:根据方向角的定义,即可求得∠EBA,∠EBC,∠DAC的度数,然后根据三角形内角和定理即可求解.试题解析:如图,∵AD,BE是正南正北方向,∴BE∥AD,∵∠EBA=42°,∴∠BAD=∠EBA=42°,∵∠DAC=16°,∴∠BAC=∠BAD+∠DAC=42°+16°=58°,又∵∠EBC=72°,∴∠ABC=72°-42°=30°,∴∠ACB=180°-∠ABC-∠BAC=180°-58°-30°=92°.【点睛】本题主要考查了方向角的定义,以及三角形的内角和定理,正确理解定义是解题的关键.【22题答案】【答案】32.5°.【解析】【详解】试题分析:已知AB ∥CD ,∠B =65°,根据平行线的性质可求得∠BCE =115°;再由角平分线的定义求得∠ECM 的度数,即可求得∠DCN 的度数.试题解析:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行,同旁内角互补)∵ ∠B =65°,∴ ∠BCE =115°∵ CM 平分∠BCE ,∴ ∠ECM =∠BCE =57.5°∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.点睛:本题主要考查了角平分线的定义,两直线平行同旁内角互补这一性质,题目较为简单,属于基础题.【23题答案】【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)先由对顶角相等,得到:14∠=∠,然后根据等量代换得到:24∠∠=,然后根据同位角相等两直线平行,得到BD CE ∥;(2)根据两直线平行,同位角相等,得到C DBA ∠=∠,然后根据等量代换得到:D DBA ∠=∠,最后根据内错角相等两直线平行,即可得到DF AC ∥.【小问1详解】∵14∠=∠,12∠=∠,∴24∠∠=,∴BD CE ∥;【小问2详解】∵BD CE∥∴C DBA ∠=∠,∵C D ∠=∠,∴D DBA ∠=∠,∴DF AC ∥.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟知平行线的性质与判定条件是解题的关键.【24题答案】【答案】30°.【解析】【分析】过点A 作l 1的平行线,过点B 作l 2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB+∠ABD=180°,然后计算即可得解.【详解】解:如图,过点A 向左作AC ∥l 1,过点B 向左作BD ∥l 2,则∠1=∠3,∠2=∠4.因为l 1∥l 2,所以AC ∥B D.所以∠CAB +∠DBA =180°.又因为∠3+∠4+∠CAB +∠DBA =125°+85°=210°,所以∠3+∠4=30°.所以∠1+∠2=30°.【点睛】本题考查平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(下)数学(Z)单元测试第1章平行线 A卷满分100分,考试时间90分钟班级姓名一、选择题(每小题3分,共30分)1.(2016•柳州)如图,与∠1是同旁内角的是()A.∠2 B.∠3 C.∠4 D.∠52.(2016春•永登县期中)下列叙述中,正确的是()A.在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直B.不相交的两条直线叫平行线C.两条直线的铁轨是平行的D.我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角3.下列说法正确的是()A.相等的角是对顶角B.同位角相等C.互补的角是邻补角D.平行于同一条直线的两条直线互相平行4.(2016•来宾)如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°5.(2016春•东明县期中)下列说法中正确的是()A.在同一平面内,两条直线的位置只有两种:相交和垂直B.有且只有一条直线垂直于已知直线C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离6.(2016•济宁)如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm7.(2016•东营)如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°8.(2016•赤峰)如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交9.(2016春•微山县期末)如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③B.①②④C.①③④D.①③10.(2016春•青田县期末)如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的值为()A.∠1+∠2﹣∠3 B.∠1+∠3﹣∠2C.180°+∠3﹣∠1﹣∠2 D.∠2+∠3﹣∠1﹣180°二、填空题(每小题3分,共18分)11.(2016春•延庆县期末)已知,如图,要使得AB∥CD,你认为应该添加的一个条件是.12.(2016春•长春校级期末)某小区有一块长方形的草地(如图),长18米,宽10米,空白部分为两条宽度均为2米的小路,则草地的实际面积m2.13.(2016春•淮安月考)如图,将一长方形纸条折叠后,若∠1=70°,则∠2= .14.(2016•东台市模拟)如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为°.15.(2016•湖州)如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是度.16.(2015秋•三亚校级期末)如图,用数字表示的角中,同位角有a对,内错角有b对,同旁内角有c对,则ab﹣c= .三、解答题(共52分)17.如图所示,在∠AOB内有一点P.(5分)(1)过P画L1∥OA;(2)过P画L2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?18.(2016春•隆化县期末)如图,EF∥AD,∠1=∠2.说明:∠DGA+∠BAC=180°.请将说明过程填写完成.(6分)解:∵EF∥AD,(已知)∴∠2= .()又∵∠1=∠2,()∴∠1=∠3,()∴AB∥,()∴∠DGA+∠BAC=180°.()19.(2016春•吴兴区期末)如图,∠CAB=100°,∠ABF=130°,AC∥MD,BF∥ME,求∠DME 的度数.(6分)20.(2016春•乌拉特前旗期末)如图,在边长为1的正方形网格中,平移△ABC,使点A平移到点D.(6分)(1)画出平移后的△DEF;(2)求△ABC的面积.21.(2016春•鄄城县期末)如图:平行线AB、CD被直线AE所截.(6分)(1)写出∠AFD的对顶角;(2)写出∠AFD的邻补角;(3)如果∠BAF=100°,求∠AFD和∠AFC的度数.22.(2016春•慈溪市期末)如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD 的度数.(7分)23.(2016秋•郑州期末)如图已知直线CB∥OA,∠C=∠OAB=100°,点E、点F在线段BC 上,满足∠FOB=∠AOB=α,OE平分∠COF.(8分)(1)用含有α的代数式表示∠COE的度数;(2)若沿水平方向向右平行移动AB,则∠OBC:∠OFC的值是否发生变化?若变化找出变化规律;若不变,求其比值.2·1·c·n·j·y24.(2015春•平南县期末)如图,已知AB∥CD,直线l分别截AB、CD于E、C两点,M是线段EC上一动点(不与E、C重合),过M点作MN⊥CD于点N,连结EN.(8分)(1)如图1,当∠ECD=40°时,填空:∠FEB= ;∠MEN+∠MNE= ;(2)如图2,当∠ECD=α°时,猜想∠MEN+∠MNE的度数与α的关系,并证明你的结论.参考答案一、选择题(每题3分,共30分)1.解:A、∠1和∠2是对顶角,不是同旁内角,故本选项错误;B、∠1和∠3是同位角,不是同旁内角,故本选项错误;C、∠1和∠4是内错角,不是同旁内角,故本选项错误;D、∠1和∠5是同旁内角,故本选项正确;故选D.2.解:A、在同一平面内,两条直线的位置关系有两种,分别是相交、平行,故A错误;B、在同一个平面内,不相交的两条直线叫平行线,故B错误;C、两条直线的铁轨是平行的,故C正确;D、我们知道,对顶角是相等的,那么反过来,相等的角不一定是对顶角,故D错误;故选:C.3.解:A、相等的角是对顶角,不符合对顶角的定义,也不成立,B、前提条件没有确定,同位角不一定相等,不成立,C、互补的角是邻补角也不成立;D、平行于同一直线的两条直线平行,成立.故选D.4.解:A、∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意,B、∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C、∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D、∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C5.解:A、在同一平面内,两条直线的位置只有两种:相交和平行,垂直是相交的一种情况,故A错误;B、一条直线的垂线有无数条,故B错误;C、根据平行公理的推论,如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故C正确;D、点到直线的距离指的是线段的长度,而非垂线段,故D错误.故选C.6.解:∵△ABE向右平移2cm得到△DCF,∴EF=AD=2cm,AE=DF,∵△ABE的周长为16cm,∴AB+BE+AE=16cm,∴四边形ABFD的周长=AB+BE+EF+DF+AD=AB+BE+AE+EF+AD=16cm+2cm+2cm=20cm.故选C.7.解:如图,∵直线m∥n,∴∠1=∠3,∵∠1=70°,∴∠3=70°,∵∠3=∠2+∠A,∠2=30°,∴∠A=40°,故选C.8.解:∵∠ABC=150°,∠BCD=30°,∴∠ABC+∠BCD=180°,∴AB∥DC.故选:C.9.解:由图可知,用角尺画木板边缘的两条垂线,这样画的理由:①同位角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.故选C.10.解:过点E作EG∥AB,过点F作FH∥CD,∵AB∥CD,∴AB∥CD∥EG∥FH,∴∠1=∠AEG,∴∠GEF=∠2﹣∠1,∵EG∥FH,∴∠EFH=180°﹣∠GEF=180°﹣(∠2﹣∠1)=180°﹣∠2+∠1,∴∠CFH=∠3﹣∠EFH=∠3﹣(180°﹣∠2+∠1)=∠3+∠2﹣∠2﹣180°,∵FH∥CD,∴∠4=∠3+∠2﹣∠1﹣180°,故选(D)二、填空题(每小题3分,共18分)11.解:添加的条件是:∠ECD=∠A(答案不唯一).故答案为:∠ECD=∠A.12.解:由题意,得草地的实际面积为:(18﹣2)×(10﹣2)=16×8=128(m2).故答案为128.13.解:∵四边形AEFG是长方形,∴EF∥AG,∵∠1=70°,∴∠ECB=∠1=70°,∴∠FCB=180°﹣70°=110°,∵沿CD折叠,∴∠2=∠FCD=∠FCB=55°,故答案为:55°.14.解:∵∠B=55°,∠C=100°,∴∠A=180°﹣∠B﹣∠C=180°﹣55°﹣100°=25°,∵△ABC平移得到△A′B′C′,∴AB∥A′B′,∴∠AB′A′=∠A=25°.故答案为:25.15.解:如图2,AB∥CD,∠AEC=90°,作EF∥AB,则EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.故答案为90.16.解:同位角有∠3与∠7,∠4与∠8,∠1与∠6,a=3,内错角有∠8与∠6,∠3与∠5,∠1与∠4,∠2与∠7,b=4,同旁内角有∠7与∠8,∠1与∠7,∠2与∠4,∠3与∠4,c=4,ab﹣c=3×4﹣4=8,故答案为:8.三、解答题(共52分)17.解:(1)(2)如图所示,(3)L1与L2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.18.解:∵EF∥AD,(已知)∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB∥DG,(内错角相等,两直线平行)∴∠DGA+∠BAC=180°(两直线平行,同旁内角互补).19.解:∵∠CAB=100°,AC∥MD,∴∠BMD=∠CAB=100°,∵BF∥ME,∠ABF=130°,∴∠BME=180°﹣∠ABF=50°,∴∠DME=∠BMD﹣∠BME=100°﹣50°=50°.20.解:(1)所作图形如图所示:;(2)S=4×4﹣×1×4﹣×2×3﹣×2×4=7.△ABC21.解:(1)∠AFD的对顶角是∠EFC;(2)∠AFD的邻补角是∠EFD、∠AFC;(3)∵AB∥DC,∠BAF=100°,∴∠AFD+∠BAF=180°,∠AFC=∠BAF=100°,∴∠AFD=180°﹣∠BAF=180°﹣100°=80°,即∠AFD=80°,∠AFC=100°.22.解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.23.(1)∵CB∥OA,∴∠C+∠AOC=180°.∵∠C=100°,∴∠AOC=80°.∴∠EOB=∠EOF+∠FOB=∠COF+∠FOA=(∠COF+∠FOA)=∠AOC=40°.又OE平分∠COF,∴∠COE=∠FOE=40°﹣α;(2)∠OBC:∠OFC的值不发生改变.∵BC∥OA,∴∠FBO=∠AOB,又∵∠BOF=∠AOB,∴∠FBO=∠BOF,∵∠OFC=∠FBO+∠FOB,∴∠OFC=2∠OBC,即∠OBC:∠OFC=∠OBC:2∠OBC=1:2.24.【解答】解:(1)∵AB∥CD,∠ECD=40°,∴∠FEB=∠ECD=40°;∵MN⊥CD,∴∠CNM=90°,∴∠CMN=90°﹣∠ECN=90°﹣40°=50°.∵∠CMN是△EMN的外角,∴∠CMN=∠MEN+∠MNE=50°.故答案为:40°,50°;(2)猜想:∠MEN+∠MNE=90°﹣α°.证明如下:∵AB∥CD,∠ECD=α°∴∠AEC=∠ECD=α°且∠AEN+∠CNE=180°.又∵MN⊥CD∴∠MNC=90°,∴90°+∠MEN+∠MNE+α°=180°,∴∠MNE+∠MEN=90°﹣α°.初中数学试卷。

相关文档
最新文档