高中数学第三章直线与方程3.2-3.2.3直线的一般式方程课件新人教A版必修2
合集下载
高中数学 第三章 直线与方程 3.2.3 直线的一般式方程课件 新人教A版必修2

B
②若 B=0,则 x=- C ,表示与 x 轴垂直的一条直线. A
③若 C=0,则 Ax+By=0,表示过原点的一条直线.
2.在什么条件下,一般式方程可以转化为斜截式、点斜式或截距式方程?
提示:①若 B≠0,则直线的一般式方程可化为斜截式、点斜式,即
y=-
A B
x-
C B
与
y-
C B
即 x+3y+3=0.
题后反思 根据已知条件求直线方程的策略: 在求直线方程时,设一般式方程并不简单,常用的还是根据给定条件选用 四种特殊形式之一求方程再化为一般式方程,一般选用规律为: (1)已知直线的斜率和直线上点的坐标时,选用点斜式;(2)已知直线的斜 率和在y轴上的截距时,选用斜截式;(3)已知直线上两点坐标时,选用两 点式.(4)已知直线在x轴,y轴上的截距时,选用截距式.
解:(1)由直线方程的点斜式得 y-3= 3 (x-5),即 3 x-y-5 3 +3=0. (2)由斜截式得直线方程为 y=4x-2,即 4x-y-2=0.
(3)由两点式得 y 5 = x 1 ,即 2x+y-3=0. 1 5 2 1
(4)由截距式得直线方程为 x + y =1. 3 1
解:法一 (1)由 l1:2x+(m+1)y+4=0, l2:mx+3y-2=0 知: ①当 m=0 时,显然 l1 与 l2 不平行.
②当 m≠0 时,l1∥l2,需 2 = m 1 ≠ 4 . m 3 2
解得 m=2 或 m=-3,所以 m 的值为 2 或-3.
(2)由题意知,直线 l1⊥l2. ①若 1-a=0,即 a=1 时,直线 l1:3x-1=0 与直线 l2:5y+2=0 显然垂直.
②若 B=0,则 x=- C ,表示与 x 轴垂直的一条直线. A
③若 C=0,则 Ax+By=0,表示过原点的一条直线.
2.在什么条件下,一般式方程可以转化为斜截式、点斜式或截距式方程?
提示:①若 B≠0,则直线的一般式方程可化为斜截式、点斜式,即
y=-
A B
x-
C B
与
y-
C B
即 x+3y+3=0.
题后反思 根据已知条件求直线方程的策略: 在求直线方程时,设一般式方程并不简单,常用的还是根据给定条件选用 四种特殊形式之一求方程再化为一般式方程,一般选用规律为: (1)已知直线的斜率和直线上点的坐标时,选用点斜式;(2)已知直线的斜 率和在y轴上的截距时,选用斜截式;(3)已知直线上两点坐标时,选用两 点式.(4)已知直线在x轴,y轴上的截距时,选用截距式.
解:(1)由直线方程的点斜式得 y-3= 3 (x-5),即 3 x-y-5 3 +3=0. (2)由斜截式得直线方程为 y=4x-2,即 4x-y-2=0.
(3)由两点式得 y 5 = x 1 ,即 2x+y-3=0. 1 5 2 1
(4)由截距式得直线方程为 x + y =1. 3 1
解:法一 (1)由 l1:2x+(m+1)y+4=0, l2:mx+3y-2=0 知: ①当 m=0 时,显然 l1 与 l2 不平行.
②当 m≠0 时,l1∥l2,需 2 = m 1 ≠ 4 . m 3 2
解得 m=2 或 m=-3,所以 m 的值为 2 或-3.
(2)由题意知,直线 l1⊥l2. ①若 1-a=0,即 a=1 时,直线 l1:3x-1=0 与直线 l2:5y+2=0 显然垂直.
2-【精品课件】3-2-3直线的一般方程

必有55xy--13==00, 即xy= =1535
.
即 l 过定点 A(15,35).以下同解法一.
第三章 直线与方程
数学
人教A版必修二 ·新课标
(2)直线 OA 的斜率为 k=3515- -00=3. 要使 l 不经过第二象限,需它在 y 轴上的截距不大于零, 即令 x=0 时,y=-a-5 3≤0,∴a≥3.
第三章 直线与方程
数学
人教A版必修二 ·新课标
解:(1)直线过点 P(1,0),∴m2-2m-3=2m-6. 解之得 m=3 或 m=1. (2)由斜率为 1,得-m2m2-2+2mm--31=1, 解之得 m=-1 或 m=43. (3)直线过定点 P(-1,-1),则-(m2-2m-3)-(2m2+ m-1)=2m-6,解之得 m=53或 m=-2.
第三章 直线与方程
数学
人教A版必修二 ·新课标
思路分析:根据条件,选择恰当的直线方程的形式, 最后化成一般式方程.
第三章 直线与方程
数学
人教A版必修二 ·新课标
解:(1)由点斜式方程得:y-3= 3(x-5),化简得 3x -y+3-5 3=0.
(2)x=-3,即 x+3=0. (3)由斜截式得 y=4x-2,即 4x-y-2=0. (4)y=3,即 y-3=0. (5)由两点式可得-y-1-55=2x--((--11)),整理得 2x+y-3= 0. (6)由截距式得-x3+-y1=1,整理得:x+3y+3=0.,
数学
人教A版必修二 ·新课标
1.若直线(2m2+m-3)x+(m2-m)y=4m-1 在 x 轴上的
截距为 1,则实数 m 为
A.1
B.2
Hale Waihona Puke ()C.-12D.2 或-12
高一数学人教版A版必修二课件:3.2.3 直线的一般式方程

答案
知识点二 直线的一般式与点斜式、斜截式、两点式、截距式的关系
返回
题型探究
重点难点 个个击破
类型一 直线一般式的性质
例1 设直线l的方程为(m2-2m-3)x-(2m2+m-1)y+6-2m=0. (1)若直线l在x轴上的截距为-3,则m=_-__53_____. 解析 令y=0,
2m-6 则 x=m2-2m-3,
场景记忆法小妙招
超级记忆法--身体法
1. 头--神经系统 2. 眼睛--循环系统 3. 鼻子--呼吸系统 4. 嘴巴--内分泌系统 5. 手--运动系统 6. 胸口--消化系统 7. 肚子--泌尿系统 8. 腿--生殖系统
超级记忆法-记忆方法
TIP1:在使用身体记忆法时,可以与前面提到过的五感法结合起来,比如产生 一些听觉、视觉、触觉、嗅觉、味觉,记忆印象会更加深刻; TIP2:采用一些怪诞夸张的方法,比如上面例子中腿上面生长出了很多植物, 正常在我们常识中不可能发生的事情,会让我们印象更深。
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常宝贵的,不要全部用来玩手机哦~ TIP4:早晨起床后,由于不受前摄抑制的影响,我们可以记忆一些新的内容或 者复习一下昨晚的内容,那么会让你记忆犹新。
如何利用规律实现更好记忆呢?
a-2 a+1,
在y轴上的截距为a-2,
∵ aa-+21≥0, a-2≤0,
得a<-1或a=2.
解析答案
类型二 判断两条直线的位置关系
例2 判断下列直线的位置关系:
(1)l1:2x-3y+4=0,l2:3y-2x+4=0; 解 直线l2的方程可写为-2x+3y+4=0, 由题意知-22=-33≠44, ∴l1∥l2.
高中数学第三章直线与方程3.2.2直线的两点式方程课件新人教A版必修2

ab
又过点 A,所以 4 + 2 =1
ab
因为直线在两坐标轴上的截距的绝对值相等,所以|a|=|b|
由①②联立方程组,解得
a b
6, 6,
或
a b
2, 2.
所以所求直线的方程为 x + y =1 或 x + y =1,
66
2 2
化简得直线 l 的方程为 x+y=6 或 x-y=2.
1.直线的两点式方程
(1)定义:如图所示,直线 l 经过点 P1(x1,y1),P2(x2,y2)(其中 x1≠x2,y1≠y2),则方程
y y1 = x x1 叫做直线 l 的两点式方程,简称两点式. y2 y1 x2 x1
解决直线与坐标轴围成的三角形面积或周长问题时,一般选择 直线方程的截距式,若设直线在 x 轴,y 轴上的截距分别为 a,b,则直线与坐标
上的截距.与坐标轴垂直和过原点的直线均没有截距式.
由直线方程的截距式得直线 l 的方程为 x + y =1,即 x+4y-8=0. 82
由①②可得 5a2-32a+48=0,
解得
a b
4, 3
或
a b
12 5 9. 2
,
所以所求直线的方程为 x + y =1 或 5x + 2 y =1,即 3x+4y-12=0 或 15x+8y-36=0.
则 (2)说xy 明xy:11与22坐xy22标,. 轴垂直的直线没有两点式方程.
解:由题意可设 A(a,0),B(0,b),
由中点坐标公式可得
a 0
2 2
高中数学 3223直线的方程课件 新人教版A必修2

∴M52,-3, 又 BC 边上的中线经过点 A(-3,2). ∴由两点式得-y-3-22=52x----33, 即 10x+11y+8=0. 故 BC 边上的中线所在直线的方程为 10x+11y+8=0.
规律方法 ①首先要鉴别题目条件是否符合直线方程相应形式 的要求,对字母则需分类讨论;②注意问题叙述的异同,本题 中第一问是表示的线段,所以要添加范围;第二问则表示的是 直线.
2.线段的中点坐标公式
若点 P1,P2 的坐标分别为(x1,y1)、(x2,y2),设 P(x,y)是线段
P1P2
的中点,则x= y=
x1+x2 2
,
y1+2 y2.
试一试:若已知 A(x1,y1)及 AB 中点(x0,y0),如何求 B 点的坐 标?
提示
设 B(x,y),则由xy11+ +22 xy= =xy00, ,
【变式 1】 (2012·绍兴一中高一检测)已知△ABC 三个顶点坐标 A(2,-1),B(2,2),C(4,1),求三角形三条边所在的直线方程.
解 ∵A(2,-1),B(2,2), A、B 两点横坐标相同, ∴直线 AB 与 x 轴垂直,故其方程为 x=2. ∵A(2,-1),C(4,1), ∴由直线方程的两点式可得直线 AC 的方程为 -y-1-11=2x--44, 即 x-y-3=0. ∵B(2,2),C(4,1), ∴由直线方程的两点式可得直线 BC 的方程为2y--11=2x--44, 即 x+2y-6=0.
【变式 4】 (2012·菏泽一中高一检测)已知直线 l 的方程为 3x+ 4y-12=0,求直线 l′的方程,l′满足 (1)过点(-1,3),且与 l 平行; (2)过点(-1,3),且与 l 垂直.
解 法一 由题设 l 的方程可化为:y=-34x+3, ∴l 的斜率为-34, (1)由 l′与 l 平行, ∴l′的斜率为-34. 又∵l′过(-1,3), 由点斜式知方程为 y-3=-34(x+1), 即 3x+4y-9=0.
高中数学3.2.3《直线的一般式方程》课件(新人教A版必修2)

A.2y-x-4=0 B.2x-y-1=0
C.x+y-5=0 D.2x+y-7=0
§3.2.3直线的一般式方程
温复故知习新 回顾
①直线方程有几种形式?指明它们的条件及应用范围.
点斜式 y-y1 = k(x-x1)
斜截式 y = kx + b
两点式
y y1 y2 y1
x x1 x2 x1
( x1
x2 ,
y1
y2 )
截距式 x y 1a,b 0
ab
②什么叫二元一次方程?直线与二元一次方程有什么关系?
直线的一般式方程:
Ax+By+C=0(A,B不同时为0)
例题分析
例1、已知直线经过点A(6,- 4),斜率为 求直线的点斜式和一般式方程.
4 3
,
注意 对于直线方程的一般式,一般作如下约定:x的
系数为正,x,y的系数及常数项一般不出现分数,一般按 含x项,含y项、常数项顺序排列.
例题分析
例2、把直线l 的方程x –2y+6= 0化成斜截式,求出
直线l 的斜率和它在x轴与y轴上的截距,并画图.y. B.来自AOx
例3、设直线l 的方程为 (m2-2m-3)x+(2m2+m-1)y=2m-6,根据下列
条件确定m的值: (1) l 在X轴上的截距是-3; (2)斜率是-1.
例题分析
例4、利用直线方程的一般式,求过点(0,3)并且 与坐标轴围成三角形面积是6的直线方程.
练习:
1、直线Ax+By+C=0通过第一、二、三象限,则( )
(A) A·B>0,A·C>0
C.x+y-5=0 D.2x+y-7=0
§3.2.3直线的一般式方程
温复故知习新 回顾
①直线方程有几种形式?指明它们的条件及应用范围.
点斜式 y-y1 = k(x-x1)
斜截式 y = kx + b
两点式
y y1 y2 y1
x x1 x2 x1
( x1
x2 ,
y1
y2 )
截距式 x y 1a,b 0
ab
②什么叫二元一次方程?直线与二元一次方程有什么关系?
直线的一般式方程:
Ax+By+C=0(A,B不同时为0)
例题分析
例1、已知直线经过点A(6,- 4),斜率为 求直线的点斜式和一般式方程.
4 3
,
注意 对于直线方程的一般式,一般作如下约定:x的
系数为正,x,y的系数及常数项一般不出现分数,一般按 含x项,含y项、常数项顺序排列.
例题分析
例2、把直线l 的方程x –2y+6= 0化成斜截式,求出
直线l 的斜率和它在x轴与y轴上的截距,并画图.y. B.来自AOx
例3、设直线l 的方程为 (m2-2m-3)x+(2m2+m-1)y=2m-6,根据下列
条件确定m的值: (1) l 在X轴上的截距是-3; (2)斜率是-1.
例题分析
例4、利用直线方程的一般式,求过点(0,3)并且 与坐标轴围成三角形面积是6的直线方程.
练习:
1、直线Ax+By+C=0通过第一、二、三象限,则( )
(A) A·B>0,A·C>0
直线方程的一般式课件可编辑全文

• ②设与直线3x+4y-20=0垂直的直线方程 为4x-3y+m=0,过点A(2,2),所以4×2- 3×2+m=0,即m=-2,直线方程为4x- 3y-2=0.
(2)方法 1:当 m=0 时,l1:x+6=0,l2:2x-3y=0 两直 线既不平行也不垂直;当 m≠0 时,
l1:y=-m1 x-m6 ,l2:y=-m-3 2x-23m,
解得 m=2 或 3.故选 A.
• [错因分析] 错解忽视了当m=2时,2m2- 5m+2=0且-(m2-4)=0.
• [思路分析] 直线的一般式方程Ax+By+C= 0中,A与B满足的条件是A与B不能同时为0, 即A2+B2≠0.当A=B=0时,方程变为C=0, 不[表正解示] 任直何线图l1 的形斜.率为2m2m-2-5m4+2,直线 l2 的斜率为 1,
• (2)当A=0且B≠0时,这条直线与y轴垂直.
• (3)要使直线与x轴,y轴都相交,则它与两轴 都不垂直,由(1)(2)知,当A≠0且B≠0,即当 AB≠0时,这条直线与x轴和y轴都相交.
• (4)将x=0,y=0代入直线方程Ax+By+C= 0,得C=0,故当C=0时,这条直线过原 点.
• (5)当A=0,B≠0,C=0时,直线方程化为y =0,直线与x轴重合.
斜率不存在 斜率 k=0
• ●自我检测
• 1.若方程Ax+By+C=0表示直线,则A,B 应满足的条件为( )
• A.A≠0
B.B≠0
• C.A·B≠0 D.A2+B2≠0
• [答案] D
• [解析] A,B不能同时为0,则A2+B2≠0.
2.直线 2x+y+4=0 的斜率 k=( )
A.2
B.-2
ax+by=1
a,b 分别是直线 直线不垂直于 在 x 轴,y 轴上的 x 轴和 y 轴,且 两个非零截距 不过原点
(2)方法 1:当 m=0 时,l1:x+6=0,l2:2x-3y=0 两直 线既不平行也不垂直;当 m≠0 时,
l1:y=-m1 x-m6 ,l2:y=-m-3 2x-23m,
解得 m=2 或 3.故选 A.
• [错因分析] 错解忽视了当m=2时,2m2- 5m+2=0且-(m2-4)=0.
• [思路分析] 直线的一般式方程Ax+By+C= 0中,A与B满足的条件是A与B不能同时为0, 即A2+B2≠0.当A=B=0时,方程变为C=0, 不[表正解示] 任直何线图l1 的形斜.率为2m2m-2-5m4+2,直线 l2 的斜率为 1,
• (2)当A=0且B≠0时,这条直线与y轴垂直.
• (3)要使直线与x轴,y轴都相交,则它与两轴 都不垂直,由(1)(2)知,当A≠0且B≠0,即当 AB≠0时,这条直线与x轴和y轴都相交.
• (4)将x=0,y=0代入直线方程Ax+By+C= 0,得C=0,故当C=0时,这条直线过原 点.
• (5)当A=0,B≠0,C=0时,直线方程化为y =0,直线与x轴重合.
斜率不存在 斜率 k=0
• ●自我检测
• 1.若方程Ax+By+C=0表示直线,则A,B 应满足的条件为( )
• A.A≠0
B.B≠0
• C.A·B≠0 D.A2+B2≠0
• [答案] D
• [解析] A,B不能同时为0,则A2+B2≠0.
2.直线 2x+y+4=0 的斜率 k=( )
A.2
B.-2
ax+by=1
a,b 分别是直线 直线不垂直于 在 x 轴,y 轴上的 x 轴和 y 轴,且 两个非零截距 不过原点
高中数学 第三章 直线与方程 3.2 直线的方程 3.2.3 直线的一般式方程课件 新人教A版必修2

() A.2,3
B.-2,-3
C.-2,3
D.2,-3
解析:-x2+-y3=1 为直线的截距式,在 x 轴,y 轴
上的截距分别为-2,-3.
答案:B
4.直线 l 过点(-1,2)和点(2,5),则直线 l 的方程 为______________.
解析:由题意直线过两点,由直线的两点式方程可得:
y-2 x-(-1)
[典例 1] 已知 A(-3,2),B(5,-4),C(0,-2), 在△ABC 中,求:
(1)BC 边的方程; (2)BC 边上的中线所在直线的方程.
பைடு நூலகம்
[自主解答] (1)BC 边过两点 B(5,-4),C(0,-2),
y-(-4) x-5
由两点式得,
= ,即 2x+5y+10=0,
-2-(-4) 0-5
2.直线方程的一般式
(1)直线与二元一次方程的关系. ①在平面直角坐标系中,对于任何一条直线,都可 以用一个关于 x、y 的二元一次方程表示. ②每个关于 x、y 的二元一次方程都表示一条直线. (2)直线的一般方程的定义. 我们把关于 x、y 的二元一次方程 Ax+Bx+C=0(其 中 A、B 不同时为 0)叫做直线的一般式方程,简称一般式.
(1)求边 BC 所在直线的方程; (2)求边 BC 上的中线 AM 所在的直线方程. 解:(1)直线 BC 过点 B(3,-3),C(0,2),由两点式, 得2y++33=x0--33,整理得 5x+3y-6=0,所以边 BC 所在 的直线方程为 5x+3y-6=0.
(2)因为 B(3,-3),C(0,2),所以由中点坐标公式 可得边 BC 上的中点 M 的坐标为3+2 0,-32+2,即 32,-12,可得直线 AM 的方程为-y-12-00=x32--((--55)), 整理得直线 AM 的方程为 x+13y+5=0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 直线与方程
[点式
截距式
条件 P1(x1,y1)和 P2(x2,y2) 在 x 轴上截距 a, 其中 x1≠x2,y1≠y2 在 y 轴上截距 b
图形
类型 1 利用两点式求直线方程(自主研析) [典例 1] 三角形的三个顶点是 A(-1,0),B(3,- 1),C(1,3),求三角形三边所在直线的方程.
[变式训练] 设直线 l 的方程为(a+1)x+y-2+a= 0,若 l 经过第一象限,求实数 a 的取值范围.
解:直线 l 的方程可化为点斜式 y-3=-(a+1)(x+ 1),由点斜式的性质,得 l 过定点 P(-1,3),如图.
3-0 所以 kPO=-1-0=-3.
1.求直线的两点式方程. 当已知两点坐标,求过这两点的直线方程,首先要 判断是否满足两点式方程的适用条件:两点的连线不垂 直于坐标轴,若满足,则考虑用两点式求方程.
y-(-1) 解:由两点式,直线 AB 所在直线方程为:
0-(-1)
x-3 = ,即 x+4y+1=0.
-1-3
解:(1)设直线 l 的方程为xa+by=1(a>0,b>0), 由题意知,a+b+ a2+b2=12.
又因为直线 l 过点 P43,2, 所以34a+2b=1,即 5a2-32a+48=0,
a1=4,a2=152, 解得b1=3,b2=92,
类型 4 直线方程的综合应用 [典例 4] 已知直线 l:5ax-5y-a+3=0. (1)求证:不论 a 为何值,直线 l 总经过第一象限; (2)为使直线不经过第二象限,求 a 的取值范围. (1)证明:将直线 l 的方程整理为 y-35=ax-15,
[点式
截距式
条件 P1(x1,y1)和 P2(x2,y2) 在 x 轴上截距 a, 其中 x1≠x2,y1≠y2 在 y 轴上截距 b
图形
类型 1 利用两点式求直线方程(自主研析) [典例 1] 三角形的三个顶点是 A(-1,0),B(3,- 1),C(1,3),求三角形三边所在直线的方程.
[变式训练] 设直线 l 的方程为(a+1)x+y-2+a= 0,若 l 经过第一象限,求实数 a 的取值范围.
解:直线 l 的方程可化为点斜式 y-3=-(a+1)(x+ 1),由点斜式的性质,得 l 过定点 P(-1,3),如图.
3-0 所以 kPO=-1-0=-3.
1.求直线的两点式方程. 当已知两点坐标,求过这两点的直线方程,首先要 判断是否满足两点式方程的适用条件:两点的连线不垂 直于坐标轴,若满足,则考虑用两点式求方程.
y-(-1) 解:由两点式,直线 AB 所在直线方程为:
0-(-1)
x-3 = ,即 x+4y+1=0.
-1-3
解:(1)设直线 l 的方程为xa+by=1(a>0,b>0), 由题意知,a+b+ a2+b2=12.
又因为直线 l 过点 P43,2, 所以34a+2b=1,即 5a2-32a+48=0,
a1=4,a2=152, 解得b1=3,b2=92,
类型 4 直线方程的综合应用 [典例 4] 已知直线 l:5ax-5y-a+3=0. (1)求证:不论 a 为何值,直线 l 总经过第一象限; (2)为使直线不经过第二象限,求 a 的取值范围. (1)证明:将直线 l 的方程整理为 y-35=ax-15,