2018邯郸一模 河北省邯郸市2018届高三第一次模拟考试数学(理)试题
河北省邯郸市2018届高三上学期1月教学质量检测数学(理)试题+Word版含解析

邯郸市2018届高三教学质量检测数学(理科)试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数,若是复数的共轭复数,则()A. B. C. D.【答案】A【解析】由题意结合复数的运算法则有:.本题选择A选项.2. 已知集合,则的真子集个数为()A. B. C. D.【答案】B集合表示直线上的点组成的集合,则表示由抛物线与直线的交点组成的集合,直线与抛物线的交点坐标为,,即中含有两个元素,由子集个数公式可得的真子集个数为.本题选择B选项.3. 已知变量,之间满足线性相关关系,且,之间的相关数据如下表所示:则()A. B. C. D.【答案】B【解析】由题意可得:,,回归方程过样本中心点,则:,求解关于实数的方程可得:.本题选择B选项.4. 下列说法中,错误..的是()A. 若平面平面,平面平面,平面平面,则B. 若平面平面,平面平面,,,则C.若直线,平面平面,则D. 若直线平面,平面平面,平面,则【答案】C【解析】选项C中,若直线,平面平面,则有可能直线在平面内,该说法存在问题,由面面平行的性质定理可得选项A正确;由面面垂直的性质定理可得选项B正确;由线面平行的性质定理可得选项D正确;本题选择C选项.5. 已知抛物线:的焦点为,抛物线上一点满足,则抛物线的方程为()A. B. C. D.【答案】D【解析】设抛物线的准线为,作直线于点,交轴于由抛物线的定义可得:,结合可知:,即,据此可知抛物线的方程为:.本题选择D选项.点睛:求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.6. 已知函数若,且函数存在最小值,则实数的取值范围为()A. B. C. D.【答案】A【解析】由分段函数的解析式可得:,即:,结合函数有最小值可得:,据此可得:,即实数的取值范围为.本题选择A选项.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.7. 已知,则()A. B. C. D.【答案】C结合诱导公式有:,,据此可得:.本题选择C选项.8. 运行如图所示的程序框图,若输出的的值为,则判断框中可以填()A. B. C. D.【答案】B【解析】阅读流程图可得,该流程图输出的结果为:,注意到在求和中起到主导地位,且,故计算:当时,,结合题意可知:判断框中可以填.本题选择B选项.点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.9. 现有,,,,,六支足球队参加单循环比赛(即任意两支球队只踢一场比赛),第一周的比赛中,,各踢了场,,各踢了场,踢了场,且队与队未踢过,队与队也未踢过,则在第一周的比赛中,队踢的比赛的场数是()A. B. C. D.【答案】D【解析】依据题意:踢了场,队与队未踢过,则C队参加的比赛为:;D踢了场,队与队也未踢过,则D队参加的比赛为:;以上八场比赛中,包含了队参加的两场比赛,分析至此,三队参加的比赛均已经确定,余下的比赛在中进行,已经得到的八场比赛中,A,B各包含一场,则在中进行的比赛中,,各踢了2场,即余下的比赛为:,综上可得,第一周的比赛共11场:,,则队踢的比赛的场数是.本题选择D选项.10. 已知双曲线:的左、右顶点分别为,,点为双曲线的左焦点,过点作垂直于轴的直线分别在第二、第三象限交双曲线于,两点,连接交轴于点,连接交于点,若是线段的中点,则双曲线的渐近线方程为()A. B. C. D.【答案】A【解析】由通径公式可得:,则:,直线的方程为:,令可得:,则:,可得直线方程为,令可得:,据此有:,整理可得:,则双曲线的渐近线方程为.本题选择A选项.11. 如图,网格纸上正方形的边长为,下图画出的是某几何体的三视图,则该几何体的表面积为()A. B. C. D.【答案】D【解析】如图所示,三视图还原之后的几何体是两个全等的三棱柱和组成的组合体,其中棱柱的底面为直角边长为等腰直角三角形,高为,每个棱柱的表面积为:,两三棱柱相交部分的面积为:,据此可得,该几何体的表面积为:.本题选择D选项.点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.12. 已知函数,,若,,则实数的取值范围为()A. B. C. D.【答案】B【解析】由题意有:,当时,单调递减,当时,单调递增,且,据此可得:函数在区间上的最大值为,原问题等价于:在区间上恒成立,即:,分离参数有:恒成立,构造函数,则:,由对数函数的性质可得:单调递减,且,则恒成立,单调递减,注意到,则:当时,单调递增,当时,单调递减,则的最大值为:,由恒成立的条件可得:实数的取值范围为.本题选择B选项.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量,满足,,若,则__________.【答案】或【解析】由向量平行的充要条件可得:,即:,求解关于的方程可得:或.14. 已知实数,满足则的取值范围为__________.【答案】【解析】绘制不等式组表示的平面区域如图所示:目标函数表示点与可行域内的点连线的斜率,很明显,在坐标原点处,目标函数取得最小值:,联立方程:可得:在点处取得最大值:,综上可得:的取值范围为.点睛:(1)本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.(2)解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.15. 已知,则的展开式中,常数项为__________.【答案】【解析】函数是奇函数,则,则,据此可得:,其展开式的通项公式为:,展开式中的常数项满足,即:.16. 已知函数,若在区间上存在零点,则的取值范围为__________.【答案】【解析】当,即时,满足题意;且易验证,当时,满足题意;考虑当时的情形:,结合有:,原问题等价于或当时能成立.考虑到:可得:或,求解不等式组有:或,结合有或;综上可得:的取值范围为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角,,所对的边分别是,,,且.(Ⅰ)求的大小;(Ⅱ)若,,求的面积.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)由题意结合正弦定理角化边可得,结合余弦定理有,则.(Ⅱ)由题意结合(Ⅰ)的结论和余弦定理得到关于b,c的方程组,求解方程组有,,的面积.试题解析:(Ⅰ)由,可得,,,又,.(Ⅱ)若,则,由题意,,,由余弦定理得,,,.18. 已知数列满足,,.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)结合递推关系可得是以为首项,公比为的等比数列,据此可得通项公式为.(Ⅱ)结合(Ⅰ)的结论有,分钟求和可得.试题解析:(Ⅰ)因为,故,得;设,所以,,,又因为,所以数列是以为首项,公比为的等比数列,故,故.(Ⅱ)由(Ⅰ)可知,故.19. 如图所示,直三棱柱中,,,,点,分别是的中点.(Ⅰ)求证:平面;(Ⅱ)若二面角的大小为,求直线与平面所成角的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】试题分析:(Ⅰ)连接,,由中位线的性质可得:,利用线面平行的判断定理即可证得平面.(Ⅱ)结合直三棱柱的性质,分别以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系.设,则,,,据此可得平面的一个法向量为,平面的一个法向量为,则,求解方程可得,利用线面角的向量求法可得.试题解析:(Ⅰ)连接,,则且为的中点,又为的中点,,又平面,平面,故平面.(Ⅱ)因为是直三棱柱,所以平面,得.因为,,,故.以为原点,分别以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系.设,则,,,,,.取平面的一个法向量为,由得:令,得,同理可得平面的一个法向量为,二面角的大小为,,解得,得,又,设直线与平面所成角为,则.点睛:(1)本题求解时关键是结合题设条件进行空间联想,抓住垂直条件有目的推理论证,在第(2)问中,运用空间向量,将线面角转化为直线的方向向量与平面法向量夹角,考查化归思想与方程思想.(2)利用空间向量求线面角有两种途径:一是求斜线和它在平面内射影的方向向量的夹角(或其补角);二是借助平面的法向量.20. 随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随机抽取人对共享产品对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的人中的性别以及意见进行了分类,得到的数据如下表所示:(Ⅰ)根据表中的数据,能否在犯错的概率不超过的前提下,认为对共享产品的态度与性别有关系?(Ⅱ)为了答谢参与问卷调查的人员,该公司对参与本次问卷调查的人员随机发放张超市的购物券,购物券金额以及发放的概率如下:现有甲、乙两人领取了购物券,记两人领取的购物券的总金额为,求的分布列和数学期望.参考公式:.临界值表:【答案】(Ⅰ)答案见解析;(Ⅱ)答案见解析.【解析】试题分析:(Ⅰ)依题意计算的观测值,则可以在犯错误的概率不超过的前提下,认为对共享产品的态度与性别有关系.(Ⅱ)依题意,的可能取值为,,,且,,,据此得出分布列,计算数学期望.试题解析:(Ⅰ)依题意,在本次的实验中,的观测值,故可以在犯错误的概率不超过的前提下,认为对共享产品的态度与性别有关系.(Ⅱ)依题意,的可能取值为,,,且,,,故的分布列为:故所求的数学期望.21. 已知椭圆:过点,且离心率为.过点的直线与椭圆交于,两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)若点为椭圆的右顶点,探究:是否为定值,若是,求出该定值,若不是,请说明理由.(其中,,分别是直线、的斜率)【答案】(Ⅰ);(Ⅱ)为定值.【解析】试题分析:(Ⅰ)由题意得到关于a,b,c的方程组,求解方程组有,,故椭圆的标准方程为.(Ⅱ)结合(Ⅰ)的结论可知.易知当直线的斜率不存在时,不合题意.当直线的斜率存在时,联立直线方程与椭圆方程可得,则综上所述,为定值.试题解析:(Ⅰ)依题意,解得,,故椭圆的标准方程为.(Ⅱ)依题意,.易知当直线的斜率不存在时,不合题意.当直线的斜率存在时,设直线的方程为,代入中,得,设,,由,得,,,故综上所述,为定值.点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22. 已知函数.(Ⅰ)探究函数的单调性;(Ⅱ)若在上恒成立,求实数的取值范围.【答案】(Ⅰ)答案见解析;(Ⅱ).【解析】试题分析:(Ⅰ)对函数求导有,分类讨论:若,在上单调递增;若,在上单调递减,在上单调递增.(Ⅱ)原问题即在上恒成立.构造函数:令,则,考查分子部分,令,则是上的增函数.据此分类讨论:①当时,成立.②当时,不可能恒成立.综合上述,实数的取值范围是.试题解析:(Ⅰ)依题意,,函数,若,,函数在上单调递增;若,当时,,当时,,函数在上单调递减,在上单调递增.(Ⅱ)依题意,,即在上恒成立.令,则,令,则是上的增函数,即.①当时,,所以,因此是上的增函数,则,因此时,成立.②当时,令,得,求得,(由于,所以舍去)当时,,则在上递减,当时,,则在上递增,所以当时,,因此时,不可能恒成立.综合上述,实数的取值范围是.。
河北省邯郸市2018届高三上学期摸底考试数学(理)试题

高三数学试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|20}A x x x =-->,{|0}B x x =>,则AB =( )A .(1,2)B .(0,2)C .(2,)+∞D .(1,)+∞ 2.若复数z 满足(1)23i z i -=+,则复数z 的实部与虚部之和为( ) A .-2 B .2 C .-4 D .43.在ABC ∆中,若4AB AC AP +=,则PB =( )A .3144AB AC - B .3144AB AC -+ C .1344AB AC -+ D .1344AB AC -4. 12,F F 分别是双曲线C :22197x y -=的左、右焦点,P 为双曲线C 右支上一点,且1||8PF =,则12PF F ∆的周长为( )A . 15B .16 C. 17 D .185.用电脑每次可以从区间(0,1)内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于13的概率为( ) A .127 B .23 C. 827 D .496.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,已知该几何体的各个面中有n 个面是矩形,体积为V ,则( )A .4,10n V ==B .5,12n V == C. 4,12n V == D .5,10n V ==7.若sin()2cos )4πααα+=+,则sin2α=( )A .45-B .45 C. 35- D .358. 设函数()f x 的导函数为'()f x ,若()f x 为偶函数,且在(0,1)上存在极大值,则'()f x 的图像可能为( )A .B .C. D .9. 我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完,现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )10.已知函数2()1f x ax bx =-+,点(,)a b 是平面区域201x y x m y +-≤⎧⎪≥⎨⎪≥-⎩内的任意一点,若(2)(1)f f -的最小值为-6,则m 的值为( )A . -1B . 0 C. 1 D .211. 若函数sin(2),6()cos(2),62x x m f x x m x ππππ⎧--≤<⎪⎪=⎨⎪-≤≤⎪⎩恰有4个零点,则m 的取值范围为( )A .11(,](,]126123ππππ-- B .1125(,](,](,]123126123ππππππ---- C. 11[,)[,)126123ππππ-- D .1125[,)[,)[,)123126123ππππππ----12.直线y x a =+与抛物线25(0)y ax a =>相交于,A B 两点,(0,2)C a ,给出下列4个命题:1P :ABC ∆的重心在定直线730x y -=上;2p :||AB3p :ABC ∆的重心在定直线370x y -=上;4p :||AB 其中的真命题为( )A .12,p pB .14,p p C. 23,p p D .34,p p第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在ABC ∆中,若sin :sin :sin 3:4:6A B C =,则cos B = . 14.若2332log (log )log (log )2x y ==,则x y += . 15.若5()(12)x a x ++的展开式中3x 的系数为20,则a = .16.已知一个四面体ABCD 的每个顶点都在表面积为9π的球O 的表面积,且AB CD a ==,AC AD BC BD ====,则a = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在等差数列{}n a 中,3412a a +=,公差2d =,记数列21{}n a -的前n 项和为n S . (1)求n S ; (2)设数列1{}n nn a S +的前n 项和为n T ,若25,,m a a a 成等比数列,求m T .18. 如图,在底面为矩形的四棱锥P ABCD -中,PB AB ⊥. (1)证明:平面PBC ⊥平面PCD ;(2)若异面直线PC 与BD 所成角为60,PB AB =,PB BC ⊥,求二面角B PD C --的大小.19. 共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态,一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:车辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:(1)4 1.1yx =+,方程乙:(2)26.41.6y x=+. (1)为了评价两种模型的拟合效果,完成以下任务:①完成下表(计算结果精确到0.1)(备注:i i i e y y =-,i e 称为相应于点(,)i i x y 的残差(也叫随机误差));②分别计算模型甲与模型乙的残差平方和1Q 及2Q ,并通过比较1Q ,2Q 的大小,判断哪个模型拟合效果更好.(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放,根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6,问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).20. 如图,设椭圆C :22221(0)x y a b a b +=>>的离心率为12,,A B 分别为椭圆C 的左、右顶点,F 为右焦点,直线6y x =与C 的交点到y 轴的距离为27,过点B 作x 轴的垂线l ,D 为l 上异于点B 的一点,以BD 为直径作圆E .(1)求C 的方程;(2)若直线AD 与C 的另一个交点为P ,证明:直线PF 与圆E 相切.21. 已知函数21()ln 12f x x ax bx =-++的图像在1x =处的切线l 过点11(,)22. (1)若函数()()(1)(0)g x f x a x a =-->,求()g x 的最大值(用a 表示); (2)若4a =-,121212()()32f x f x x x x x ++++=,证明:1212x x +≥. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在极坐标系中,曲线C 的极坐标方程为2cos 2sin (02)ρθθθπ=+≤<,点(1,)2M π,以极点O 为原点,以极轴为x 轴的正半轴建立平面直角坐标系,已知直线:1x l y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)与曲线C 交于,A B 两点,且||||MA MB >.(1)若(,)P ρθ为曲线C 上任意一点,求ρ的最大值,并求此时点P 的极坐标;(2)求||||MA MB . 23.选修4-5:不等式选讲 已知函数()|2|f x x =-.(1)求不等式()5|1|f x x ≤--的解集; (2)若函数1()(2)g x f x a x =--的图像在1(,)2+∞上与x 轴有3个不同的交点,求a 的取值范围.试卷答案一、选择题1-5: CBADC 6-10: DCCBA 11、12:BA二、填空题13.2936 14. 593 15. 14- 16.三、解答题17.(1)∵3412a a +=,∴112521012a d a +=+=,∴11a =,∴21n a n =-, ∴212(21)143n a n n -=--=-,2(143)22n n nS n n +-==-(2)若25,,m a a a 成等比数列,则225m a a a =,即23(21)9m -=,∴14m = ∵11111()(21)(21)22121n nn a S n n n n +==--+-+,∴141111111114(1)(1)2335272922929m T T ==-+-++-=-=. 18. (1)证明:由已知四边形ABCD 为矩形,得AB BC ⊥, ∵PB AB ⊥,PBBC B =,∴AB ⊥平面PBC .又//CD AB ,∴CD ⊥平面PBC .∵CD ⊂平面PCD ,∴平面PBC ⊥平面PCD .(2)解:以B 为坐标原点,建立如图所示的空间直角坐标系B xyz -.设1PB AB ==,(0)BC a a =>,则(0,0,0)B ,(0,0,)C a ,(1,0,0)P ,(0,1,)D a ,所以(1,0,)PC a =-,(0,1,)BD a =,则||cos60||||PC BDPC BD ∙=,即22112a a =+, 解得1a =(1a =-舍去).设111(,,)n x y z =是平面PBD 的法向量,则0n BP n BD ⎧∙=⎪⎨∙=⎪⎩,即11100x y z =⎧⎨+=⎩,可取(0,1,1)n =-.设222(,,)m x y z =是平面PCD 的法向量,则00m PD m CD ⎧∙=⎪⎨∙=⎪⎩即22220x y z y -++=⎧⎨=⎩,可取(1,0,1)m =,所以1cos ,2||||n m n m n m ∙<>==-,由图可知二面角B PDC --为锐角,所以二面角B PD C --的大小为60. 19. 解:(1)①经计算,可得下表:②22210.1(0.1)0.10.03Q =+-+=,220.10.01Q ==,12Q Q >,故模型乙的拟合效果更好.(2)若投放量为8千辆,则公司获得每辆车一天的收入期望为100.660.48.4⨯+⨯=,所以一天的总利润为(8.4 1.7)800053600-⨯=(元) 若投放量为1万辆,由(1)可知,每辆车的成本为26.41.6 1.66410+=(元), 每辆车一天收入期望为100.460.67.6⨯+⨯=,所以一天的总利润为(7.6 1.664)1000059360-⨯=(元) 所以投放1万辆能获得更多利润,应该增加到投放1万辆. 20.(1)解:由题可知,12c a =,∴2a c =,223b c =, 设椭圆C 的方程为2222143x y c c+=,由22221436x y c c y x⎧+=⎪⎨⎪=⎩,得22||77c x ==,∴1c =,2a =,23b =,故C 的方程为22143x y +=. (2)证明:由(1)可得:(1,0)F ,设圆E 的圆心为(2,)(0)t t ≠,则(2,2)D t , 圆E 的半径为||R t =, 直线AD 的方程为(2)2ty x =+. 设过F 与圆E 相切的直线方程为1x ky =+,||t =,整理得:212t k t-=,由2(2)2112t y x t x y t ⎧=+⎪⎪⎨-⎪=+⎪⎩,得22262363t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩, 又∵22222626()()33143t t t t -+++=, ∴直线PF 与圆E 相切. 21.(1)由'1()f x ax b x=-+,得'(1)1f a b =-+,l 的方程为1(1)(1)(1)2y a b a b x --++=-+-,又l 过点11(,)22,∴111(1)(1)(1)222a b a b --++=-+-,解得0b =. ∵21()()(1)ln (1)12g x f x a x x ax a x =--=-+-+,∴2'1()(1)1(1)1()1(0)a x x ax a x a g x ax a a x x x --+-+-+=-+-==>, 当1(0,)x a ∈时,'()0g x >,()g x 单调递增;当1(,)x a∈+∞时,'()0g x <,()g x 单调递减.故2max 111111()()ln ()(1)1ln 22g x g a a a a a a a a==-+-+=-.(2)证明:∵4a =-,∴2212121211221212()()3ln 21ln 213f x f x x x x x x x x x x x x x ++++=++++++++,212121212ln()2()22x x x x x x x x =++++-+=,∴2121212122()ln()x x x x x x x x +++=-令12(0)x x m m =>,()ln m m m ϕ=-,'1()m m mϕ-=,令'()0m ϕ<得01m <<;令'()0m ϕ>得1m >.∴()m ϕ在(0,1)上递减,在(1,)+∞上递增,∴()(1)1m ϕϕ≥=,∴212122()1x x x x +++≥,120x x +>,解得:1212x x +≥. 22. (1)2cos 2sin )4πρθθθ=+=+,02θπ≤<,∴当4πθ=时,ρ取得最大值P的极坐标为)4π.(2)由2cos 2sin ρθθ=+,得22cos 2sin ρρθρθ=+,即22220x y x y +--=, 故曲线C 的直角坐标方程为22(1)(1)2x y -+-=.将212x y ⎧=⎪⎪⎨⎪=+⎪⎩代入22(1)(1)2x y -+-=并整理得:210t -=,解得2t =,∵||||MA MB >,∴由t的几何意义得,||MA =,||MB =,11故||2||MA MB ==23.(1)由()5|1|f x x ≤--,得|1||2|5x x -+-≤,∴2235x x >⎧⎨-≤⎩或1215x≤≤⎧⎨≤⎩或1325x x <⎧⎨-≤⎩,解得14x -≤≤,故不等式()5|1|f x x ≤--的解集为[1,4]-.(2)122,111()(2)|22|1122,12x x x h x f x x x x x x x ⎧-+≥⎪⎪=-=--=⎨⎪+-<<⎪⎩, 当112x <<时,1()2222h x x x =+-≥=,当且仅当12x x =,即2x =时取等号,∴min ()2h x =,当1x ≥时,1()22h x x x =-+递减, 由1()(2)0g x f x a x =--=,得()h x a =, 又1()(1)12h h ==,结合()h x的图像可得2,1)a ∈.。
河北省邯郸市高三1月教学质量检测数学(理)试题Word版含答案

邯郸市2018届高三教学质量检测数学(理科)试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.)A2.)A3.所示:)A4.下列说法中,错误..的是()A.B.C.D.5.)A6.值范围为()A7.)A8.)A9.比赛),()A10.)A11.面积为()A12.)A第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.14.的取值范围为. 15.为 .16.值范围为 . 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.. 18.19...20.随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.得到的数据如下表所示:(Ⅰ)根据表中的数据,认为对共享产品的态度与性别有关系?(Ⅱ)的购物券,购物券金额以及发放的概率如下:期望.临界值表:21.过点.不是,请说明理由.22..邯郸市2018届高三教学质量检测数学(理科)·答案一、选择题1-5:ABBCD 6-10:ACBDA 11、12:DB二、填空题5,8⎛⎫+∞ ⎪⎝⎭三、解答题17.18.,19.因为.2,1,⎛>116n A B n A B ⋅=20..21..22.....。
河北省邯郸市2018届高三上学期摸底考试数学(理)试题(解析版)

高三数学试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】C【解析】由题意可得:,则.本题选择C选项.2. 若复数满足,则复数的实部与虚部之和为()A. -2B. 2C. -4D. 4【答案】B【解析】由题意可得:,则实部与虚部之和为.本题选择B选项.3. 在中,若,则()A. B. C. D.【答案】A【解析】由题意可得:,则。
本题选择A选项.4. 分别是双曲线的左、右焦点,为双曲线右支上一点,且,则的周长为()A. 15B. 16C. 17D. 18【答案】D【解析】由双曲线的方程可知:,则,据此可知的周长为.本题选择D选项.点睛:双曲线定义的集合语言:P={M|||MF1|-|MF2||=2a,0<2a<|F1F2|}是解决与焦点三角形有关的计算问题的关键,切记对所求结果进行必要的检验5. 用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于的概率为()A. B. C. D.【答案】C【解析】由题意可得:每个实数都大于的概率为,则3个实数都大于的概率为.本题选择C选项.6. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,已知该几何体的各个面中有个面是矩形,体积为,则()A. B. C. D.【答案】D【解析】由三视图可知,该几何体为直五棱柱,底面为俯视图所示,高为2,故.本题选择D选项.点睛:在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.7. 若,则()A. B. C. D.【答案】C【解析】本题选择C选项.8. 设函数的导函数为,若为偶函数,且在上存在极大值,则的图像可能为()A. B.C. D.【答案】C【解析】若为偶函数,则为奇函数,故排除B、D.又在上存在极大值,故排除A选项,本题选择C选项.9. 我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完,现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()【答案】B【解析】一共取了7次,,A、C、D不能完成功能,B能完成功能.本题选择B选项.点睛:识别、运行程序框图和完善程序框图的思路(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.10. 已知函数,点是平面区域内的任意一点,若的最小值为,则的值为()A. -1B. 0C. 1D. 2【答案】A【解析】由函数的解析式可得:,结合题意可得目标函数在给定的可行域内的最小值为,可行域的顶点坐标为,结合目标函数的几何意义可得目标函数在点处取得最小值,即:,解得:.本题选择A选项.点睛:由于约束条件中存在参数,所以可行域无法确定,此时一般是依据所提供的可行域的面积或目标函数的最值,来确定含有参数的某不等式所表示的坐标系中的某区域,从而确定参数的值11. 若函数恰有4个零点,则的取值范围为()A. B.C. D.【答案】B【解析】设,作出这两个函数在上的图像,如图所示,在上的零点为,在上的零点为,数形结合可得,.本题选择B选项.点睛:(1)问题中参数值影响变形时,往往要分类讨论,需有明确的标准、全面的考虑;(2)求解过程中,求出的参数的值或范围并不一定符合题意,因此要检验结果是否符合要求.12. 直线与抛物线相交于两点,,给出下列4个命题:的重心在定直线上;的最大值为;的重心在定直线上;的最大值为.其中的真命题为()A. B. C. D.【答案】A【解析】联立直线与抛物线的方程整理可得:,结合题意可得:,且:,则△ABC的重心坐标为,的重心在定直线上;由弦长公式可得:,据此可得:,令,则,据此可得函数在区间上单调递增,在区间上单调递减,,据此可得:的最大值为;本题选择A选项.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 在中,若,则__________.【答案】【解析】由正弦定理可得:,不妨设,则.14. 若,则__________.【答案】【解析】由对数的运算法则可得:,且:,据此可得:.15. 若的展开式中的系数为20,则__________.【答案】【解析】由题意可得:则含有的项为:,则的系数为:,解得:.16. 已知一个四面体的每个顶点都在表面积为的球的表面上,且,,则__________.【答案】【解析】由题意可得,该四面体的四个顶点位于一个长方体的四个顶点上,设长方体的长宽高为,由题意可得:,据此可得:,则球的表面积:,结合解得:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在等差数列中,,公差.记数列的前项和为. (1)求;(2)设数列的前项和为,若成等比数列,求.【答案】(1);(2) .【解析】试题分析:(1)由题意可求得数列的首项为1,则数列的前n项和.(2)裂项可得,且,据此可得.试题解析:(1)∵,∴,∴,∴,∴,.(2)若成等比数列,则,即,∴,∵,∴.点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.18. 如图,在底面为矩形的四棱锥中,.(1)证明:平面平面;(2)若异面直线与所成角为,,,求二面角的大小.【答案】(1)证明见解析;(2) .【解析】试题分析:(1)由题意结合几何关系可证得平面,结合面面垂直的判断定理即可证得平面平面.(2)建立空间直角坐标系,结合半平面的法向量可得二面角的大小是.试题解析:(1)证明:由已知四边形为矩形,得,∵,,∴平面.又,∴平面.∵平面,∴平面平面.(2)解:以为坐标原点,建立如图所示的空间直角坐标系.设,,则,,,,所以,,则,即,解得(舍去).设是平面的法向量,则,即,可取.设是平面的法向量,则即,可取,所以,由图可知二面角为锐角,所以二面角的大小为.19. 共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态,一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:车辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:租用单车数量(千辆) 2 3 4 5 8每天一辆车平均成本(元) 3.2 2.4 2 1.9 1.7根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:,方程乙:.(1)为了评价两种模型的拟合效果,完成以下任务:①完成下表(计算结果精确到0.1)(备注:,称为相应于点的残差(也叫随机误差));租用单车数量(千辆) 2 3 4 5 8每天一辆车平均成本(元) 3.2 2.4 2 1.9 1.7估计值 2.4 2.1 1.6模型甲残差0 -0.1 0.1模型乙估计值 2.3 2 1.9残差0.1 0 0②分别计算模型甲与模型乙的残差平方和及,并通过比较,的大小,判断哪个模型拟合效果更好.(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放,根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6,问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).【答案】(1)模型乙的拟合效果更好;(2) 1万辆.【解析】试题分析:(1)由题意完成表格,计算残差平方和可得,,则模型乙的拟合效果更好.(2)分别计算投放量为8千辆和1万辆时公司一天获得的总利润可得投放1万辆能获得更多利润,应该增加到投放1万辆.试题解析:(1)①经计算,可得下表:②,,,故模型乙的拟合效果更好.(2)若投放量为8千辆,则公司一天获得的总利润为元,若投放量为1万辆,由(1)可知,每辆车的成本为(元)所以公司一天获得的总利润为(元)因为,所以投放1万辆能获得更多利润,应该增加到投放1万辆.学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...20. 如图,设椭圆:的离心率为,分别为椭圆的左、右顶点,为右焦点,直线与的交点到轴的距离为,过点作轴的垂线,为上异于点的一点,以为直径作圆.(1)求的方程;(2)若直线与的另一个交点为,证明:直线与圆相切.【答案】(1) ;(2)证明见解析.【解析】试题分析:(1)结合题意可求得,,则的方程为.(2)由题意可得,直线与圆相切时,直线的斜率为,结合(1)中求得的椭圆方程即可证得题中的结论. 试题解析:(1)解:由题可知,,∴,,设椭圆的方程为,由,得,∴,,,故的方程为.(2)证明:由(1)可得:,设圆的圆心为,则,圆的半径为,直线的方程为.设过与圆相切的直线方程为,则,整理得:,由,得,又∵,∴直线与圆相切.21. 已知函数的图象在处的切线过点.(1)若函数,求的最大值(用表示);(2)若,证明:.【答案】(1) ;(2)证明见解析.【解析】试题分析:(1)由题意可得:.结合导函数研究函数的单调性可得.(2)由题意结合(1)的结论有,构造函数,结合函数的特征即可证得题中的结论.试题解析:(1)由,得,的方程为,又过点,∴,解得.∵,∴,当时,,单调递增;当时,,单调递减.故.(2)证明:∵,∴,,∴令,,,令得;令得.∴在上递减,在上递增,∴,∴,,解得:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在极坐标系中,曲线的极坐标方程为,点,以极点为原点,以极轴为轴的正半轴建立平面直角坐标系,已知直线(为参数)与曲线交于两点,且.(1)若为曲线上任意一点,求的最大值,并求此时点的极坐标;(2)求.【答案】(1) ,;(2) .【解析】试题分析:(1)利用题意结合辅助角公式可得当时,取得最大值,此时,的极坐标为.(2)联立直线的参数方程和圆的直角坐标方程,结合韦达定理可得的值是.试题解析:(1),,∴当时,取得最大值,此时,的极坐标为.(2)由,得,即,故曲线的直角坐标方程为.将代入并整理得:,解得,∵,∴由的几何意义得,,,故.23. 选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若函数的图像在上与轴有3个不同的交点,求的取值范围.【答案】(1) ;(2) .【解析】试题分析:(1)利用不等式的特点零点分段可得不等式的解集为(2)令,结合函数的图象和题意可得的取值范围是.试题解析:(1)由,得,∴或或,解得,故不等式的解集为.(2),当时,,当且仅当,即时取等号,∴,当时,递减,由,得,又,结合的图像可得.。
河北省邯郸市2018届高三上学期1月教学质量检测数学(理)试题Word版含解析

邯郸市2018届高三教学质量检测数学(理科)试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数,若是复数的共轭复数,则()A. B. C. D.【答案】A【解析】由题意结合复数的运算法则有:.本题选择A选项.2. 已知集合,则的真子集个数为()A. B. C. D.【答案】B集合表示直线上的点组成的集合,则表示由抛物线与直线的交点组成的集合,直线与抛物线的交点坐标为,,即中含有两个元素,由子集个数公式可得的真子集个数为.本题选择B选项.3. 已知变量,之间满足线性相关关系,且,之间的相关数据如下表所示:则()A. B. C. D.【答案】B【解析】由题意可得:,,回归方程过样本中心点,则:,求解关于实数的方程可得:.本题选择B选项.4. 下列说法中,错误..的是()A. 若平面平面,平面平面,平面平面,则B. 若平面平面,平面平面,,,则C.若直线,平面平面,则D. 若直线平面,平面平面,平面,则【答案】C【解析】选项C中,若直线,平面平面,则有可能直线在平面内,该说法存在问题,由面面平行的性质定理可得选项A正确;由面面垂直的性质定理可得选项B正确;由线面平行的性质定理可得选项D正确;本题选择C选项.5. 已知抛物线:的焦点为,抛物线上一点满足,则抛物线的方程为()A. B. C. D.【答案】D【解析】设抛物线的准线为,作直线于点,交轴于由抛物线的定义可得:,结合可知:,即,据此可知抛物线的方程为:.本题选择D选项.点睛:求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.6. 已知函数若,且函数存在最小值,则实数的取值范围为()A. B. C. D.【答案】A【解析】由分段函数的解析式可得:,即:,结合函数有最小值可得:,据此可得:,即实数的取值范围为.本题选择A选项.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.7. 已知,则()A. B. C. D.【答案】C结合诱导公式有:,,据此可得:.本题选择C选项.8. 运行如图所示的程序框图,若输出的的值为,则判断框中可以填()A. B. C. D.【答案】B【解析】阅读流程图可得,该流程图输出的结果为:,注意到在求和中起到主导地位,且,故计算:当时,,结合题意可知:判断框中可以填.本题选择B选项.点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.9. 现有,,,,,六支足球队参加单循环比赛(即任意两支球队只踢一场比赛),第一周的比赛中,,各踢了场,,各踢了场,踢了场,且队与队未踢过,队与队也未踢过,则在第一周的比赛中,队踢的比赛的场数是()A. B. C. D.【答案】D【解析】依据题意:踢了场,队与队未踢过,则C队参加的比赛为:;D踢了场,队与队也未踢过,则D队参加的比赛为:;以上八场比赛中,包含了队参加的两场比赛,分析至此,三队参加的比赛均已经确定,余下的比赛在中进行,已经得到的八场比赛中,A,B各包含一场,则在中进行的比赛中,,各踢了2场,即余下的比赛为:,综上可得,第一周的比赛共11场:,,则队踢的比赛的场数是.本题选择D选项.10. 已知双曲线:的左、右顶点分别为,,点为双曲线的左焦点,过点作垂直于轴的直线分别在第二、第三象限交双曲线于,两点,连接交轴于点,连接交于点,若是线段的中点,则双曲线的渐近线方程为()A. B. C. D.【答案】A【解析】由通径公式可得:,则:,直线的方程为:,令可得:,则:,可得直线方程为,令可得:,据此有:,整理可得:,则双曲线的渐近线方程为.本题选择A选项.11. 如图,网格纸上正方形的边长为,下图画出的是某几何体的三视图,则该几何体的表面积为()A. B. C. D.【答案】D【解析】如图所示,三视图还原之后的几何体是两个全等的三棱柱和组成的组合体,其中棱柱的底面为直角边长为等腰直角三角形,高为,每个棱柱的表面积为:,两三棱柱相交部分的面积为:,据此可得,该几何体的表面积为:.本题选择D选项.点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.12. 已知函数,,若,,则实数的取值范围为()A. B. C. D.【答案】B【解析】由题意有:,当时,单调递减,当时,单调递增,且,据此可得:函数在区间上的最大值为,原问题等价于:在区间上恒成立,即:,分离参数有:恒成立,构造函数,则:,由对数函数的性质可得:单调递减,且,则恒成立,单调递减,注意到,则:当时,单调递增,当时,单调递减,则的最大值为:,由恒成立的条件可得:实数的取值范围为.本题选择B选项.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量,满足,,若,则__________.【答案】或【解析】由向量平行的充要条件可得:,即:,求解关于的方程可得:或.14. 已知实数,满足则的取值范围为__________.【答案】【解析】绘制不等式组表示的平面区域如图所示:目标函数表示点与可行域内的点连线的斜率,很明显,在坐标原点处,目标函数取得最小值:,联立方程:可得:在点处取得最大值:,综上可得:的取值范围为.点睛:(1)本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.(2)解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.15. 已知,则的展开式中,常数项为__________.【答案】【解析】函数是奇函数,则,则,据此可得:,其展开式的通项公式为:,展开式中的常数项满足,即:.16. 已知函数,若在区间上存在零点,则的取值范围为__________.【答案】【解析】当,即时,满足题意;且易验证,当时,满足题意;考虑当时的情形:,结合有:,原问题等价于或当时能成立.考虑到:可得:或,求解不等式组有:或,结合有或;综上可得:的取值范围为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角,,所对的边分别是,,,且.(Ⅰ)求的大小;(Ⅱ)若,,求的面积.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)由题意结合正弦定理角化边可得,结合余弦定理有,则.(Ⅱ)由题意结合(Ⅰ)的结论和余弦定理得到关于b,c的方程组,求解方程组有,,的面积.试题解析:(Ⅰ)由,可得,,,又,.(Ⅱ)若,则,由题意,,,由余弦定理得,,,.18. 已知数列满足,,.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)结合递推关系可得是以为首项,公比为的等比数列,据此可得通项公式为.(Ⅱ)结合(Ⅰ)的结论有,分钟求和可得.试题解析:(Ⅰ)因为,故,得;设,所以,,,又因为,所以数列是以为首项,公比为的等比数列,故,故.(Ⅱ)由(Ⅰ)可知,故.19. 如图所示,直三棱柱中,,,,点,分别是的中点.(Ⅰ)求证:平面;(Ⅱ)若二面角的大小为,求直线与平面所成角的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】试题分析:(Ⅰ)连接,,由中位线的性质可得:,利用线面平行的判断定理即可证得平面.(Ⅱ)结合直三棱柱的性质,分别以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系.设,则,,,据此可得平面的一个法向量为,平面的一个法向量为,则,求解方程可得,利用线面角的向量求法可得.试题解析:(Ⅰ)连接,,则且为的中点,又为的中点,,又平面,平面,故平面.(Ⅱ)因为是直三棱柱,所以平面,得.因为,,,故.以为原点,分别以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系.设,则,,,,,.取平面的一个法向量为,由得:令,得,同理可得平面的一个法向量为,二面角的大小为,,解得,得,又,设直线与平面所成角为,则.点睛:(1)本题求解时关键是结合题设条件进行空间联想,抓住垂直条件有目的推理论证,在第(2)问中,运用空间向量,将线面角转化为直线的方向向量与平面法向量夹角,考查化归思想与方程思想.(2)利用空间向量求线面角有两种途径:一是求斜线和它在平面内射影的方向向量的夹角(或其补角);二是借助平面的法向量.20. 随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随机抽取人对共享产品对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的人中的性别以及意见进行了分类,得到的数据如下表所示:(Ⅰ)根据表中的数据,能否在犯错的概率不超过的前提下,认为对共享产品的态度与性别有关系?(Ⅱ)为了答谢参与问卷调查的人员,该公司对参与本次问卷调查的人员随机发放张超市的购物券,购物券金额以及发放的概率如下:现有甲、乙两人领取了购物券,记两人领取的购物券的总金额为,求的分布列和数学期望.参考公式:.临界值表:【答案】(Ⅰ)答案见解析;(Ⅱ)答案见解析.【解析】试题分析:(Ⅰ)依题意计算的观测值,则可以在犯错误的概率不超过的前提下,认为对共享产品的态度与性别有关系.(Ⅱ)依题意,的可能取值为,,,且,,,据此得出分布列,计算数学期望.试题解析:(Ⅰ)依题意,在本次的实验中,的观测值,故可以在犯错误的概率不超过的前提下,认为对共享产品的态度与性别有关系.(Ⅱ)依题意,的可能取值为,,,且,,,故的分布列为:故所求的数学期望.21. 已知椭圆:过点,且离心率为.过点的直线与椭圆交于,两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)若点为椭圆的右顶点,探究:是否为定值,若是,求出该定值,若不是,请说明理由.(其中,,分别是直线、的斜率)【答案】(Ⅰ);(Ⅱ)为定值.【解析】试题分析:(Ⅰ)由题意得到关于a,b,c的方程组,求解方程组有,,故椭圆的标准方程为.(Ⅱ)结合(Ⅰ)的结论可知.易知当直线的斜率不存在时,不合题意.当直线的斜率存在时,联立直线方程与椭圆方程可得,则综上所述,为定值.试题解析:(Ⅰ)依题意,解得,,故椭圆的标准方程为.(Ⅱ)依题意,.易知当直线的斜率不存在时,不合题意.当直线的斜率存在时,设直线的方程为,代入中,得,设,,由,得,,,故综上所述,为定值.点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22. 已知函数.(Ⅰ)探究函数的单调性;(Ⅱ)若在上恒成立,求实数的取值范围.【答案】(Ⅰ)答案见解析;(Ⅱ).【解析】试题分析:(Ⅰ)对函数求导有,分类讨论:若,在上单调递增;若,在上单调递减,在上单调递增.(Ⅱ)原问题即在上恒成立.构造函数:令,则,考查分子部分,令,则是上的增函数.据此分类讨论:①当时,成立.②当时,不可能恒成立.综合上述,实数的取值范围是.试题解析:(Ⅰ)依题意,,函数,若,,函数在上单调递增;若,当时,,当时,,函数在上单调递减,在上单调递增.(Ⅱ)依题意,,即在上恒成立.令,则,令,则是上的增函数,即.①当时,,所以,因此是上的增函数,则,因此时,成立.②当时,令,得,求得,(由于,所以舍去)当时,,则在上递减,当时,,则在上递增,所以当时,,因此时,不可能恒成立.综合上述,实数的取值范围是.。
河北省邯郸市2018年高考数学一模试卷理科 含解析

河北省邯郸市2018年高考数学一模试卷(理科)(解析版)一、选择题(每小题5分,共60分)1.若z=,则z=()A.﹣ +i B. +i C.D.2.已知集合A={x|﹣3<x<2},B={x|3x>1},则A∩(∁R B)=()A.(﹣3,1]B.(1,2) C.(﹣3,0]D.[1,2)3.若双曲线的顶点和焦点分别为椭圆+y2=1的焦点和顶点,则该双曲线方程为()A.x2﹣y2=1 B.﹣y2=1 C.x2﹣=1 D.﹣=14.现有6个白球、4个黑球,任取4个,则至少有两个黑球的取法种数是()A.90 B.115 C.210 D.3855.某工厂对新研发的一种产品进行试销,得到如下数据表:根据如表可得线性回归方程=x+.其中=﹣20,=﹣b,那么单价定为8.3元时,可预测销售的件数为()A.82 B.84 C.86 D.886.定义在R上的偶函数f(x)满足:f(x+1)=f(x﹣1),若f(x)在区间[0,1]内单调递增,则f(﹣)、f(1)、f()的大小关系为()A.f(﹣)<f(1)<f()B.f(1)<f(﹣)<f()C.f(﹣)<f()<f(1) D.f()<f(1)<f(﹣)7.在等比数列{a n}中,公比q≠1,且a1+a2,a3+a4,a5+a6成等差数列,若a1+a2+a3=1,则a12+a22+…+a118=()A.1 B.10 C.32 D.1008.执行如图所示的程序框图,则输出结果a的值为()A.2 B.C.D.﹣19.已知函数f(x)=2sin2(ωx+)(ω>0)在区间[,]内单调递增,则ω的最大值是()A.B.C.D.10.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的表面积为()A.2(1++)B.2(1+2+)C.4+2D.4(1+)11.已知函数f(x)=e x(x≥0),当x<0时,f(﹣x)=4f(x).若函数g(x)=f(x)﹣ax﹣a(a>0)有唯一零点,则a的取值范围是()A.(0,1) B.(,e)C.(,e)D.(,1)12.在公差不为0的等差数列{a n}中,a2+a4=a p+a q,记+的最小值为m,若数列{b n}满足b1=m,2b n+1﹣b n b n+1=1,则b1+++…+=()A. B. C. D.二、填空题(每小题5分,共20分)13.已知向量,夹角为120°,||=5,||=2,=+λ,若⊥,则λ=.14.若x,y满足约束条件,则z=x2+y2的最小值为.15.已知三棱锥P﹣ABC内接于球O,PA=PB=PC=2,当三棱锥P﹣ABC的三个侧面的面积之和最大时,球O的表面积为.16.已知直线y=x与椭圆C: +=1(a>b>0)相交于A、B两点,若椭圆上存在点P,使得△ABP是等边三角形,则椭圆C的离心率e=.三、解答题(共5小题,70分)17.(12分)(2018潮南区模拟)在△ABC中,角A、B、C的对边分别为a、b、c,满足acosB+bcosA=2ccosC.(1)求C;(2)若△ABC的面积为2,a+b=6,求∠ACB的角平分线CD的长度.18.(12分)(2018邯郸一模)如图,在四棱锥P﹣ABCD中,△ABD是边长为2的正三角形,∠CBD=∠CDB=30°,E为棱PA的中点.(1)求证:DE∥平面PBC;(2)若平面PAB⊥平面ABCD,PA=PB=2,求二面角P﹣BC﹣E的余弦值.19.(12分)(2018邯郸一模)某种机器在一个工作班的8小时内,需要工作人员操控累计2个小时才能正常运行,当机器需用操控而无人操控时,机器自动暂停运行.每台机器在某一时刻是否用人操控彼此之间相互独立.(1)若在一个工作班内有4台相同机器,求在同一时刻需用人操控的平均台数.(2)若要求一人操控的所有机器正常运行的概率控制在不低于0.9的水平,且该人待工而闲的槪率小于0.6.试探讨:一人操控1台、2台、3台机器这三种工作方案中,哪种方案符合要求,并说明理由.20.(12分)(2018邯郸一模)已知抛物线C:x2=2py(p>0)的焦点为F,直线l过点F 交抛物线C于A、B两点.且以AB为直径的圆M与直线y=﹣1相切于点N.(1)求C的方程;(2)若圆M与直线x=﹣相切于点Q,求直线l的方程和圆M的方程.21.(12分)(2018邯郸一模)设函数f(x)=(x+a)lnx+b,曲线y=f(x)在点(1,f (1))处的切线方程为x+y﹣2=0(1)求y=f(x)的解析式;(2)证明:<1.选做题(请考生从22,23,24三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选題号后的方框涂黑)22.(10分)(2018邯郸一模)如图,点A、B、D、E在⊙O上,ED、AB的延长线交于点C,AD、BE交于点F,AE=EB=BC.(1)证明:=;(2)若DE=4,AD=8,求DF的长.【选项4-4:坐标系与参数方程】23.(2018邯郸一模)在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2cosθ,过点P(2,﹣1)的直线l:(t为参数)与曲线C交于M、N两点.(1)求曲线C的直角坐标方程和直线l的普通方程;(2)求|PM|2+|PN|2的值.【选项4-5:不等式选讲】24.(2018邯郸一模)已知函数f(x)=|x﹣a|﹣|2x﹣1|.(1)当a=2时,求f(x)+3≥0的解集;(2)当x∈[1,3]时,f(x)≤3恒成立,求a的取值范围.2018年河北省邯郸市高考数学一模试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分)1.若z=,则z=()A.﹣ +i B. +i C.D.【分析】利用复数代数形式的乘除运算化简,求得z,再由求得答案.【解答】解:∵z==,∴z=|z|2==.故选:D.【点评】本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.2.已知集合A={x|﹣3<x<2},B={x|3x>1},则A∩(∁R B)=()A.(﹣3,1]B.(1,2) C.(﹣3,0]D.[1,2)【分析】求出B中不等式的解集确定出B,找出A与B补集的交集即可.【解答】解:由B中不等式变形得:3x>1=30,解得:x>0,即B=(0,+∞),∴∁R B=(﹣∞,0],∵A=(﹣3,2),∴A∩(∁R B)=(﹣3,0],故选:C.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.3.若双曲线的顶点和焦点分别为椭圆+y2=1的焦点和顶点,则该双曲线方程为()A.x2﹣y2=1 B.﹣y2=1 C.x2﹣=1 D.﹣=1【分析】求得椭圆的焦点和顶点坐标,设双曲线的方程为﹣=1(a,b>0),可得a,c,进而得到b的值,可得双曲线的方程.【解答】解:椭圆+y2=1的焦点为(±1,0)和顶点(±,0),设双曲线的方程为﹣=1(a,b>0),可得a=1,c=,b==1,可得x2﹣y2=1.故选:A.【点评】本题考查双曲线的方程的求法,注意运用椭圆的方程和性质,考查运算能力,属于基础题.4.现有6个白球、4个黑球,任取4个,则至少有两个黑球的取法种数是()A.90 B.115 C.210 D.385【分析】根据黑球的个数分为三类,根据根据分类计数原理可得.【解答】解:分三类,两个黑球,有C42C62=90种,三个黑球,有C43C61=24种,四个黑球,有C44=1种,根据分类计数原理可得,至少有两个黑球的取法种数是90+24+1=115,故选:B.【点评】本题考查了分类计数原理,关键是分类,属于基础题.5.某工厂对新研发的一种产品进行试销,得到如下数据表:根据如表可得线性回归方程=x+.其中=﹣20,=﹣b,那么单价定为8.3元时,可预测销售的件数为()A.82 B.84 C.86 D.88【分析】根据题意,计算、,利用线性回归方程过样本的中心点,求出线性回归方程,再计算x=8.3时的值,从而得出预测结果.【解答】解:根据题意,计算=×(8+8.2+8.4+8.6+8.8+9)=8.5,=×(90+84+83+80+75+68)=80,线性回归方程=x+中=﹣20,=﹣b=80﹣(﹣20)×8.5=250,所以线性回归方程=﹣20x+250,当x=8.3时,=﹣20×8.3+250=84,可预测单价定为8.3元时,销售件数为84.故选:B.【点评】本题考查了线性回归方程过样本中心点的应用问题,也考查了利用线性回归方程进行预测的应用问题,是基础题目.6.定义在R上的偶函数f(x)满足:f(x+1)=f(x﹣1),若f(x)在区间[0,1]内单调递增,则f(﹣)、f(1)、f()的大小关系为()A.f(﹣)<f(1)<f()B.f(1)<f(﹣)<f()C.f(﹣)<f()<f(1) D.f()<f(1)<f(﹣)【分析】根据函数奇偶性和周期性的关系进行转化,结合函数单调性的性质进行比较即可得到结论.【解答】解:∵定义在R上的偶函数f(x)满足:f(x+1)=f(x﹣1),∴由f(x+1)=f(x﹣1),得f(x+2)=f(x),则f(﹣)=f(﹣+2)=f(),f()=f(﹣2)=f(﹣)=f(),∵f(x)在区间[0,1]内单调递增,∴f(﹣)<f()<f(1),即f()<f()<f(1),故选:C.【点评】本题主要考查函数值的大小比较,根据函数奇偶性,周期性和单调性的关系进行转化是解决本题的关键.7.在等比数列{a n}中,公比q≠1,且a1+a2,a3+a4,a5+a6成等差数列,若a1+a2+a3=1,则a12+a22+…+a118=()A.1 B.10 C.32 D.100【分析】由题意列关于等比数列的首项和公比的方程组,求解方程组得答案.【解答】解:在等比数列{a n}中,公比q≠1,由a1+a2,a3+a4,a5+a6成等差数列,且a1+a2+a3=1,得,即:,解得.∴数列{}是常数列1,1,1,…,则a12+a22+…+a118=10.故选:B.【点评】本题考查等比数列的通项公式,考查方程组的解法,是基础题.8.执行如图所示的程序框图,则输出结果a的值为()A.2 B.C.D.﹣1【分析】模拟执行程序,依次写出每次循环得到的a,n的值,观察规律可得a的取值以3为周期,从而有当i=2018时,不满足条件n≤2018,退出循环,输出a的值为﹣1,从而得解.【解答】解:模拟执行程序,可得a=2,n=1,满足条件n≤2018,a=,n=3满足条件n≤2018,a=﹣1,n=4满足条件n≤2018,a=2,n=5…观察规律可知,a的取值以3为周期,由2018=672×3,从而有:满足条件n≤2018,a=,n=2018满足条件n≤2018,a=﹣1,n=2018不满足条件n≤2018,退出循环,输出a的值为﹣1.故选:D.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基本知识的考查.9.已知函数f(x)=2sin2(ωx+)(ω>0)在区间[,]内单调递增,则ω的最大值是()A.B.C.D.【分析】由条件利用二倍角公式化简函数的解析式,再利用余弦函数的单调性求得ω的最大值.【解答】解:∵函数f(x)=2sin2(ωx+)=2=1﹣cos(2ωx+)(ω>0)在区间[,]内单调递增,故y=cos(2ωx+)在区间[,]内单调递减,∴2ω+≤π,∴ω≤,故选:C.【点评】本题主要考查二倍角公式的应用,余弦函数的单调性,属于基础题.10.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的表面积为()A.2(1++)B.2(1+2+)C.4+2D.4(1+)【分析】根据三视图知几何体是三棱锥P﹣ABC是棱长为2的正方体一部分,由正方形的性质求棱长、判断位置关系,由三角形的面积公式求出该四面体的表面积.【解答】解:根据三视图知几何体是三棱锥P﹣ABC是棱长为2的正方体一部分,直观图如图所示:由正方体的性质可得,PC=PA=AC=2,PB=,∴BC⊥PC,AB⊥PA,∴该四面体的表面积:S=+=2(1+2+),故选:B.【点评】本题考查三视图求几何体的体积,由三视图冰借助于正方体复原几何体是解题的关键,考查空间想象能力.11.已知函数f(x)=e x(x≥0),当x<0时,f(﹣x)=4f(x).若函数g(x)=f(x)﹣ax﹣a(a>0)有唯一零点,则a的取值范围是()A.(0,1) B.(,e)C.(,e)D.(,1)【分析】由题意得,y=f(x)与y=ax+a(a>0)有唯一交点.由f'(x)=e x(x≥0),得切线方程为y﹣e m=e m(x﹣m),由此能求出结果.【解答】解:由题意得,∵函数g(x)=f(x)﹣ax﹣a(a>0)有唯一零点,∴y=f(x)与y=ax+a(a>0)有唯一交点.由图可得a1<a<a2,由题意得,,∵f'(x)=e x(x≥0),设切点横坐标为m,∴切线斜率k=f'(m)=e m=a2,切线方程为y﹣e m=e m(x﹣m),且过点(﹣1,0)解得m=0,∴,∴.故选:D.【点评】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质和数形结合思想的合理运用.12.在公差不为0的等差数列{a n}中,a2+a4=a p+a q,记+的最小值为m,若数列{b n}满足b1=m,2b n+1﹣b n b n+1=1,则b1+++…+=()A. B. C. D.【分析】根据题意,求出+的最小值m,从而求出b1与通项公式b n,再求出以及b1+++…+的值.【解答】解:在等差数列{a n}中,由a2+a4=a p+a q得,p+q=6,因为+=(+)(p+q)=(1+9++)=+(+)≥+2=,当且仅当q=3p时取得最小值,此时p=,q=(不合题意,舍去);应取p=2,q=4,此时+取得最小值是,所以m=,b1=;又由2b n+1﹣b n b n+1=1,可归纳出b n=,所以=;所以b1+++…+=+++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:C.【点评】本题考查了等差数列与数列求和的应用问题,也考查了逻辑推理与运算能力,是综合性题目.二、填空题(每小题5分,共20分)13.已知向量,夹角为120°,||=5,||=2,=+λ,若⊥,则λ=.【分析】根据向量数量积的公式,结合向量垂直的关系即可得到结论.【解答】解:∵向量,夹角为120°,||=5,||=2,∴=||||cos120°=5×2×(﹣)=﹣5,∵=+λ,⊥,∴(+λ)=(+λ)(﹣)=0,即﹣+λ﹣λ=0,∴﹣5﹣25+4λ+5λ=0解得λ=,故答案为:.【点评】本题主要考查平面向量的基本运算,利用向量垂直和数量积之间的关系是解决本题的关键.14.若x,y满足约束条件,则z=x2+y2的最小值为5.【分析】画出满足条件的平面区域,求出角点的坐标,结合z=x2+y2的几何意义求出其最小值即可.【解答】解:画出满足条件的平面区域,如图示:,由,解得A(2,1),z=x2+y2的几何意义表示平面区域内的点到原点的距离的平方,故z=z=x2+y2=4+1=5,故答案为:5.【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.15.已知三棱锥P﹣ABC内接于球O,PA=PB=PC=2,当三棱锥P﹣ABC的三个侧面的面积之和最大时,球O的表面积为12π.【分析】三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,三棱锥P﹣ABC的三个侧面的面积之和最大,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积.【解答】解:由题意三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,三棱锥P﹣ABC的三个侧面的面积之和最大,三棱锥P﹣ABC的外接球就是它扩展为正方体的外接球,求出正方体的对角线的长:2所以球的直径是2,半径为,球的表面积:4π×=12π.故答案为:12π.【点评】本题考查球的表面积,几何体的外接球,考查空间想象能力,计算能力,是基础题.16.已知直线y=x与椭圆C: +=1(a>b>0)相交于A、B两点,若椭圆上存在点P,使得△ABP是等边三角形,则椭圆C的离心率e=.【分析】联立直线y=x和椭圆方程,求得A,B的坐标,以及|OA|2,将直线OP方程为,代入椭圆方程,求得P的坐标及|OP|2,再由|OP|2=3|OA|2,结合离心率公式,可得e.【解答】解:因为,所以;由题设直线OP方程为,所以,所以,所以.故答案为:.【点评】本题考查椭圆的离心率的求法,注意运用椭圆的对称性和等边三角形的性质,考查化简整理的运算能力,属于中档题.三、解答题(共5小题,70分)17.(12分)(2018潮南区模拟)在△ABC中,角A、B、C的对边分别为a、b、c,满足acosB+bcosA=2ccosC.(1)求C;(2)若△ABC的面积为2,a+b=6,求∠ACB的角平分线CD的长度.【分析】(I)根据正弦定理将边化角,化简得出cosC;(II)根据三角形的面积公式列方程解出CD.【解答】解:(Ⅰ)∵acosB+bcosA=2ccosC,∴sinAcosB+sinBcosA=2sinCcosC,即sinC=2sinCcosC,因为0<C<π,所以,故;(Ⅱ)在△ABC中,∵CD平分∠ACB,∴.∵S△ABC=S△ACD+S△BCD,∴2=a+=(a+b)CDsin.解得.【点评】本题考查了正弦定理在解三角形中的应用,属于中档题.18.(12分)(2018邯郸一模)如图,在四棱锥P﹣ABCD中,△ABD是边长为2的正三角形,∠CBD=∠CDB=30°,E为棱PA的中点.(1)求证:DE∥平面PBC;(2)若平面PAB⊥平面ABCD,PA=PB=2,求二面角P﹣BC﹣E的余弦值.【分析】(1)取AB中点F,连接EF、DF,则EF∥PB,由∠CBD=∠FDB=30°,得DF∥BC,从而平面DEF∥平面PBC,由此能证明DE∥平面PBC.(2)连接DF,分别取FB,FD,FP所在直线为x,y,z轴建立空间直角坐标系,利用向量法能求出二面角P﹣BC﹣E的余弦值.【解答】证明:(1)取AB中点F,连接EF、DF,…(1分)∵E为棱PA的中点,∴EF∥PB,∵∠CBD=∠FDB=30°∴DF∥BC∵EF、DF⊂平面DEF,PB、BC⊂平面PBC∴平面DEF∥平面PBC,…(4分)∵DE⊂平面DEF,∴DE∥平面PBC.…(6分)解:(2)∵PA=PB=2,∴PF⊥AB,∵平面PAB⊥平面ABCD,交线为AB,∴PF⊥平面ABCD,且PF=1,连接DF,分别取FB,FD,FP所在直线为x,y,z轴建立空间直角坐标系,如图所示.…(7分)则点,B(,0,0),,D(0,3,0),P(0,0,1),E(﹣,0,),…(8分)设平面BCP的法向量为则,∴,即,∴y=0,x=1,即…(10分)设平面BCE的法向量为,,则,∴,∴…(11分)∴cos<>==,∴二面角P﹣BC﹣E的余弦值为.…(12分)【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.19.(12分)(2018邯郸一模)某种机器在一个工作班的8小时内,需要工作人员操控累计2个小时才能正常运行,当机器需用操控而无人操控时,机器自动暂停运行.每台机器在某一时刻是否用人操控彼此之间相互独立.(1)若在一个工作班内有4台相同机器,求在同一时刻需用人操控的平均台数.(2)若要求一人操控的所有机器正常运行的概率控制在不低于0.9的水平,且该人待工而闲的槪率小于0.6.试探讨:一人操控1台、2台、3台机器这三种工作方案中,哪种方案符合要求,并说明理由.【分析】(Ⅰ)用X表示四台机器在同一时刻需用人操控的台数,则X服从二项分布B(4,),由此能求出在同一时刻需用人操控的平均台数.(Ⅱ)设X表示n台机器在同一时刻需用人操控的台数,当n=1时,X服从两点分布;当n=2时,P(X)=,k=0,1,2;当n=3时,,k=0,1,2,3.由此得到一个工作人员操控2台机器符合要求.【解答】解:(Ⅰ)用X表示四台机器在同一时刻需用人操控的台数,则X服从二项分布:,k=0,1,2,3,4,∴在同一时刻需用人操控的平均台数EX==1.….(4分)(Ⅱ)设X表示n台机器在同一时刻需用人操控的台数.①当n=1时,X服从两点分布:此时,一人操控1台机器,工作人员能够及时操控机器,不会出现机器等待操控的情形,但工作人员待工而闲的概率为>0.60.…(6分)②当n=2时,P(X)=,k=0,1,2.P(X=0)==,P(X=1)==,P(X=2)=()2=,即X的分布列为:此时,一人操控2台机器,在同一时刻需要操控2台机器的概率为,故一人操控的2台机器正常运行的概率为.工作人员待工而闲的概率为()2=0.526<0.60.….(8分)③当n=3时,,k=0,1,2,3.P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)=()3=,即X的分布列为:此时,一人操控3台机器,出现机器等待工作人员操控而不能正常运行的概率为:3×()2×+()3=,故一人操控的3台机器正常运行的概率为.工作人员待工而闲的概率为()3==0.421875<0.60.…(10分)综上所述,一个工作人员操控2台机器符合要求.….(12分)【点评】本题考查离散型随机变量的分布列及数学期望的求法及应用,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.20.(12分)(2018邯郸一模)已知抛物线C:x2=2py(p>0)的焦点为F,直线l过点F 交抛物线C于A、B两点.且以AB为直径的圆M与直线y=﹣1相切于点N.(1)求C的方程;(2)若圆M与直线x=﹣相切于点Q,求直线l的方程和圆M的方程.【分析】(1)利用梯形的中位线定理和抛物线的性质列出方程解出p即可;(2)设l斜率为k,联立方程组解出AB的中点即M的坐标,根据切线的性质列方程解出k即可得出l的方程和圆的圆心与半径.【解答】解:(1)设A(x1,y1),B(x2,y2),则|AB|=y1+y2+p,又∵以AB为直径的圆M与直线y=﹣1相切,∴|AB|=y1+y2+2,故p=2,∴抛物线C的方程为x2=4y.(2)设直线l的方程为y=kx+1,代入x2=4y中,化简整理得x2﹣4kx﹣4=0,∴x1+x2=4k,x1x2=﹣4,∴,∴圆心的坐标为M(2k,2k2+1),∵圆M与直线相切于点Q,∴|MQ|=|MN|,∴,解得,此时直线l的方程为,即x﹣2y+2=0,圆心,半径,∴圆M的方程为.【点评】本题考查了抛物线的性质,直线与圆锥曲线的位置关系,切线的性质,属于中档题.21.(12分)(2018邯郸一模)设函数f(x)=(x+a)lnx+b,曲线y=f(x)在点(1,f (1))处的切线方程为x+y﹣2=0(1)求y=f(x)的解析式;(2)证明:<1.【分析】(1)求函数的导数,根据导数的几何意义建立方程关系即可求y=f(x)的解析式;(2)将不等式进行转化,构造函数,求函数的导数,利用导数研究函数的单调性和极值即可证明:<1.【解答】解:(1)因为,所以f′(1)=1+a=﹣1,所以a=﹣2又点(1,f(1))在切线x+y﹣2=0上,所以1+b﹣2=0,所以b=1所以y=f(x)的解析式为f(x)=(x﹣2)lnx+1.….(4分)(2)令g(x)=x﹣e x,(x>0)因为g′(x)=1﹣e x所以当x>0时,g′(x)<0所以g(x)在区间(0,+∞)内单调递减,所以g(x)<g(0)=﹣1<0所以等价于f(x)﹣1>g(x).….(6分)我们如果能够证明f(x)﹣1>﹣1,即f(x)>0即可证明目标成立.下面证明:对任意x∈(0,+∞),f(x)>0.由(1)知,令则,所以h (x )在(0,+∞)内单调递增,又h (1)=﹣1<0,h (2)=ln2>0,所以存在x 0∈(1,2)使得h (x 0)=0. 当0<x <x 0时,h (x )<0即f ′(x )<0,此时f (x )单调递减; 当x >x 0时,h (x )>0即f ′(x )>0,此时f (x )单调递增;所以f (x )≥f (x 0)=(x 0﹣2)lnx 0+1.由f ′(x 0)=0得所以f (x )≥f (x 0)=(x 0﹣2)lnx 0+1=(x 0﹣2)(﹣1)+1=5﹣(x 0+).令,则r ′(x )=1﹣=<0所以r (x )在区间(1,2)内单调递减,所以r (x )<r (1)=5所以f (x )>5﹣(x +)>5﹣5=0.综上,对任意x ∈(0,+∞),.….(12分)【点评】本题主要考查导数的综合应用,利用导数的几何意义以及构造函数是解决本题的关键.综合性较强,难度较大.选做题(请考生从22,23,24三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选題号后的方框涂黑) 22.(10分)(2018邯郸一模)如图,点A 、B 、D 、E 在⊙O 上,ED 、AB 的延长线交于点C ,AD 、BE 交于点F ,AE=EB=BC .(1)证明:=;(2)若DE=4,AD=8,求DF 的长.【分析】(1)证明∠BAD=∠EAD ,即可证明: =;(2)证明△EAD ∽△FED ,利用比例关系求DF 的长. 【解答】(1)证明:∵EB=BC∴∠C=∠BEC∵∠BED=∠BAD∴∠C=∠BED=∠BAD…(2分)∵∠EBA=∠C+∠BEC=2∠C,AE=EB∴∠EAB=∠EBA=2∠C,又∠C=∠BAD∴∠EAD=∠C∴∠BAD=∠EAD…(4分)∴.…(5分)(2)解:由(1)知∠EAD=∠C=∠FED,又∠EDA=∠EDA∴△EAD∽△FED…(8分)∴又∵DE=4,AD=8,∴DF=2.…(10分)【点评】本题考查相似三角形的判定与性质,考查等角对等弧,考查学生分析解决问题的能力,属于中档题.【选项4-4:坐标系与参数方程】23.(2018邯郸一模)在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2cosθ,过点P(2,﹣1)的直线l:(t为参数)与曲线C交于M、N两点.(1)求曲线C的直角坐标方程和直线l的普通方程;(2)求|PM|2+|PN|2的值.【分析】(1)由ρsin2θ=2cosθ得ρ2sin2θ=2ρcosθ,把,代入即可得出直角坐标方程.根据(t为参数),消去t得普通方程.(2)将直线l的参数方程化为(t为参数)代入y2=2x中,整理得.由参数的几何意义,可知:|PM|2+|PN|2==﹣4t1t2即可得出.【解答】解:(1)由ρsin2θ=2cosθ得ρ2sin2θ=2ρcosθ,∵,∴y2=2x;根据(t为参数),消去t得,x﹣y﹣3=0,故曲线C的直角坐标方程和直线l的普通方程分别是y2=2x,x﹣y﹣3=0.(2)将直线l的参数方程化为(t为参数)代入y2=2x中,整理得.设t1,t2是该方程的两根,则,由参数的几何意义,可知.【点评】本题考查了直角坐标与极坐标的互化、参数方程化为普通方程、直线参数方程的应用,考查了推理能力与计算能力,属于中档题.【选项4-5:不等式选讲】24.(2018邯郸一模)已知函数f(x)=|x﹣a|﹣|2x﹣1|.(1)当a=2时,求f(x)+3≥0的解集;(2)当x∈[1,3]时,f(x)≤3恒成立,求a的取值范围.【分析】(1)问题转化为解关于x的不等式组,求出不等式的解集即可;(2)根据x的范围,去掉绝对值号,从而求出a的范围即可.【解答】解:(1)当a=2时,由f(x)≥﹣3,可得|x﹣2|﹣|2x﹣1|≥﹣3,①或②或③,解①得;解②得;解③得x=2,综上所述,不等式的解集为{x|﹣4≤x≤2};(2)若当x∈[1,3]时,f(x)≤3成立,即|x﹣a|≤3+|2x﹣1|=2x+2,故﹣2x﹣2≤x﹣a≤2x+2,即:﹣3x﹣2≤﹣a≤x+2,∴﹣x﹣2≤a≤3x+2对x∈[1,3]时成立,∴a∈[﹣3,5].【点评】本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.。
河北省邯郸市2018届高三第一次模拟考试数学(理)试题(word版含答案)

高三数学考试(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数,则()A. -1B. 1C.D.【答案】A【解析】选A.2. 设全集,集合,则()A. B.C. D.【答案】B【解析】,选B.3. 某电视台夏日水上闯关节目中的前三关的过关率分别为0.8,0.7,0.6,只有通过前一天才能进入下一关,且通过每关相互独立.一选手参加该节目,则该选手只闯过前两关的概率为()A. 0.56B. 0.336C. 0.32D. 0.224【答案】D【解析】该选手只闯过前两关的概率为,选D.4. 的内角,,所对的边分别为,,.已知,,且,则()A. 6B.C.D. 7【答案】A【解析】因为所以选A.5. 如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 4B. 5C. 6D. 7【答案】C【解析】几何体如图,所以体积为,选C.6. 若函数在上是增函数,则的取值范围为()A. B. C. D.【答案】A【解析】由题意得,选A.7. 记不等式组,表示的平面区域为,点的坐标为.有下面四个命题::,的最小值为6;:,;:,的最大值为6;:,.其中的真命题是()A. ,B. ,C. ,D. ,【答案】C【解析】作可行域如图:则过点(4,-2),z取最大值6,最小值为O到直线距离的平方,即;最大值为O到点(4,-2)距离的平方,即为20;所以,为真命题,选C.8. 若的展开式中的系数为80,其中为正整数,则的展开式中各项系数的绝对值之和为()A. 32B. 81C. 243D. 256【答案】C【解析】由题意得,的展开式中各项系数的绝对值之和为,选C.9. 我国古代数学名著《九章算术》里有一道关于买田的问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”其意思为:“今有好田1亩价值300钱;坏田7亩价值500钱.今合买好、坏田1顷,价值10000钱.问好、坏田各有多少亩?”已知1顷为100亩,现有下列四个程序框图,其中的单位为钱,则输出的,分别为此题中好、坏田的亩数的是()A. B.C. D.【答案】B【解析】设好田为x,坏田为y,则A中;B中正确;C中;D中,所以选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.10. 若仅存在一个实数,使得曲线:关于直线对称,则的取值范围是()A. B. C. D.【答案】D【解析】,选D.【点睛】函数的性质(1).(2)周期(3)由求对称轴(4)由求增区间;由求减区间11. 设正三棱锥的高为,且此棱锥的内切球的半径为,若二面角的正切值为,则()A. 5B. 6C. 7D. 8【答案】C【解析】取线段AB中点D,设P在底面ABC 射影为O,设AB=a,则,为二面角的平面角,,,选C.点睛:涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解. 12. 设双曲线:的左顶点与右焦点分别为,,以线段为底边作一个等腰,且边上的高.若的垂心恰好在的一条渐近线上,且的离心率为,则下列判断正确的是()A. 存在唯一的,且B. 存在两个不同的,且一个在区间内,另一个在区间内C. 存在唯一的,且D. 存在两个不同的,且一个在区间内,另一个在区间内【答案】A【解析】由题意可设,可得的垂心H,因为的垂心恰好在的一条渐近线上,所以,所以存在唯一的,且,当时无零点,选A.点睛:判断函数零点(方程的根)所在区间的方法(1)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上.(2)定理法:利用零点存在性定理进行判断.(3)数形结合法:画出相应的函数图象,通过观察图象与x轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13. 在平行四边形中,若,则__________.【答案】2【解析】在平行四边形中,,且,则,所以;故填1.14. 若圆:的圆心为椭圆:的一个焦点,且圆经过的另一个焦点,则圆的标准方程为__________.【答案】【解析】,即圆的标准方程为.15. 若,,则__________.【答案】2【解析】因为,所以,,,,即.16. 已知集合,,,若集合的子集的个数为8,则的取值范围为__________.【答案】【解析】作函数图像,因为集合的子集的个数为8,所以集合的子集的元素为3,因此,即的取值范围为.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 已知数列,的前项和分别为,,,且.(1)求;(2)求数列的前项和.【答案】(1)(2)【解析】试题分析:(1)先根据分组求和法分成一个等差与一个等比数列的和的和,再分别求和,(2)因为,所以利用错位相减法以及分组求和法求和.试题解析:解:(1)依题意可得,,…,,∴.(2)∵,∴,∴.又,∴.∴,∴,则,∴,故.点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.18. 某大型超市在2018年元旦举办了一次抽奖活动,抽奖箱里放有3个红球,3个黄球和1个蓝球(这些小球除颜色外大小形状完全相同),从中随机一次性取3个小球,每位顾客每次抽完奖后将球放回抽奖箱.活动另附说明如下:①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会;②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;③若取得的3个小球只有1种颜色,则该顾客中得一等奖,奖金是一个10元的红包;④若取得的3个小球有3种颜色,则该顾客中得二等奖,奖金是一个5元的红包;⑤若取得的3个小球只有2种颜色,则该顾客中得三等奖,奖金是一个2元的红包.抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.(1)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分);(2)记一次抽奖获得的红包奖金数(单位:元)为,求的分布列及数学期望,并计算这20位顾客(假定每位获得抽奖机会的顾客都会去抽奖)在抽奖中获得红包的总奖金数的平均值.【答案】(1)中位数为110,平均数为131(2)【解析】试题分析:(1)根据数据得中位数,根据平均数定义得平均数,(2)先确定随机变量取法,再分别求对应概率,列表得分布列,最后根据数学期望公式求均值.试题解析:解:(1)获得抽奖机会的数据的中位数为110,平均数为.(2)的可能取值为2,5,10,,,,则的分布列为故.这20位顾客中,有8位顾客获得一次抽奖的机会,有3位顾客获得两次抽奖的机会,故共有14次抽奖机会.所以这20位顾客在抽奖中获得红包的总奖金数的平均值为元.19. 如图,在各棱长均为2的正三棱柱中,,分别为棱与的中点,,为线段上的动点,其中,更靠近,且.(1)证明:平面;(2)若与平面所成角的正弦值为,求异面直线与所成角的余弦值.【答案】(1)见解析(2)【解析】试题分析:(1)根据正三角形性质得,结合线面垂直得.因此可得平面,即.再根据,得平面,(2)先根据条件建立空间直角坐标系,设立各点坐标,利用方程组解平面法向量,根据向量数量积求夹角,再根据线面角与向量夹角互余关系列方程,解得N坐标,最后根据向量数量积求异面直线与所成角的余弦值.试题解析:解:(1)证明:由已知得为正三角形,为棱的中点,∴,在正三棱柱中,底面,则.又,∴平面,∴.易证,又,∴平面.(2)解:取的中点,的中点,则,,以为坐标原点,建立如图所示的空间直角坐标系,则,,,,设,则,易知是平面的一个法向量,∴,解得.∴,,,,∴,∴异面直线与所成角的余弦值为.20. 已知,抛物线:与抛物线:异于原点的交点为,且抛物线在点处的切线与轴交于点,抛物线在点处的切线与轴交于点,与轴交于点.(1)若直线与抛物线交于点,,且,求;(2)证明:的面积与四边形的面积之比为定值.【答案】(1)(2)见解析【解析】试题分析:(1)先联立直线方程与抛物线方程,根据韦达定理以及弦长公式列方程,解得p,再根据向量数量积求;(2)先求M坐标,再求直线方程,进而求得A,B,C坐标,即得面积,最后作商.试题解析:(1)解:由,消去得.设,的坐标分别为,,则,.∴,∵,∴.∴.(2)证明:由,得或,则.设直线:,与联立得.由,得,∴.设直线:,与联立得.由,得,∴.故直线:,直线:,从而不难求得,,,∴,,∴的面积与四边形的面积之比为(为定值).21. 已知函数,.(1)比较与的大小,并加以证明;(2)当时,,且,证明:.【答案】(1)(2)见解析【解析】试题分析:(1)构造差函数,求导得单调性,根据零点存在定理确定零点区间以及满足条件,根据单调性确定函数最小值取法,最后确定最小值大于零.(2)先确定函数单调性,得,再根据,确定.试题解析:(1)解:.证明如下:设,∵为增函数,∴可设,∵,,∴.当时,;当时,.∴,又,∴,∴.∵,∴,∴,.(2)证明:设,令,得,,则在上单调递增,在上单调递减,在上单调递增.,设,∵,∴,即.当时,,则.当时,,∵,∴,∴.当或时,不合题意.从而.点睛:利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数. (二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B铅笔将所选题目对应的题号右侧方框涂黑,并且在解答过程中写清每问的小题号.22. 在平面直角坐标系中,曲线的参数方程为(为参数,且),以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.(1)将曲线的参数方程化为普通方程,并将曲线的极坐标方程化为直角坐标方程;(2)求曲线与曲线交点的极坐标.【答案】(1)的普通方程为(或);的直角坐标方程为.(2).【解析】试题分析:(1)先求出t,再代入消元将曲线的参数方程化为普通方程,根据将曲线的极坐标方程化为直角坐标方程;(2)先求曲线与曲线交点的直角坐标,再化为极坐标.试题解析:解:(1)∵,∴,即,又,∴,∴或,∴曲线的普通方程为(或).∵,∴,∴,即曲线的直角坐标方程为.(2)由得,∴(舍去),,则交点的直角坐标为,极坐标为.23. 已知函数.(1)求不等式的解集;(2)若直线与函数的图象有公共点,求的取值范围.【答案】(1);(2).【解析】试题分析:(1)先根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集,(2)先将函数化为分段函数,而动直线过定点,结合图像可得的取值范围.试题解析:解:(1)由,得或或,解得,故不等式的解集为.(2),作出函数的图象,如图所示,直线过定点,当此直线经过点时,;当此直线与直线平行时,. 故由图可知,.。
2018届邯郸市高考数学模拟试卷及答案

()
A.B.CD.
10.一个几何体的三视图如图所示,则该几何体的体积为()
A.B.5C.D.6
11.已知点是抛物线与圆在第一象限的公共点, 且点到抛物线焦 点的距离为.若抛物线上一动点到其准线与到点的距离之和的最小值 为,为坐标原点,则直线被圆所截得的弦长为()
(2)由表可知在8人中成绩不优良的人数为,则的可能取值为
0,1,236分
;Hale Waihona Puke 8分;.10分的分布列为:
11分
所以.
20.解:(1)设,,则, ,即,①
,,即,②
由①②得,
又,,
椭圆的方程为
(2)设直线方程为:,
由得,
为重心,,…………………………7分
点在椭圆上,故有,
可得, 而,
(或利用是()到距离的3倍得到),
2.已知复数的实部与虚部之和为4,则复数在复平面上对应的 点在()
A.第一象限B.第二象限C.第三象限D.第四象限
3.已知,则等于()
A.B.C.D.
4.已知向量与的夹角为60°,,,则在方向上的投影为()
A.B.2C.D.3
5.如果实数,,满足条件,则的最大值为()
A.B.C.D.
6.已知,则等于()
三点共线,且是线段的中点,则圆心到直线的距离为所求的弦长为
12.
,则时,;当时,.所以,,令,设,作函数的图像如图所示,
由得或,的最大值为3.
二、填空题
13.三人中有一人或两人达标,其概率为.
14.化简得,则双曲线的离心率.
15.连结交于,则可证得平面,连接,则就是直线与平面所成 的角,即,,,,四棱锥的外接球的半径为,则所求外接球的表面积 为.