初高中数学衔接知识点+配套练习

合集下载

苏教版高中数学必修2配套练习参考答案解析几何全部

苏教版高中数学必修2配套练习参考答案解析几何全部

解析几何部分(共:1—17课时及每章评价)参考答案:第1课时 直线的斜率(1)1.D 2.C 3.D 4.4- 5.1k ≤ 6.可以是(2,4),不惟一. 7.由题意,()132212a -=++,∴2a =-.8.当1m =时,直线l 与x 轴垂直,此时直线斜率不存在; 当1m ≠时,直线斜率34111k m m-==--. 9.在直线斜率为0,OC 边所在直线斜率不存在,BC 边所在直线斜率为43-.10.由AB AC k k ≠,可得1112383k --≠---, ∴1k ≠.第2课时 直线的斜率(2)1.C 2.B 3.D 4.60o. 5.6 6. (0,2)7. 045α≤<o o 或135180α<<o o.8.倾斜角为45o时斜率为1,倾斜角为135o时斜率为1-.9.直线l 上任一点(,)M m n 经平移后得(3,1)N m n -+在l 上,由两点的斜率公式得(1)1(3)3l n n k m m +-==---.10.直线2l 的倾斜角为180(6015)135α=--=oooo, ∴2tan135tan 451k ==-=-oo.第3课时 直线的方程(1)1.C 2.D 3.A 4.D 5.(1)4y =-;(2)23y x =-- 6.1y +6y x =-+7.由直线1l 的方程2y =+可得1l 的倾斜角为60o ,∴直线l 的倾斜角为30o,斜率为tan 303=o,所以,直线l 的方程为12)y x -=-,即1y x =-+.8. 1:1:(2)-9.由直线1l的方程20x y -+=可求得1l 的斜率为1, ∴倾斜角为145α=o,由图可得2l 的倾斜角2115αα=+o∴直线2l 的斜率为tan 60=o, ∴直线2l 的方程为2)y x -=-0y -=.10.设直线方程为34y x b =+, 令0x =,得y b =;令0y =,得43x b =-, 由题意,14||||623b b ⨯-⨯=,29b =,∴3b =±, 所以,直线l 的方程为334y x =±.第4课时 直线的方程(2)1.D 2.D 3.B 4. 2y x =或1y x =+ 5.3 6. 10x y +-=或32120x y -+=7.设矩形的第四个顶点为C ,由图可得(8,5)C , ∴对角线OC 所在直线方程为005080y x --=--,即580x y -=,AB 所在直线方程为185x y+=,即58400x y +-=. 8.当截距都为0时,直线经过原点,直线斜率为43-,方程为43y x =-;当截距都不为0时,设直线方程为1x ya a +=, 将点(3,4)-代入直线方程得341a a-+=,解得1a =-, 所以,直线方程为430x y +=或10x y ++=.9.当0t =时,20Q =;当50t =时,0Q =,故直线方程是15020t Q +=.图略. 10.直线AB 的方程为3x =,直线AC 的方程为123x y+=,直线x a =与,AB AC 的交点分别为(,3)a 、63(,)2a a -,又∵92ABC S ∆=,∴1639(3)224a a -⋅⋅-=,∴a =(舍负).第5课时 直线的方程(3)1.B 2.D 3.B 4.D 5. 350x y -+= 6.24- 7.当2a =时,直线方程为2x =不过第二象限,满足题意;当20a -≠即2a ≠时,直线方程可化为1(4)2y x a a =+--, 由题意得2010240a a a -≠⎧⎪⎪>⎨-⎪-≤⎪⎩,解得24a <≤,综上可得,实数a 的取值范围是24a ≤≤. 8.(1)由题意得:22(23)(21)m m m m ---=+-, 即2340m m --=,解得43m =或1-(舍) (2)由题意得:22(23)(21)260m m m m m ----+--+=,即23100m m +-=,解得2m =-或53. 9.方法1:取1m =,得直线方程为4y =-, 取12m =,得直线方程为9x =, 显然,两直线交点坐标为(9,4)P -,将P 点坐标分别代入原方程得(1)9(21)(4)5m m m -⨯+-⨯-=-恒成立,所以,不论m 取什么实数,直线(1)m x -+(21)5m y m -=-总经过点(9,4)P -.方法2:原方程可整理得(21)(5)0x y m x y +--+-=,当21050x y x y +-=⎧⎨+-=⎩成立,即94x y =⎧⎨=-⎩时,原方程对任意实数m 都成立,∴不论m 取什么实数,直线过定点(9,4)-.10.方程0x y k +-=可变形为23)9k =-, 当90k -=即9k =时,方程表示一条直线90x y +-=; 当90k -<即9k >时,方程不能表示直线;当90k ->即9k <3= ∵方程仅表示一条直线,∴30+>且30-<,即0k <.综上可得,实数k 的取值范围为9k =或0k <.第6课 两直线的交点1.D 2.D 3.B 4.B 5.-3 6.6或-6 7.10,-12,-2 8.32190x y -+=9.4m =,或1m =-,或1m =.(提示:如果三条直线不能围成三角形,则有两种情形,一是其中有平行的直线,二是三条直线交于一点.) 10.(1)表示的图形是经过两直线210x y -+=和2390x y ++=的交点(3,1)--的直线(不包括直线2390x y ++=).(2)30x y -=或40x y ++=.(提示:可设所求直线方程为21(239)0x y x y λ-++++=,即(21)(32)910x y λλλ++-++=.若截距为0,则910λ+=,即19λ=-,此时直线方程为30x y -=;若截距不为0,则21132λλ+-=--,即3λ=,此时直线方程为40x y ++=.) 11.直线l 的方程为60x y += 12.22b -≤≤(数形结合)第7课 两直线的平行与垂直(1) 1.D 2.B 3.C 4.平行, 不平行5.平行或重合 6.-2 , 0或10 7.四边形ABCD 是平行四边形. 8.32A C =≠-且9.2,2m n == 10.20x y += 11. 3440x y +-=12.860860x y x y -+=--=或(提示:Q 所求直线与已知直线l :8610x y -+=平行,∴设所求直线的方程为860x y λ-+=,与两坐标轴的交点为λ(-,0)8,λ(0,)6.又该直线与两坐标轴围成的三角形面积为8,∴1||||8286λλ⋅-⋅=,λ∴=±,故所求直线方程为860x y -+=或860x y --= 第8课 两直线的平行与垂直(2)1. B2. C3. C4. C5. B6. 垂直,不垂直7. 32y x =+8. 2,-2,09. 20x y -= 10. 310x y ++=和330x y -+= 11. 1a =-或92a =-12.270x y +-=,10x y -+=,250x y +-=(提示:由于点A 的坐标不满足所给的两条高所在的直线方程,所以所给的两条高线方程是过顶点B ,C 的,于是2AB k =-,1AC k =,即可求出边AB ,AC 所在的直线方程分别为270x y +-=,10x y -+=.再由直线AB 及过点B 的高,即可求出点B 的坐标(3,1),由直线AC 及过点C 的高,即可求出点C 的坐标(1,2).于是边BC 所在的直线方程为250x y +-=.)第9课 平面上两点间的距离1.C 2.C 3.C 4.A5.B 6.22y y =-=-或 7.47240x y +-= 8.23120x y +-=912|x x - 10.13410x x y =++=或 11.5150x y --=12.(1) (2,0)P -;(2) (13,0)P ,此时||PM PN -. 13.54x =(提示:y =数形结合,设(1,1),(2,3),(,0)A B P x ,则y PA PB =+)第10课时 点到直线的距离(1)1.()A 2.()C 3.()D 4.()A 5.()C 6.()A 7.58.2a =或4639.设所求直线方程为340x y m -+=,=解得:14m =或12m =-(舍),所以,所求的直线方程为:34140x y -+=.10.由题意第一、三象限角平分线的方程为y x =,设00(,)P x y ,则00x y =,即00(,)P x x .= 解得:01x =或09x =-,所以点P 的坐标为:(1,1)或(9,9)--.11.由题意:当直线l 在两坐标轴上的截距为0时, 设l 的方程为y kx =(截距为0且斜率不存在时不符合题意)=k = 122-±,所以直线l 的方程为:122y x -±=. 当直线l 在两坐标轴上的截距不为0时,设l 的方程为1x ya a+=,即0x y a +-=,=a =13或1a =, 所以直线l 的方程为:130x y +-=或10x y +-=.综上所述:直线l 的方程为:122y x -±=或130x y +-=或10x y +-=. 12.设(,1)M t t -,则M 到两平行线段的距离相等,∴43t =,即41(,)33M ∵直线l 过(1,1)P -,41(,)33M 两点,所以,l 的方程为2750x y +-=.第11课时 点到直线的距离(2)1.()B 2.()C 3.()A 4.18 5.(1,2)或(2,1)- 6.34210x y +-=7.3208.4310x y +-=9.设l :320x y C -+=则1d =2d =1221d d =,所以|1|2|13|1C C +=+,解得:25C =-或9-, 所以l 的方程为:32250x y --=或3290x y --=.10.证明:设(,)P a b ,则221a b -=P 到直线1l ,2l的距离分别为1d =,2d = ∴2212||122a b d d -==g. 11.设(,)M x y 为A ∠的平分线AD 上任意一点,由已知可求得,AC AB 边所在直线方程分别为5120x y -+=,5120x y --=,由角平分线的性质得:=∴512512x y x y -+=--或512(512)x y x y -+=---, 即6y x =-+或y x =,由图知:AC AD AB k k k <<,∴155AD k <<,∴6y x =-+不合题意,舍去,所以,A ∠的平分线AD 所在直线方程y x =. 12.设CD 所在直线方程为30x y m ++=,=,解得7m =或5m =-(舍).所以CD 所在直线方程为370x y ++=.因为AB BC ⊥所以设BC 所在直线方程为30x y n -+=,=,解得9n =或3n =-.经检验BC 所在直线方程为390x y -+=,AD 所在直线方程为330x y --=.综上所述,其它三边所在直线方程为370x y ++=,390x y -+=,330x y --=.第12课时 圆的方程(1)1.()B 2.()C 3.()B 4.()C 5.()C 6.()B 7.(1)0a =;(2)||b r =;(3)310a b +-=. 8.22(6)36x y -+=9.C e 的圆心为(3,2)C -,C 'e 的圆心与(3,2)C -关于10x y -+=对称, ∴设C 'e 的圆心为(,)C a b '则3210222113a b b a +-⎧-+=⎪⎪⎨+⎪=-⎪-⎩g ,解得:34a b =-⎧⎨=⎩,C 'e 的标准方程为:22(3)(4)36x y ++-=.10.由题意可设C e 的圆心为(,)C a b 半径为r ,则||2a =当2a =时,C e :222(2)()x y b r -+-= 因为C e 与直线20x y +-=相切于点(1,1)P , ∴222(12)(1)b r -+-= ①且1(1)112b--=--g ② 联立方程组,解得:2b =,r =所以C e 的方程为:22(2)(2)2x y -+-=同理,当2a =-时,C e 的方程为:22(2)(2)18x y +++=综上所述:C e 的方程为:22(2)(2)2x y -+-=或22(2)(2)18x y +++=11.由题意设C e 的方程为222()()x a y b r -+-=,由C e 经过点(2,1)-,得:222(2)(1)a b r -+--=①由C e 与直线10x y --=r =② 由圆心在直线2y x =-上,得:2b a =-③联立方程组,解得:918a b r ⎧=⎪=-⎨⎪=⎩,或12a b r ⎧=⎪=-⎨⎪=⎩所以,C e 的方程为:22(9)(18)338x y -++=或22(1)(2)2x y -++=.12.设⊙C 的方程为:222()()x a y b r -+-=,∵⊙C 与x 轴相切,所以22r b =①,又∵圆心(,)C a b 到直线0x y -=的距离为:d =∴222r +=,即 22()142a b r -+=②,又圆心在直线30x y -=上,所以30a b -=③联立方程组,解得133a b r =⎧⎪=⎨⎪=⎩或133a b r =-⎧⎪=-⎨⎪=⎩所以C e 的方程为:22(1)(3)9x y -+-=或22(1)(3)9x y +++=.第13课时 圆的方程(2)1.()C 2.()D 3.()B 4.12k <-5.2 6.2π7.5,5 8.2或23-9.圆方程为220x y Dx Ey F ++++=,将(0,0),(1,1)两点坐标代入方程分别得0F = ①20D E F +++= ②又∵圆心(,)22D E--在直线30x y --=上,∴60E D --= ③解由①②③组成的方程组得4,2,0D E F =-==,∴所求圆方程为22420x y x y +-+=,圆心(2,1)-10.证明:将034222=+--+y x y x 化为22(1)(2)2x y -+-= 则点与圆心之间的距离的平方为222(41)(2)17125m m m m -+-=-+ 又∵圆的半径的平方为2,∴2171252m m -+-217123m m =-+ 令2()17123f x m m =-+0∆<,即2()17123f x m m =-+恒大于0,即点与圆心之间的距离恒大于圆的半径,所以无论实数m 如何变化,点(4,)m m 都在圆034222=+--+y x y x 之外.11.设所求圆的方程为: 022=++++F Ey Dx y x令0y =,得20x Dx F ++=.由韦达定理,得12x x D +=-,12x x F =由12||x x -=6=,∴2436D F -=. 将(1,2)A ,(3,4)B 分别代入022=++++F Ey Dx y x ,得25D E F ++=-,3425D E F ++=-.联立方程组,解得12D =,22E =-,27F =或8D =-,2E =-,7F =所以所求的圆的方程为221222270x y x y ++-+=或228270x y x y +--+=12.证明:由题意22210250x y ax ay a ++---=,∴2225()()102524a a x a y a ++-=++ 令25()10254a f a a =++,则0∆<, ∴()0f a >即22(25)(210)0x y a x y +-+--=,表示圆心为(,)2a a -若22(25)(210)0x y a x y +-+--=对任意a 成立,则222502100x y x y ⎧+-=⎨--=⎩,解得34x y =⎧⎨=-⎩或5x y =⎧⎨=⎩,即圆恒过定点(3,4)-,(5,0).第14课时 直线与圆的位置关系1.C 2.C 3.D 4.B 5.34250x y +-= 6.40x y +±=7 8. 247200x y --=和2x =;7 9.22(3)(1)9x y -+-=或22(3)(1)9x y +++=. 10.16m =-.11. 4330x y ++=或3430x y +-=.第15课时 圆与圆的位置关系 ⒈B ⒉B 3.D 4.A5.20x y -+= 6.260x y -+= ,6 7.(1,1) 8.22(3)(1)5x y -+-= 9.224(1)(2)5x y ++-=10.(1)240x y -+=; (2)22(2)(1)5x y ++-=; (3)22(3)(3)10x y ++-=. 11. 3r =±.第16课时 空间直角坐标系1.B ⒉C 3.C 4.D5.(2,0,0)、(0,3,0)- 6.(0,4,2)7.442110x y z ++-=8.略 9.略10.提示(1)只要写出的三点的纵坐标和竖坐标分别相等即可;(2)只要写出的三点的竖坐标相等即可.11.111212121x x y y z z x x y y z z ---==---21(x x ≠且21y y ≠且21)z z ≠.第17课时 空间两点间的距离1.D 2.D 3.A 4.A 5.(0,2,0) 6.222(1)(2)(4)9x y z -+++-=7.7 8.(1,0,0)P ± 9.[提示]建立空间直角坐标系,由中点坐标公式求出,P Q 两点坐标,用两点间距离公式即可求得线段PQ2.10.(1)(1,2,1)[提示]设重心G 的坐标为(,,)x y z ,则222GA GB GC ++2233x y =+22236126643(1)3(2)z x y z x y +---+=-+-23(1)46z +-+.当1,2,1x y z ===时,点G 到,,A B C 三点的距离的平方和最小,所以重心的坐标为(1,2,1).(2)1,8,9x y z ===.第二章《解析几何初步》评价与检测参考答案:1.C 2.D 3.B 4.B 526.0d ≤≤ 7.4个 8.60 9.67250x y +-= 10.2750x y +-= 11.22(2)(2)25x y -++= 12.(1,0)A -,C (5,6)- 13.B14.C 15.A 16.D 17.11(,)102- 18.4a =±19.20,x y y x ++==,y x = 20.10 21.解:设与51270x y ++=平行的边所在直线方程为5120x y m ++=(7)m ≠,则=解得19m =-, ∴直线方程为512190x y +-=,又可设与51270x y ++=垂直的边所在直线方程为1250x y n -+=()n R ∈,则=解得100n=或74,∴另两边所在直线方程为1251000x y-+=,125740x y-+=22.解:设()2,1B-,()4,2C,()2,3D第四个顶点的坐标为(),A m n.则有BC所在直线的斜率为32BCk=;CD所在直线的斜率为12CDk=-;BD所在直线的斜率不存在.①若BD∥AC,BC∥AD,则AC所在直线的斜率不存在.4m∴=.又BC ADk k=,即33242n-=-,6n∴=.∴平行四边形第四个顶点的坐标为()4,6.②若BD∥AC,CD∥BA,则AC所在直线的斜率不存在.4m∴=.又CD BAk k=,即()11242n---=-,2n∴=-.∴平行四边形第四个顶点的坐标为()4,2-.③若CD∥BA,BC∥AD,则,CD BABC ADk kk k=⎧⎨=⎩()11223322nmmnnm--⎧-=⎪=⎧⎪-⇒⇒⎨⎨=-⎩⎪=⎪-⎩∴平行四边形第四个顶点的坐标为()0,0.综上所述,平行四边形第四个顶点的坐标可为()4,6或()4,2-或()0,0.23.解:设1122(,),(,)P x y Q x y,由2223060x yx y x y c+-=⎧⎨++-+=⎩消去x得2520120y y c-++=,∴由韦达定理知:12124125y y c y y +=⎧⎪⎨+=⎪⎩Q OP OQ ⊥,12121y y x x ∴⋅=-, 即12120x x y y +=,又12121212(32)(32)96()4x x y y y y y y =--=-++∴121296()50y y y y -++=, 也就是12964505c +-⨯+⨯=解之,得3c =. 从而所求圆的方程为22630x y x y ++-+=24.解:设1122(,),(,)P x y Q x y ,则1|OP x ==,2|OQ x ==.,P Q Q 为直线与圆的交点,∴ 12,x x 是方程22(1)(86)210x m m x ++-+=的两根, ∴12221,1x x m=+ ∴ 2221(1)211OP OQ m m ⋅=+=+。

高中数学学习需要哪些资料?

高中数学学习需要哪些资料?

高中数学学习需要哪些资料?高中数学是衔接初中数学与大学数学的最重要桥梁,其内容涵盖代数、平面几何、三角函数、概率统计等多个领域,难度比初中有所提升,对学生逻辑思维能力、空间想象能力和抽象思维能力都提出了更高的要求。

为了更好地掌握高中数学知识,除了课堂学习之外,还需要一些辅助资料。

1. 教科书及配套练习册:教科书是学习高中数学的基础,内容精炼,结构清晰,解释深刻。

学习时应认真阅读,理解概念,完全掌握公式,并及时完成书本上的练习题。

配套练习册则是对课本知识的巩固和拓展,其中有相同难度的习题,可以帮助学生更好地理解知识点,补缺补漏。

2. 考试大纲及真题:考试大纲是制定学习方向的指南,明确了考试内容、范围和要求,学生应认真研读,了解考试重点,有针对性地进行学习。

真题是了解考试形式、难度和考查重点的最佳途径,通过分析真题可以掌握考试规律,增强应试技巧。

3. 辅导资料:参考书: 适合不同学习水平和学习需求的学生,可以是相同版本的教材解读、习题解析、知识点总结,也可以是对考试的应试技巧指导。

习题集: 针对不同知识点、不同难度和不同考点进行分类练习,可以帮助学生巩固知识,提升解题能力。

视频课程: 以视频的方式解释,可以更直观地表达抽象的数学概念,提高自学兴趣,解决学习难题。

在线学习平台: 提供丰富的学习资源,如在线课堂、习题练习、讨论社区等,可以帮助学生拓展自学途径,享受个性化学习体验。

4. 其他辅助资料:数学史: 了解数学发展历史,可以激发学生对数学的兴趣,加深对数学概念的理解。

数学家传记: 学习数学家的故事,可以感受数学的魅力,学习他们的探索精神和科学方法。

数学科普读物: 可以拓展数学知识,了解数学在现实生活中的应用,培养数学思维。

5. 资源选择建议:选择与教材版本一致的资料,以保证自学内容与课堂教学一致。

选择难度适中的资料,避免学习压力过大或过低。

根据自身学习特点和需求,选择合适的资料和学习方法。

学习能力强、时间充足的学生可以尝试做一些难度较大的题目,而学习能力相对弱的学生可以选择一些基础性较强的资料。

高一数学知识点总结,期末复习必看

高一数学知识点总结,期末复习必看

高一数学知识点总结,期末复习
必看
很多刚上高中的童鞋都觉得数学很难,快期末了。

复习好了吗?
学数学其实是一件很有趣的事情。

如果你掌握了一定的学习技巧,打好了基础,数学就是你最有优势的学科,但如果你掌握不了技巧,数学就是你夺冠的绊脚石。

作为一个小学数学几乎次次考试都是满分的人(呸,初中数学也不赖,高考数学135分)我把自己的学习技巧分享给大家,希望对正在学海中奋力划桨的你们有用
课前预习有巧妙的方法,上课不慌高效。

学数学很注重课前预习。

如果你能听懂大部分,那么在课堂上老师训练发散思维的时候,你就能迅速举一反三,正确回答老师提出的问题。

我预习数学不只是看数学书和课后习题。

我首先在书店购买了配套练习。

第二天先看了想学的东西,然后开始做题。

做完题后,我自己批改了答案。

(建议你买答案讲解更详细的配套练习,或许能帮你找到多种解题思路。

)
有了这种预习方法,我感觉我的数学课很轻松。

因为我知道哪里会,哪里不会。

我也通过做题猜测每个知识点怎么考,考什么样的题,需要注意什么。

在高中数学的学习中,每个人都必须掌握方法。

初入高中不要盲目学习刷题!。

第2讲 因式分解配套练习及答案(训练篇)-2020年数学初高中衔接讲与练

第2讲 因式分解配套练习及答案(训练篇)-2020年数学初高中衔接讲与练

第 2 讲因式分解练习(A)一.选择题:1.下列各式从左到右的变形中,是正确的因式分解的是()( A) (a -b)2 =a 2 - 2ab +b 2(B) m2 -m =m2 (1 -1 ) m(C) a 2 - 3a - 4 =a(a - 3) - 4 (D)3x3 - 9x 2 - 3x = 3x(x 2 - 3x - 1)2.- (2a -b)(2a +b) 是下列多项式()的分解结果(A)4a 2 -b 2(B)4a 2 +b 2(C)- 4a 2 -b2(D)- 4a 2 +b23.下列分解不正确的是()(A)x 2 + 8x +16 = (x + 4)2 (B)- 4a 2 +12ab - 9b 2 = (2a - 3b)2(C) x2 -1x +13 36= (x -1)26(D)4a 2 b 2 + 4ab + 1 = (2ab + 1)24.下列各式中,能用平方差公式分解因此的是()(A)-a 2 +b 2 (B)-a 2 -b 2 (C)a 2 +b 2 (D)a 3 -b 25.已知m+n=-4,mn=5,关于x 的二次三项式x 2 -mnx-m-n 分解因式的结果是(A)(x-1) (x-4) (B)(x+1) (x+4)()(C)(x+1) (x-4) (C)(x-1) (x+4)6. 下列由左到右的变形是正确的因式分解的是()A.a2-b 2+1=(a+b)(a-b)+1;B.(m+3)2=m2+6m+9;C.x 5y-xy 5=xy(x 2+y 2)(x+y)(x-y);D.a 4 - 2a 2 b 2 -b 4 = (a +b)2 (a -b)2二.填空题:7. 分解因式:18m 2 (a -b) - 9m(a -b) = .8. 分解因式:(2m -n)2 - (3m + 2n)2 = . .9. 分解因式:x 2 - 2x -a 2 - 2a = .10. 分解因式:x2 + ꘸xy + 2y2 + 2x + ጤy = _ .11. 分解因式:4a 2 - 5a - 6 = .12.分解因式:6x 2n-1 y m - 4x 2n+1 y 3m= .13.已知∆ABC 的三边 a 、b 、c 满足 a 2 -ac =b2 -bc ,判断∆ABC 的形状. ..14.已知x 2 +x + 1 = 0 ,求x 2007 +x 2006 + ……+x3 +x 2 +x + 1 = ..三.简答题:15. 因式分解:(x2 + x)2 — 1ጤ x2 + x + 2ጤ.16. 因式分解:x + 1 x + ꘸x + ′x + h + 1′.17. 因式分解:(x + ′)ጤ+ (x + ꘸)ጤ— 82.)18. 因式分解:(x2 + xy + y22—ጤxy(x2 + y2).19. 因式分解: x2 - 2xy - 8 y2 -x -14 y - 6 .20. 因式分解:x꘸— 9x + 8.21.因式分解:x8 +x +1.22.如果多项式x2 —a + ′x + ′a—1 能分解成两个一次因式x + h x + h 的乘积,b,c 为整数,则a 的值为多少?23.已知多项式x3 -x 2 + 2x +k 能够进行因式分解,请求出k 的值,并将此多项式因式分解.24.如果kx 2 - 2xy + 3y 2 + 3x - 5 y+ 2 能分解成两个一次因式乘积,求k 2 + 5k + 0.25 的值.因式分解测试(B)一.选择题:1.把多项式4 x2y-4x y2- x3 分解因式得结果是()A. 4xy(x-y)-x2B. –x(x-2y)2C. x(4xy-4y2- x2)D. –x(-4xy+4y2+ x2)2.下列分解因式错误的是()A.a 2-5a+6=(a-2)(a-3)B.1-4m 2+4m=(1-2m)2C.-4x 2 +y 2 =-(2x+y)(2x-y)D.3ab+1a 2b 2 +9=(3+1ab)2 4 23. 在多项式-a 2 -b 2 -2ab,2ab―a 2 ―b 2 ,a 2 -b 2 +2ab,(a+b) 2 -10(a+b)+25 中,能用完全平方公式分解因式的有()(A)1 个(B)2 个(C)3 个(D)4 个4.已知a、b、c 是三角形ABC 的三边长,且满足a2+2b2+c2-2b(a+c)=0,则此三角形是()A 等腰三角形B 等边三角形C 直角三角形D 不能确定5.已知x2+ax-12 能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是()A. 3 个B. 4 个C. 6 个D. 8 个6.实数m= 20203-2020,下列各数中不能整除m 的是()A.2018B. 2019C. 2020D.2021二.填空题:7.因式分解:x2 -xy +xz -yz = .8. 因式分解:x 4 -y 4 + 4x 2 + 4 = .9. 因式分解:x2(x-2)-16(x-2)= .10. 因式分解:6 y2 -11y-10= .11. 因式分解:4x2-4x-y2+4y-3= .12. 如果正整数x、y 满足方程x2-y2=64,则这样的正整数对(x,y)的个数是.13. 若x2+x+m=(x-3)(x+n)对x 恒成立,则n= .14. 已知x-1 是多项式x3-3x+k 的一个因式,那么k= .三.简答题:15. 因式分解:(x2 + x + ጤ)2 + 8x x2 + x + ጤ + 1′x216. 因式分解:x2 + x + 1 x2 + x ++ 2 — 1217. 因式分解: 6x2 - 5xy - 6 y 2 + 2x + 23 y- 20 .18. 因式分解: x4 +x3 - 3x2 - 4x - 4 .19.如果a, b 是整数,且x2 -x -1是ax3 +bx2 +1 的因式,求a、b 的值.20.已知:a, b, c 为三角形的三条边,且a2 + 4ac + 3c2 -3ab - 7bc + 2b2 = 0 . 求证: 2b =a +c .21.如果x2 + hxy + ay2 —′x+ ጤጤy — 2ጤ可分解为两个一次因式的积,求a 的值.22. 已知x꘸+ x2 + x + 1 =꘸,求x2꘸꘸8 + 2x2꘸꘸꘸+ ′x199⺁.23.正数a、b、c 满足ah + a + h = hh + h + h = ha + h + a = ꘸,求:(a + 1)(b + 1)(c + 1)的值.24.若代数式x x + 1 x + 2 x + ꘸+ p 恰好能分解为两个二次整式的乘积(其中二次项系数均为1 且一次项系数相同),求p 的最大值.测试A一选择题:1. D 提示:因式分解的概念是把一个多项式写成整式的乘积的形式;2.D3. B 提示:完成平方公式的运用:a2+2ab+b2=(a+b)24.A提示:平方差公式的运用:a2-b2=(a+b)(a-b)5. A 提示:十字相乘法6.C二填空题:7.9m(a-b)(2m-1)提示:提取公因式9m(a-b);8.-(5m+n)(m+3n)提示:利用平方差公式;9.(x+a)(x-a-2)提示:利用分组分解法(两两分组);10.(x+2y)(x+y+2)提示:利用分组分解法(前三项与后两组)11.(a-2)(4a+3)提示:利用十字相乘法;12.2x2t—1y N(꘸x2—2y2N)提示:提取公因式2x2t—1y N;13.等腰三角形提示:因式分解得:(a-b)(a+b-c)=0,因为a、b、c为三角形得三边,所以a+b-c 为非零数,所以a=b;14.0 提示:三个一分组,每组都有因式x2+x+1三简答题:15.(x+2)(x-1)(x+4)(x-3)提示:(x2+x-2)(x2+x-12)=(x+2)(x-1)(x+4)(x-3)16. ( x2+8x+10)(x+2)(x+6)提示:(x2+8x+7)(x2+8x+15)+15=(x2+8x)2+22(x2+8x)+120=(x2+8x+10)(x2+8x+12) =( x2+8x+10)(x+2)(x+6)17.2(x+2)(x+6)(x2+8x+26)提示:原式=(x + ጤ + 1)ጤ+ (x + ጤ— 1)ጤ— 82令t=x+4,所以t + 1 ጤ— 1 + t — 1 ጤ— 81= t + 1 2 — 1 t + 1 2 + 1 + t — 1 2 + 9 t — 1 2 — 9=2(t2+10)(t2-4)=2(x2+8x+26)(x2+8x+12)=2(x+2)(x+6)(x2+8x+26)18. (x2-xy+y2)2提示:令x+y=u,xy=v所以原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2-xy+y2)219.(x-4y-3)(x+2y+2)提示:x2-2xy-8y2-x-14y-6=(x-4y)(x+2y)+(2x-8y)-3x-6y-6=(x-4y)(x+2y)+2(x-4y)-3(x+2y+2)=(x-4y)(x+2y+2)-3(x+2y+2)=(x-4y-3)(x+2y+2)20.(x-1)(x2+x-8)提示:令x3- 9x+ 8=0则当x=1 时,x3- 9x+ 8=1-9+8=0 则可将多项式分解为x3- 9x+ 8=(x-1)(x2 +bx+c)展开,得(x-1)( x2 +bx+c)X3 +bx2 +cx-x2- bx-c=x3+(b-1)x2+(c-b)x-c= x3- 9x+ 8则可得,b-1=0, c-b=-9, -c=8解得b=1,C=-8则多项式为x3- 9x+ 8=(x- 1)(x2+x-8)21. (x2+x+1)(x2-x+1)(x4-x2+1)提示:原式=x8+2x4+1-x4,=(x4+1)2- (x2)2=(x4+x2+1)( x4-x2+1),=[( x4+2x2+1)-x2]( x4-x2+1),=(x2+x+1)(x2-x+1)( x4+x2+1).22. a=5提示:x2-(a+5)x+5a-1=(x+b)(x+c)= x2+(b+c)x=bc所以:-(a+5)=b+c,且5a-1=bc,即c=—′ —1′+h因为b、c 为整数,所以b=-4,代入得c=-6,则a=5。

论新课改背景下初高中数学的衔接问题

论新课改背景下初高中数学的衔接问题

论新课改背景下初高中数学的衔接问题摘要:新课程改革使初高中数学教学的差异性逐渐凸显出来,一方面,初中数学作为义务教育的基础科目难度一再降低,另一方面,高中数学仍面临实现“应用”与“创新”两大教学目标和选拔性的高考,在这一背景下,初高中数学教学的衔接问题就成为了摆在高中数学教师面前的一道难题。

本文针对当前初高中数学出现“教学断层”的原因给予了分析,并提出了做好衔接环节应注意的几个问题。

关键词:初高中衔接数学教学新课程改革1 初高中数学衔接教学的形成原因及其重要性1.1 初高中数学教学的不同特点随着新课程改革的不断深入,初高中数学教学的差异越来越显著,初中教学带有明显的“义务制”教育色彩,而高中学习则侧重应用能力,并面向三年后的高考选拔。

这就使初、高中两个阶段的教育特点呈现出了较大的差异:初中数学教材难度较低,偏重于常量的研究与定量计算,因此对学生抽象思维的要求不高,加之初中学生不擅长独立思考和自学研究,不具备系统的数学思维。

而高中数学教学不但难度高、内容多,又增加了应用性的知识部分,课时相对较为紧张,因此无法像初中数学那样反复讲解练习,对学生消化理解知识的能力要求更高,高中数学开始增加对数学概念、原理的定性研究和抽象思维,例如立体几何问题的研究,需要从仅仅有平面图形的概念转而形成空间想象能力,学生在短时间内常常不能适应。

此外,高中数学学习更注重培养学生的独立思考能力和对规律的自主探索,《课程标准》中也明确指出教师应“注重培养学生的应用意识和创新精神”,“力求对现实世界中蕴涵的一些数学模式进行思考和做出判断。

”1.2 教学衔接的重要性鉴于上述教学特点的差异,初高中数学教学的目的和成果就产生了明显的不同,也使学生,特别是在新课改中成长起来的初中毕业生,面对陡然上了一个台阶的高中数学课程要求显得手足无措。

因此,高中数学教师必须充分认识到初高中的教学差异,站在学生的立场设计好两个教学阶段之间的衔接,实现定量到定性、形象到抽象学习目标的平稳过渡。

浅析初中与高中数学教学有效衔接的方法

浅析初中与高中数学教学有效衔接的方法
学生的实 际生活 ,更重要 的是符合感性 认识循 序渐进 的转变 和进行很好 的运用 ,还需要 对初 中数 学教材 的其他版本 进行 为理 性认识 的客观规律 , 所 以易于学生掌 握和理解运 用 。 但高 探 究 。 对此 , 要对 高 中大纲版 教材 以及课标 教材在知识 体系等 中数 学却不是 如此 , 与初 中相 比具有很大 的差异性 。 方面的差异性 进行探究 ,同时还 要注 重对学生 的培养所要 达
2 、 初高 中的学 习在环 境方面的不 同 。高 一新生在经 过紧 到的 目标 的探 究 ,力求解决 好初 、高 中数学 的衔 接不顺 利 问 张而 激烈 的中考后 , 终于到 了 自己心 目中的高 中, 认为 自己的 题 。 理想 已经实现 , 学 习暂时可 以告 一段落 , 所 以很 多同学都 处于 3 、 使各种教 学政策有效 的落到实处 。( 1 ) 以学生的具体 情 全身 心的休息状 态 ,并且 在一个新 的陌生的环境 里开始 高 中 况 为依 据 , 实施分 层教 学 : 在数 学教 学 中, 要不 断 的通过各 种 生活并 适应高 中是需要一个过 程的 ,因此虽然他 们在还 没有 方式来 增加对学 生学习的 了解 。 做到在数 学教学 中 , 一切工 作 坚持“ 起点低 、 跨 度小 、 培 训 进入 高 中之前 , 就 已经知道高 中数 学的难度很 大 , 而且有些 内 要 围绕 着学 生 的具体 情况 进行 ,
式和 心理特征 等不熟悉 ,而且课程 的改革导致 高 中教 材在知 学方法 的过 程和形成知识 的过程要重 点展示 :高 中数学 与初 识结 构方面产 生了 巨大的变革 。 在初 中数学课 上 , 学生 可 以积 中数学相 比 , 在抽 象方面更胜一 筹 , 因此对学生 应用知识 的灵

学习高中数学需要哪些教材和资源?

学习高中数学需要哪些教材和资源?

学习高中数学需要哪些教材和资源?学习高中数学必须哪些教材和资源?高中数学是衔接初中数学与高等数学的有用桥梁,其内容覆盖代数、平面几何、三角函数、微积分等多个领域,对学生的逻辑思维、抽象思维和问题解决能力都做出了较高的要求。

学习高中数学需要比较好的教材和资源支撑,才能更有效地掌握知识,提升学习效果。

一、核心教材:高中数学教科书:这是自学高中数学的基本教材,常见包含代数、数学几何、三角函数等内容,并对应有不同的版本教材体系。

不同版本都会按结构有所不同的编排和例题讲解,建议你选择更适合自身学习习惯和教学模式的版本。

配套练习册:教科书配套的练习册,能够提供大量的习题,帮助学生巩固所学知识,并进行针对性的练习。

参考书:根据个人学习需求,可以选择一些针对特定内容的参考书,例如讲解解题技巧、公式推导等方面的内容。

二、辅助资源:网络资源:互联网上拥有丰富的数学学习资源,例如KhanAcademy、可汗学院、网易公开课等平台,提供大量免费的视频课程、练习题和学习资料。

在线学习平台:一些在线学习平台,例如哔哩哔哩Bilibili、Coursera、网易云课堂等,提供优质的数学课程,你可以根据自身需要选择最合适的课程进行自学。

数学软件:一些数学软件,例如GeoGebra、Mathematica、MATLAB等,可以帮助学生进行图形绘制、数据分析、数学建模等操作,提高学习效率。

学习小组和交流平台:加入学习小组或交流平台,与其他同学交流学习心得,相互帮助,共同进步。

专业辅导老师:如有必要,可以寻求专业辅导老师的帮助,解决自学中的疑难问题,提高学习效率。

三、学习建议:认真预习教材:课前预习教材,了解即将学习的内容,并做笔记。

认真听课:课堂上认真听讲,积极思考,并做好笔记。

及时复习:课后及时复习课堂内容,巩固所学知识,并做相关练习。

查阅资料:遇到难以理解的问题,积极地翻阅相关资料,寻求答案。

注重实际练习:多做练习题,并反思解题思路,持续提高解题能力。

初中与高中数学教学有效衔接的方法

初中与高中数学教学有效衔接的方法

试论初中与高中数学教学有效衔接的方法摘要:目前,困扰高中新课程变革的一个很大的问题就是,初高中数学的衔接不是很好,这是一个很普遍的问题,使新课程教学的具体实践进行的不是很顺利。

基于此,本文对初中与高中数学教学有效衔接的方法进行了探究。

关键词:初中数学高中数学有效衔接数学课程,在义务教育时期,主要看重的是学生的数学基础,它是以学生的综合能力的培养,和谐并可持续发展为出发点的。

而高中数学则有很大的不同,主要体现在它更看重的是课程是否可以自由选择,以弘扬学生的个性以及考虑未来的人生为目标。

一、初、高中数学过渡不是很衔接的因素探析1.课标教材内容的衔接不顺新课标要求初中数学在设计教材的时候,要注意结合实际,尽量体现实际,因此,教材在设计的时候主要是在把知识的宽度进行了扩展,而教材的难度却极大的降低了,所以主要表现为练习题又容易做且题量又少,代数式的计算很少,常量计算是最主要的,这很接近于学生的实际生活,更重要的是符合感性认识循序渐进的转变为理性认识的客观规律,所以易于学生掌握和理解运用。

但高中数学却不是如此,与初中相比具有很大的差异性。

2.初高中的学习在环境方面的不同高一新生在经过紧张而激烈的中考后,终于到了自己心目中的高中,认为自己的理想已经实现,学习暂时可以告一段落,所以很多同学都处于全身心的休息状态,并且在一个新的陌生的环境里开始高中生活并适应高中是需要一个过程的,因此虽然他们在还没有进入高中之前,就已经知道高中数学的难度很大,而且有些内容还很抽象,比如函数和映射等一些概念。

所以,刚开始就出现了紧张,畏惧等不良心理状态。

3.初高中数学在教学方式和学习方式方面的不同初中数学教学中,教师对知识内容讲授的很详细,且类型分的很齐全,所以学生只需死记硬背,把具体的概念以及数学公式和老师讲过的同种例题进行熟悉掌握就可以顺利通过考试,取得一个很好的成绩。

但是高中数学教师由于对初中数学教材的知识结构不了解,对初中老师的教学方式以及学生的学习方式和心理特征等不熟悉,而且课程的改革导致高中教材在知识结构方面产生了巨大的变革,但是教师在讲课时,依然运用原来的教学方式和已经养成的习惯,整堂课都在机械的灌输,而且涉及到和概念有关的知识时,一般都不进行深入的讲解,所以对于接下来的例题和习题,学生不能很好的理解也是必然的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 数与式的运算在初中,我们已学习了实数,知道字母可以表示数用代数式也可以表示数,我们把实数和代数式简称为数与式.代数式中有整式(多项式、单项式)、分式、根式.它们具有实数的属性,可以进行运算.在多项式的乘法运算中,我们学习了乘法公式(平方差公式与完全平方公式),并且知道乘法公式可以使多项式的运算简便.由于在高中学习中还会遇到更复杂的多项式乘法运算,因此本节中将拓展乘法公式的内容,补充三个数和的完全平方公式、立方和、立方差公式.在根式的运算中,我们已学过被开方数是实数的根式运算,而在高中数学学习中,经常会接触到被开方数是字母的情形,但在初中却没有涉及,因此本节中要补充.基于同样的原因,还要补充“繁分式”等有关内容.一、乘法公式【公式1】ca bc ab c b a c b a 222)(2222+++++=++证明:2222)(2)(])[()(c c b a b a c b a c b a ++++=++=++222222a ab b ac bc c =+++++∴等式成立【例1】计算:22)312(+-x x 解:原式=22]31)2([+-+x x913223822)2(312312)2(2)31()2()(234222222+-+-=-⨯⨯+⨯+-++-+=x x x x x x x x x x说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列.【公式2】3322))((b a b ab a b a +=+-+(立方和公式)证明: 3332222322))((b a b ab b a ab b a a b ab a b a +=+-++-=+-+ 说明:请同学用文字语言表述公式2. 【例2】计算:))((22b ab a b a ++-解:原式=333322)(])()()][([b a b a b b a a b a -=-+=-+---+ 我们得到:【公式3】3322))((b a b ab a b a -=++-(立方差公式)请同学观察立方和、立方差公式的区别与联系,公式1、2、3均称为乘法公式.【例3】计算:(1))416)(4(2m m m +-+(2))41101251)(2151(22n mn m n m ++-(3))164)(2)(2(24++-+a a a a (4)22222))(2(y xy x y xy x +-++ 解:(1)原式=333644m m +=+ (2)原式=3333811251)21()51(n m n m -=- (3)原式=644)()44)(4(63322242-=-=++-a a a a a (4)原式=2222222)])([()()(y xy x y x y xy x y x +-+=+-+63362332)(y y x x y x ++=+=说明:(1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构.(2)为了更好地使用乘法公式,记住1、2、3、4、…、20的平方数和1、2、3、4、…、10的立方数,是非常有好处的.【例4】已知0132=+-x x ,求331x x +的值. 解:0132=+-x x 0≠∴x 31=+∴xx原式=18)33(3]3)1)[(1()11)(1(2222=-=-++=+-+x x x x xx x x说明:本题若先从方程0132=+-x x 中解出x 的值后,再代入代数式求值,则计算较烦琐.本题是根据条件式与求值式的联系,用整体代换的方法计算,简化了计算.请注意整体代换法.本题的解法,体现了“正难则反”的解题策略,根据题求利用题知,是明智之举.【例5】已知0=++c b a ,求111111()()()a b c b c c a a b+++++的值. 解:b a c a c b c b a c b a -=+-=+-=+∴=++,,,0∴原式=abba c ac c ab bc c b a +⋅++⋅++⋅abcc b a ab c c ac b b bc a a 222)()()(++-=-+-+-= ①abc c ab c c ab b a b a b a 3)3(]3))[((32233+-=--=-++=+abc c b a 3333=++∴ ②,把②代入①得原式=33-=-abcabc说明:注意字母的整体代换技巧的应用. 引申:同学可以探求并证明:))((3222333ca bc ab c b a c b a abc c b a ---++++=-++二、根式0)a ≥叫做二次根式,其性质如下:【例6】化简下列各式:(1)+ (2)1)x +≥解:(1) 原式=2|1|211-+=-=(2) 原式=(1)(2)2 3 (2)|1||2|(1)(2) 1 (1x 2) x x x x x x x x -+-=->⎧-+-=⎨---=≤≤⎩说明||a =的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论.【例7】计算(没有特殊说明,本节中出现的字母均为正数):(1)(2)(3) -+解:(1) 原式23(2623-==--(2) 原式=(3) 原式=+=-+说明:(1)二次根式的化简结果应满足:①被开方数的因数是整数,因式是整式;②被开方数不含能开得尽方的因数或因式.(2)二次根式的化简常见类型有下列两种:①被开方数是整数或整式.化简时,先将它分解因数或因式,然后把开得尽方的因数或因式开出来;②分母中有根式(或被开方数有分母().形式() ,转化为 “分母中有根式”的情况.化简时,要把分母中的根式化为有理式,采取分子、分母同乘以一个根式进行化简.(,其中2+2-).【例8】计算:(1) 21)(1-+-+(2)+解:(1) 原式=22(1()21a b a +--++=--+(2) 原式+=+==说明:有理数的运算法则都适用于加法、乘法的运算律以及多项式的乘法公式、分式二次根式的运算.【例9】设x y ==,求33x y +的值.解:77 14,123x y x y xy ==+=-⇒+==-原式=2222()()()[()3]14(143)2702x y x xy y x y x y xy +-+=++-=-=说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量.三、分式当分式A B 的分子、分母中至少有一个是分式时,AB就叫做繁分式,繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质.【例10】化简11xx x x x-+-解法一:原式=222(1)11(1)1(1)(1)11x x x x x xx x x x x x x x x x x x x x x x x x x++=====--⋅+-+-+++--+ 解法二:原式=22(1)1(1)(1)111()x x x x x x x x x x x x x x x x x x x x x x x++====-⋅-+--+++--⋅说明:解法一的运算方法是从最内部的分式入手,采取通分的方式逐步脱掉繁分式,解法二则是利用分式的基本性质A A mB B m⨯=⨯进行化简.一般根据题目特点综合使用两种方法.【例11】化简222396162279x x x x x x x x++-+-+-- 解:原式=22239611612(3)3(3)(3)2(3)(3)(39)(9)x x x x x x x x x x x x x x x ++--+-=--+-+---++-22(3)12(1)(+3)32(3)(3)2(3)(3)x x x x x x x x +-----==+-+-说明:(1) 分式的乘除运算一般化为乘法进行,当分子、分母为多项式时,应先因式分解再进行约分化简;(2) 分式的计算结果应是最简分式或整式.第二讲 因式分解因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.是一种重要的基本技能.因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等.一、公式法(立方和、立方差公式)在第一讲里,我们已经学习了乘法公式中的立方和、立方差公式:2233()()a b a ab b a b +-+=+ (立方和公式) 2233()()a b a ab b a b -++=- (立方差公式)由于因式分解与整式乘法正好是互为逆变形,所以把整式乘法公式反过来写,就得到:3322()()a b a b a ab b +=+-+ 3322()()a b a b a ab b -=-++这就是说,两个数的立方和(差),等于这两个数的和(差)乘以它们的平方和与它们积的差(和).运用这两个公式,可以把形式是立方和或立方差的多项式进行因式分解. 【例1】用立方和或立方差公式分解下列各多项式:(1) 38x +(2) 30.12527b -分析: (1)中,382=,(2)中3330.1250.5,27(3)b b ==.解:(1) 333282(2)(42)x x x x x +=+=+-+ (2) 333220.125270.5(3)(0.53)[0.50.53(3)]b b b b b -=-=-+⨯+2(0.53)(0.25 1.59)b b b =-++说明:(1) 在运用立方和(差)公式分解因式时,经常要逆用幂的运算法则,如3338(2)a b ab =,这里逆用了法则()n n n ab a b =;(2) 在运用立方和(差)公式分解因式时,一定要看准因式中各项的符号. 【例2】分解因式:(1) 34381a b b -(2) 76a ab -分析:(1) 中应先提取公因式再进一步分解;(2) 中提取公因式后,括号内出现66a b -,可看着是3232()()a b -或2323()()a b -.解:(1) 3433223813(27)3(3)(39)a b b b a b b a b a ab b -=-=-++.(2) 76663333()()()a ab a a b a a b a b -=-=+-22222222()()()()()()()()a ab a ab b a b a ab b a a b a b a ab b a ab b =+-+-++=+-++-+二、分组分解法从前面可以看出,能够直接运用公式法分解的多项式,主要是二项式和三项式.而对于四项以上的多项式,如ma mb na nb +++既没有公式可用,也没有公因式可以提取.因此,可以先将多项式分组处理.这种利用分组来因式分解的方法叫做分组分解法.分组分解法的关键在于如何分组.1.分组后能提取公因式 【例3】把2105ax ay by bx -+-分解因式.分析:把多项式的四项按前两项与后两项分成两组,并使两组的项按x 的降幂排列,然后从两组分别提出公因式2a 与b -,这时另一个因式正好都是5x y -,这样可以继续提取公因式.解:21052(5)(5)(5)(2)ax ay by bx a x y b x y x y a b -+-=---=--说明:用分组分解法,一定要想想分组后能否继续完成因式分解,由此合理选择分组的方法.本题也可以将一、四项为一组,二、三项为一组,同学不妨一试.【例4】把2222()()ab c d a b cd ---分解因式.分析:按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式.解:22222222()()ab c d a b cd abc abd a cd b cd ---=--+ 2222()()abc a cd b cd abd =-+-()()()()ac bc ad bd bc ad bc ad ac bd =-+-=-+说明:由例3、例4可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法交换律,分组后,为了提公因式,又运用了分配律.由此可以看出运算律在因式分解中所起的作用.2.分组后能直接运用公式【例5】把22x y ax ay -++分解因式.分析:把第一、二项为一组,这两项虽然没有公因式,但可以运用平方差公式分解因式,其中一个因式是x y +;把第三、四项作为另一组,在提出公因式a 后,另一个因式也是x y +.解:22()()()()()x y ax ay x y x y a x y x y x y a -++=+-++=+-+ 【例6】把2222428x xy y z ++-分解因式.分析:先将系数2提出后,得到22224x xy y z ++-,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式.解:22222224282(24)x xy y z x xy y z ++-=++-222[()(2)]2(2)(2)x y z x y z x y z =+-=+++-说明:从例5、例6可以看出:如果一个多项式的项分组后,各组都能直接运用公式或提取公因式进行分解,并且各组在分解后,它们之间又能运用公式或有公因式,那么这个多项式就可以分组分解法来分解因式.三、十字相乘法1.2()x p q x pq +++型的因式分解这类式子在许多问题中经常出现,其特点是:(1) 二次项系数是1;(2) 常数项是两个数之积;(3) 一次项系数是常数项的两个因数之和.22()()()()()x p q x pq x px qx pq x x p q x p x p x q +++=+++=+++=++因此,2()()()x p q x pq x p x q +++=++运用这个公式,可以把某些二次项系数为1的二次三项式分解因式. 【例7】把下列各式因式分解:(1) 276x x -+(2) 21336x x ++解:(1) 6(1)(6),(1)(6)7=-⨯--+-=-276[(1)][(6)](1)(6)x x x x x x ∴-+=+-+-=--. (2)3649,4913=⨯+=21336(4)(9)x x x x ∴++=++说明:此例可以看出,常数项为正数时,应分解为两个同号因数,它们的符号与一次项系数的符号相同.(1) 2524x x +-(2) 2215x x --解:(1) 24(3)8,(3)85-=-⨯-+=2524[(3)](8)(3)(8)x x x x x x ∴+-=+-+=-+ (2)15(5)3,(5)32-=-⨯-+=-2215[(5)](3)(5)(3)x x x x x x ∴--=+-+=-+说明:此例可以看出,常数项为负数时,应分解为两个异号的因数,其中绝对值较大的因数与一次项系数的符号相同. 【例9】把下列各式因式分解:(1) 226x xy y +-(2) 222()8()12x x x x +-++分析:(1) 把226x xy y +-看成x 的二次三项式,这时常数项是26y -,一次项系数是y ,把26y -分解成3y 与2y -的积,而3(2)y y y +-=,正好是一次项系数.(2) 由换元思想,只要把2x x +整体看作一个字母a ,可不必写出,只当作分解二次三项式2812a a -+.解:(1) 222266(3)(2)x xy y x yx x y x y +-=+-=+- (2) 22222()8()12(6)(2)x x x x x x x x +-++=+-+-(3)(2)(2)(1)x x x x =+-+-2.一般二次三项式2ax bx c ++型的因式分解大家知道,2112212122112()()()a x c a x c a a x a c a c x c c ++=+++. 反过来,就得到:2121221121122()()()a a x a c a c x c c a x c a x c +++=++我们发现,二次项系数a 分解成12a a ,常数项c 分解成12c c ,把1212,,,a a c c 写成1122a c a c ⨯,这里按斜线交叉相乘,再相加,就得到1221a c a c +,如果它正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解成1122()()a x c a x c ++,其中11,a c 位于上一行,22,a c 位于下一行.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法. 必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解.(1) 21252x x --(2) 22568x xy y +-解:(1) 21252(32)(41)x x x x --=-+3241-⨯(2) 22568(2)(54)x xy y x y x y +-=+-1 254y y -⨯说明:用十字相乘法分解二次三项式很重要.当二次项系数不是1时较困难,具体分解时,为提高速度,可先对有关常数分解,交叉相乘后,若原常数为负数,用减法”凑”,看是否符合一次项系数,否则用加法”凑”,先”凑”绝对值,然后调整,添加正、负号.四、其它因式分解的方法1.配方法【例11】分解因式2616x x +-解:222222616233316(3)5x x x x x +-=+⨯⨯+--=+-(35)(35)(8)(2)x x x x =+++-=+-说明:这种设法配成有完全平方式的方法叫做配方法,配方后将二次三项式化为两个平方式,然后用平方差公式分解.当然,本题还有其它方法,请大家试验.2.拆、添项法【例12】分解因式3234x x -+分析:此多项式显然不能直接提取公因式或运用公式,分组也不易进行.细查式中无一次项,如果它能分解成几个因式的积,那么进行乘法运算时,必是把一次项系数合并为0了,可考虑通过添项或拆项解决.解: 323234(1)(33)x x x x -+=+-- 22(1)(1)3(1)(1)(1)[(1)3(1)]x x x x x x x x x =+-+-+-=+-+--22(1)(44)(1)(2)x x x x x =+-+=+-说明:本解法把原常数4拆成1与3的和,将多项式分成两组,满足系数对应成比例,造成可以用公式法及提取公因式的条件.本题还可以将23x -拆成224x y -,将多项式分成两组32()x x +和244x -+.一般地,把一个多项式因式分解,可以按照下列步骤进行: (1) 如果多项式各项有公因式,那么先提取公因式;(2) 如果各项没有公因式,那么可以尝试运用公式来分解; (3) 如果用上述方法不能分解,那么可以尝试用分组或其它方法(如十字相乘法)来分解; (4) 分解因式,必须进行到每一个多项式因式都不能再分解为止.第三讲 一元二次方程根与系数的关系现行初中数学教材主要要求学生掌握一元二次方程的概念、解法及应用,而一元二次方程的根的判别式及根与系数的关系,在高中教材中的二次函数、不等式及解析几何等章节有着许多应用.本节将对一元二次方程根的判别式、根与系数的关系进行阐述.一、一元二次方程的根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:(1) 当240b ac ->时,右端是正数.因此,方程有两个不相等的实数根:(2) 当240b ac -=时,右端是零.因此,方程有两个相等的实数根:(3) 当240b ac -<时,右端是负数.因此,方程没有实数根.由于可以用24b ac -的取值情况来判定一元二次方程的根的情况.因此,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac ∆=-【例1】不解方程,判断下列方程的实数根的个数:(1) 22310x x -+=(2) 24912y y +=(3) 25(3)60x x +-=解:(1) 2 (3)42110∆=--⨯⨯=>,∴ 原方程有两个不相等的实数根.(2) 原方程可化为:241290y y -+=2 (12)4490∆=--⨯⨯=,∴ 原方程有两个相等的实数根.(3) 原方程可化为:256150x x -+=2 (6)45152640∆=--⨯⨯=-<,∴ 原方程没有实数根.说明:在求判别式时,务必先把方程变形为一元二次方程的一般形式.【例2】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:(1) 方程有两个不相等的实数根; (2) 方程有两个相等的实数根 (3)方程有实数根;(4) 方程无实数根.解:2(2)43412k k ∆=--⨯⨯=-(1) 141203k k ->⇒<;(2) 141203k k -=⇒=; (3) 141203k k -≥⇒≤;(4) 141203k k -<⇒>.【例3】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值. 解:可以把所给方程看作为关于x 的方程,整理得:22(2)10x y x y y --+-+=由于x 是实数,所以上述方程有实数根,因此:222[(2)]4(1)300y y y y y ∆=----+=-≥⇒=,代入原方程得:22101x x x ++=⇒=-. 综上知:1,0x y =-=二、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:x x ==所以:12b x x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为”韦达定理”.上述定理成立的前提是0∆≥.【例4】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +;(2)1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.分析:本题若直接用求根公式求出方程的两根,再代入求值,将会出现复杂的计算.这里,可以利用韦达定理来解答.解:由题意,根据根与系数的关系得:12122,2007x x x x +=-=-(1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---=(2)121212112220072007x x x x x x +-+===- (3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=-(4) 12||x x =====-说明:利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【例5】已知关于x 的方程221(1)104x k x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.分析:(1) 由韦达定理即可求之;(2) 有两种可能,一是120x x =>,二是12x x -=,所以要分类讨论.解:(1) ∵方程两实根的积为5∴ 222121[(1)]4(1)034,412154k k k k x x k ⎧∆=-+-+≥⎪⎪⇒≥=±⎨⎪=+=⎪⎩ 所以,当4k =时,方程两实根的积为5. (2) 由12||x x =得知: ①当10x ≥时,12x x =,所以方程有两相等实数根,故302k ∆=⇒=; ②当10x <时,12120101x x x x k k -=⇒+=⇒+=⇒=-,由于302k ∆>⇒>,故1k =-不合题意,舍去.综上可得,32k =时,方程的两实根12,x x 满足12||x x =. 说明:根据一元二次方程两实根满足的条件,求待定字母的值,务必要注意方程有两实根的条件,即所求的字母应满足0∆≥.【例6】已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 解:(1) 假设存在实数k ,使12123(2)(2)2x x x x --=-成立. ∵ 一元二次方程24410kx kx k -++=的两个实数根∴ 2400(4)44(1)160k k k k k k ≠⎧⇒<⎨∆=--⋅+=-≥⎩,又12,x x 是一元二次方程24410kx kx k -++=的两个实数根∴ 1212114x x k x x k +=⎧⎪⎨+=⎪⎩∴ 222121212121212(2)(2)2()52()9x x x x x x x x x x x x --=+-=+-939425k k k +=-=-⇒=,但0k <.∴不存在实数k ,使12123(2)(2)2x x x x --=-成立.(2) ∵ 222121212211212()44224411x x x x x x k x x x x x x k k +++-=-=-=-=-++∴ 要使其值是整数,只需1k +能被4整除,故11,2,4k +=±±±,注意到0k <,要使12212x x x x +-的值为整数的实数k 的整数值为2,3,5---. 说明:(1) 存在性问题的题型,通常是先假设存在,然后推导其值,若能求出,则说明存在,否则即不存在.(2) 本题综合性较强,要学会对41k +为整数的分析方法.第四讲 二次函数的最值问题二次函数2(0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2bx a =-处取得最大值244ac b a-,无最小值.本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用.【例1】当22x -≤≤时,求函数223y x x =--的最大值和最小值.分析:作出函数及其对称轴在所给范围的草图,(注意:是所给范围的。

相关文档
最新文档