邯郸市2020版中考数学试卷B卷
河北省邯郸市2020版中考数学试卷B卷

河北省邯郸市2020版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·德惠模拟) 如图所示是由四个大小相同的正方体组成的几何体,那么它的主视图是()A .B .C .D .2. (2分)奥运会火炬接力活动的传递总路程约为137000000米,这个数保留两个有效数字并用科学记数法表示为()A . 1.37×108米B . 14×107米C . 13.7×107米D . 1.4×108米3. (2分) (2018七上·沈河期末) 如图是甲、乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A . 甲公司B . 乙公司C . 甲乙公司一样快D . 不能确定4. (2分)若以x为未知数的方程x-2a+4=0的根是负数,则()A . (a-1)(a-2)<0B . (a-1)(a-2)>0C . (a-3)(a-4)<0D . (a-3)(a-4)>05. (2分) (2017七下·水城期末) 将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个圆形小洞后展开铺平得到的图形是()A .B .C .D .6. (2分)下列能够说明“任何数的立方都是非负数”是假命题的反例是()A . -3B . 0C .D . 3.57. (2分)关于x的一元二次方程(m﹣1)x2+6x+m2﹣1=0有一个根是0,则m取值为()A . 1B . ﹣1C . ±1D . 08. (2分) (2018九上·长春开学考) ABCD中, A: B: C: D的值可以是()A . 1:2:3:4B . 1:2:2:1C . 2:2:1:1D . 3:2:3:210. (2分)一同学在n天假期中观察:(1)下了7次雨,在上午或下午;(2)当下午下雨时,上午是晴天;(3)一共有5个下午是晴天;(4)一共有6个上午是晴天。
邯郸市2020版中考数学一模试卷B卷

邯郸市2020版中考数学一模试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列各式中,属于最简二次根式的是()A .B .C .D .2. (2分)今年5月,随着第四条水泥熟料生产线的点火投产,芜湖海螺水泥熟料已达年产6000000吨,用科学记数法可记作()A . 0.6×108吨B . 0.6×107吨C . 6×106吨D . 6×107吨3. (2分) (2017九上·满洲里期末) 方程x2=3x的解是()A . x=3B . x=0C . x1=-3, x2=0D . x1=3, x2=04. (2分) (2018八下·萧山期末) 在下列图案中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .5. (2分) (2017七下·金乡期末) 将100个数据分成8个组,如下表所示,则第五组的频数为()组号12345678频数11141215x131210A . 12B . 13C . 14D . 156. (2分)如图是一个圆柱体,则它的主视图是()A .B .C .D .7. (2分)甲乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,那么这艘轮船在静水中的船速与水流速度分别是()A . 24km/h,8km/hB . 22.5km/h,2.5km/hC . 18km/h,24km/hD . 12.5km/h,1.5km/h8. (2分)(2017·河东模拟) 如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个互异实根.其中正确结论的个数是()A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共13分)9. (1分)(2016·临沂) 分解因式:x3﹣2x2+x=________.10. (1分)(2017·蒸湘模拟) 有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为________.11. (1分) (2018九下·鄞州月考) 圆锥的底面半径为2,母线长为6,则圆锥的侧面积为________12. (1分) (2017八下·东营期末) 如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.13. (1分)如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2,以AD2为一边,做第二个菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于点D3,以AD3为一边做第三个菱形AB3C3D3,使∠B3=60°;依此类推,这样做的第n个菱形ABnCnDn的边ADn的长是________.14. (5分) (2018七上·鄂托克旗期末) 某商店一套冬装的进价为200元,按标价的销售可获利72元,则该服装的标价为.15. (2分)如图,直角坐标系中,Rt△DOC的直角边OC在x轴上,∠OCD=90°,OD=6,OC=3,现将△DOC 绕原点O按逆时针方向旋转,得到△AOB,且点A在x轴上.(1)请直接写出:∠A=________°(2)请求出线段OD扫过的面积________16. (1分)(2017·南岗模拟) 如图,反比例函数y= (k>0)的图象与以原点(0,0)为圆心的圆交于A,B两点,且A(1,),图中阴影部分的面积等于________.(结果保留π)三、解答题 (共10题;共101分)17. (5分) (2019八下·九江期中) 解不等式组,并把它的解集在数轴上表示出来18. (5分)解方程:.19. (16分) 2015年是中国人民抗日战争暨世界反法西斯战争胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为A、B、C、D四类,其中A类表示“非常了解”,B 类表示“比较了解”,C类表示“基本了解”;D类表示“不太了解”,调查的数据经整理后形成尚未完成的条形统计图(如图①)和扇形统计图(如图②):(1)在这次抽样调查中,一共抽查了________ 名学生(2)请把图①中的条形统计图补充完整。
邯郸市2020年数学中考一模试卷B卷

邯郸市2020年数学中考一模试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2019七上·施秉月考) 绝对值不大于2的整数有()A . 2个B . 3个C . 4个D . 5个2. (1分)(2018·西湖模拟) 某企业今年1月份产值为x万元,2月份比1月份增加了10%,3月份比2月份减少了20%,则3月份的产值是()万元.A . (1+10%)(1﹣20%)xB . (1+10%+20%)xC . (x+10%)(x﹣20%)D . (1+10%﹣20%)x3. (1分)(2018·西湖模拟) 如图,已知直线l1 , l2 , l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3 ,若AB=4,AC=6,DF=9,则DE=()A . 5B . 6C . 7D . 84. (1分)(2018·西湖模拟) 右图是某市10月1日至7日一周内“日平均气温变化统计图”.在这组数据中,众数和中位数分别是()A . 13,13B . 14,14C . 13,14D . 14,135. (1分)(2018·西湖模拟) 如图,⊙O的半径为2,点A为⊙O上一点,半径OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是()A . 2B .C . 1D .6. (1分)(2018·西湖模拟) 已知m=|﹣|÷ ,则()A . ﹣9<m<﹣8B . ﹣8<m<﹣7C . 7<m<8D . 8<m<97. (1分)(2018·西湖模拟) 已知二次函数y=﹣x2+2mx,以下点可能成为函数顶点的是()A . (﹣2,4)B . (1,2)C . (﹣1,﹣1)D . (2,﹣4)8. (1分)(2018·西湖模拟) 在菱形ABCD中,记∠ABC=∠α(0°<∠α<90°),菱形的面积记作S,菱形的周长记作C,若AD=2,则()A . C与∠α的大小有关B . 当∠α=45°时,S=C . A,B,C,D四个点可以在同一个圆上D . S随∠α的增大而增大9. (1分)(2018·西湖模拟) 对于二次函数y=x2﹣2mx+3m﹣3,以下说法:①图象过定点(),②函数图象与x轴一定有两个交点,③若x=1时与x=2017时函数值相等,则当x=2018时的函数值为﹣3,④当m=﹣1时,直线y=﹣x+1与直线y=x+3关于此二次函数对称轴对称,其中正确命题是()A . ①②B . ②③C . ①②④D . ①③④10. (1分)(2018·西湖模拟) 如图,在△ABC中,∠A=36°,AC=AB=2,将△ABC绕点B逆时针方向旋转得到△DBE,使点E在边AC上,DE交AB于点F,则△AFE与△DBF的面积之比等于()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)由平面上的点组成图形A,如果连接A中任意两点的线段必定在A内,则称A为平面上的凸图形.给出如图所示的平面上的4个图形(阴影区域及其边界),其中为凸图形的是________(写出所有凸图形的序号)12. (1分)(2018·西湖模拟) 已知a= ,则(4a+b)2﹣(4a﹣b)2为________.13. (1分)(2018·西湖模拟) 标号分别为1,2,3,4,……,n的n张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n可以是________.14. (1分)(2018·西湖模拟) 在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC绕AB所在直线旋转一周,得到的几何体的侧面积为________.15. (1分)(2018·西湖模拟) 定义:关于x的函数y=mx2+nx与y=nx2+mx(其中mn≠0)叫做互为交换函数,若这两个函数图象的顶点关于x轴对称,那么m,n满足的关系式为________.16. (1分)(2018·西湖模拟) 已知△ABC与△ABD不全等,且AC=AD=1,∠ABD=∠ABC=45°,∠ACB=60°,则CD=________.三、解答题 (共7题;共14分)17. (1分) (2019八上·南关期末) 先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2 ,其中a=,b=﹣1.18. (2分)(2018·西湖模拟) 如图,BE是△ABC的角平分线,延长BE至D,使得BC=CD.(1)求证:△AEB∽△CED;(2)若AB=2,BC=4,AE=1,求CE长.19. (2分)(2018·西湖模拟) 从数﹣1,0,1,2,3中任取两个,其和的绝对值为k(k是自然数)的概率记作Pk ,(如:P2是任取两个数,其和的绝对值为2的概率)(1)求k的所有取值;(2)求P3 .20. (3分)(2018·西湖模拟) 二次函数y=(m+1)x2﹣2(m+1)x﹣m+3.(1)求该二次函数的对称轴;(2)过动点C(0,n)作直线l⊥y轴,当直线l与抛物线只有一个公共点时,求n关于m的函数表达式;(3)若对于每一个给定的x值,它所对应的函数值都不大于6,求整数m.21. (2分)(2018·西湖模拟) 已知:在△ABC中,∠A=90°,AB=6,AC=8,点P在边AC上,且⊙P与AB,BC都相切.(1)求⊙P半径;(2)求sin∠PBC.22. (2分)(2018·西湖模拟) 已知函数y1=x﹣m+1和y2= (n≠0)的图象交于P,Q两点.(1)若y1的图象过(n,0),且m+n=3,求y2的函数表达式:(2)若P,Q关于原点成中心对称.①求m的值;②当x>2时,对于满足条件0<n<n0的一切n总有y1>y2 ,求n0的取值范围.23. (2分)(2018·西湖模拟) 已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).(1)如图1,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连结AM交BF于点H,连结GA,GM.①求证:AH=HM;②请判断△GAM的形状,并给予证明;③请用等式表示线段AM,BD,DF的数量关系,并说明理由.(2)如图2,GD⊥BD,连结BF,取BF的中点H,连结AH并延长交DF于点M,请用等式直接写出线段AM,BD,DF的数量关系.参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共14分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、第11 页共11 页。
河北省邯郸市2020年中考数学试卷(II)卷

河北省邯郸市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2016·聊城) -2的相反数是()A . 0B . 2C . -2D . 42. (2分) (2018九上·天台月考) 利用圆内接正多边形,可以设计出非常有趣的图案.下列图案中,是中心对称图形,但不是轴对称图形的是()A .B .C .D .3. (2分)上海原世博园区最大单体建筑“世博轴”,将被改造成为一个综合性的商业中心,该项目营业面积将达130000平方米,这个面积用科学记数法表示为()平方米A . 1.3×104B . 0.13×105C . 1.3×105D . 0.13×1064. (2分)某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()A . 8B . 9C . 10D . 115. (2分)(2018·东营) 为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A . 众数是100B . 中位数是30C . 极差是20D . 平均数是306. (2分) (2017八上·夏津期中) 直线y=3x+6与两坐标轴围成的三角形的面积为()A . 6B . 12C . 3D . 247. (2分)下列方程中,有两个不等实数根的是()A . x2=3x-8B . x2+5x=-10C . 7x2-14x+7=0D . x2-7x=-5x+38. (2分) (2018八上·台州期中) 如图,已知∠1=∠2,则下列条件中,不能使△ABC≌△DBC成立的是()A . AB=CDB . AC=BDC . ∠A=∠DD . ∠ABC=∠DCB9. (2分)(2020·新疆) 四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为()A .B .C .D .10. (2分) (2018九上·晋江期中) 如图是某商场一楼与二楼之间的手扶电梯示意图,其中AB、CD分别表示一楼、二楼地面的水平线,电梯坡面BC的坡度i=1:,则电梯坡面BC的坡角α为()A . 15°B . 30°C . 45°D . 60°11. (2分) (2019八下·长沙期末) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc >0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2 ,且x1≠x2 ,则x1+x2=2.其中,符合题意结论的个数为()A . 1B . 2C . 3D . 412. (2分)等腰梯形的下底是上底的3倍,高与上底相等,这个梯形的腰与下底所夹角的度数为().A . 30°B . 45°C . 60°D . 135°二、填空题 (共4题;共5分)13. (1分)(2016·广州) 分解因式:2a2+ab=________.14. (1分)(2019·徐汇模拟) 在Rt△ABC中,∠C=90°,AB=5,BC=3,则sinA=________.15. (1分) (2019九上·朝阳期中) 如图是测量玻璃管内径的示意图,点D正对10mm刻度线,点A正对30mm 刻度线,DE∥AB.若量得AB的长为6mm,则内径DE的长为________mm。
河北省邯郸市2020版九年级上学期数学期中考试试卷B卷

河北省邯郸市2020版九年级上学期数学期中考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)设A(-1, ),B ,C 是抛物线上的三点,则,,的大小关系为()A .B .C .D .2. (2分)已知⊙O是以坐标原点O为圆心,5为半径的圆,点M的坐标为(﹣3,4),则点M与⊙O的位置关系为()A . M在⊙O上B . M在⊙O内C . M在⊙O外D . M在⊙O右上方3. (2分) (2020九上·高平期末) 已知二次函数y=ax2+bx+c的图象如图所示,则在同一直角坐标系中,一次函数y=ax+b和反比例函数的图象大致是()A .B .C .D .4. (2分) (2020九下·长春模拟) 如图,在中,弦、相交于点,若,,则的大小为()A . 80°B . 100°C . 110°D . 105°5. (2分)若反比例函数经过点(1,2),则下列点也在此函数图象上的是()A . (1,-2)B . (-1,﹣2)C . (0,﹣1)D . (﹣1,﹣1)6. (2分)三角形的外心具有的性质是()A . 到三边的距离相等B . 到三个顶点的距离相等C . 外心在三角形外D . 外心在三角形内7. (2分)如图,四边形ABCD内接于⊙O,若四边形ABCD的外角∠DCE=70°,则∠BAD的度数为()A . 140°B . 110°C . 220°D . 70°8. (2分) (2017九上·岑溪期中) 若点(x1 , y1)、(x2 , y2)和(x3 , y3)分别在反比例函数的图象上,且x1<x2<0<x3 ,则下列判断中正确的是()A . y1<y2<y3B . y3<y1<y2C . y2<y3<y1D . y3<y2<y19. (2分)小王结婚时,在小区门口的平地上放置了一个充气婚庆拱门,其形状如图所示,若将该拱门(拱门的宽度忽略不计)放在平面直角坐标系中,点A的坐标为(1,0).若将该拱门看作是抛物线y=﹣+bx﹣的一部分,则点A与点B的距离为()A . 4B . 5C . 6D . 710. (2分) (2019九下·鞍山月考) 抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断中:①abc <0;②a+b+c>0;③5a-c=0;④当x<或x>6时,y1>y2 ,其中正确的个数有()A . 1B . 2C . 3D . 4二、填空题 (共8题;共8分)11. (1分)将抛物线y=x2﹣2向左平移3个单位,所得抛物线的函数表达式为________12. (1分) (2019八下·嵊州期末) 已知,反比例函数y= 的图象在第二、四象限内,则k的值可以是________ 。
【解析版】2020年河北省中考数学试卷

【解析版】2020年河北省中考数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【分析】根据垂直、垂线的定义,可直接得结论.【解答】解:在平面内,与已知直线垂直的直线有无数条,所以作已知直线的垂线,可作无数条.故选:D.【点评】本题考查了垂直和垂线的定义.掌握垂线的定义是解决本题的关键.2.(3分)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:∵x3x=x2(x≠0),∴覆盖的是:÷.故选:D.【点评】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.3.(3分)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式)判断即可.【解答】解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.【点评】此题考查了因式分解.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.4.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同【分析】根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.【解答】解:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.故选:D.【点评】本题考查了简单组合体的三视图,利用三视图的意义是解题关键.5.(3分)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9B.8C.7D.6【分析】根据统计图中的数据和题意,可以得到a的值,本题得以解决.【解答】解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,故选:B.【点评】本题考查条形统计图、中位数、众数,解答本题的关键是明确题意,利用数形结合的思想解答.6.(3分)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b>DE的长C.a有最小限制,b无限制D.a≥0,b<DE的长【分析】根据角平分线的画法判断即可.【解答】解:以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为半径画弧时,b必须大于DE,否则没有交点,故选:B.【点评】本题考查作图﹣基本作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.7.(3分)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【分析】根据a≠b,可以判断各个选项中的式子是否正确,从而可以解答本题.【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.【点评】本题考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.熟练掌握分式的基本性质是解题的关键.8.(3分)在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 【分析】由以点O为位似中心,确定出点C对应点M,设网格中每个小方格的边长为1,则OC=,OM=2,OD=,OB=,OA=,OR=,OQ=2,OP=2,OH=3,ON=2,由=2,得点D对应点Q,点B对应点P,点A对应点N,即可得出结果.【解答】解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC==,OM==2,OD=,OB==,OA==,OR==,OQ=2,OP==2,OH==3,ON==2,∵==2,∴点D对应点Q,点B对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A.【点评】本题考查了位似变换、等腰直角三角形的性质、勾股定理等知识;熟练掌握位似中心,找出点C对应点M是解题的关键.9.(3分)若=8×10×12,则k=()A.12B.10C.8D.6【分析】根据平方差公式和分式方程的解法,即可得到k的值.【解答】解:方程两边都乘以k,得(92﹣1)(112﹣1)=8×10×12k,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k,∴80×120=8×10×12k,∴k=10.经检验k=10是原方程的解.故选:B.【点评】此题考查了平方差公式和解分式方程,熟练掌握平方差公式和解分式方程的方法是解本题的关键.10.(3分)如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB=CDC.应补充:且AB∥CDD.应补充:且OA=OC【分析】根据两组对边分别相等的四边形是平行四边形判定即可.【解答】解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故选:B.【点评】本题考查平行四边形的判定,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.11.(2分)若k为正整数,则=()A.k2k B.k2k+1C.2k k D.k2+k【分析】根据幂的乘方的运算法则:底数不变,指数相乘解答即可.【解答】解:=((k•k)k=(k2)k=k2k,故选:A.【点评】本题考查了幂的乘方.解题的关键掌握幂的乘方的运算法则:底数不变,指数相乘.12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km 也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l【分析】先作出图形,根据勾股定理和等腰直角三角形的性质即可求解.【解答】解:如图,由题意可得△PAB是腰长6km的等腰直角三角形,则AB=6km,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后,再向西走3km到达l,选项D正确.故选:A.【点评】本题考查的是勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值【分析】直接利用圆内接四边形的性质结合圆周角定理得出答案.【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A.【点评】此题主要考查了三角形的外接圆,正确分类讨论是解题关键.15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对【分析】求出抛物线的顶点坐标为(2,4),由二次函数的性质对甲、乙、丙三人的说法分别进行判断,即可得出结论.【解答】解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.【点评】本题考查了二次函数图象上点的坐标特征、抛物线的顶点坐标等知识;熟练掌握二次函数图象上点的坐标特征是解题的关键.16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4【分析】根据题意可知,三块三角形的面积中,两个较小的面积之和等于最大的面积,再根据三角形的面积,分别计算出各个选项中围成的直角三角形的面积,比较大小,即可解答本题.【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.【点评】本题考查勾股定理的逆定理,解答本题的关键是明确题意,利用勾股定理的逆定理解答.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)已知:﹣=a﹣=b,则ab=6.【分析】直接化简二次根式进而得出a,b的值求出答案.【解答】解:原式=3﹣=a﹣=b,故a=3,b=2,则ab=6.故答案为:6.【点评】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.18.(3分)正六边形的一个内角是正n边形一个外角的4倍,则n=12.【分析】根据多边形的内角和公式求出正六边形的一个内角等于120°,再根据多边形的外角和是360°即可解答.【解答】解:正六边形的一个内角为:,∵正六边形的一个内角是正n边形一个外角的4倍,∴正n边形一个外角为:120°÷4=30°,∴n=360°÷30°=12.故答案为:12.【点评】本题主要考查了多边形的外角和定理,理解多边形外角和中外角的个数,以及正多边形的边数之间的关系,是解题关键.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=(x<0)的图象为曲线L.(1)若L过点T1,则k=﹣16;(2)若L过点T4,则它必定还过另一点T m,则m=5;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有7个.【分析】(1)由题意可求T1~T8这些点的坐标,将点T1的坐标代入解析式可求解;(2)将点T4的坐标代入解析式可求k的值,将点T5代入,可求解;(3)由曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,可得T1,T2,T7,T8与T3,T4,T5,T6在曲线L的两侧,即可求解.【解答】解:(1)∵每个台阶的高和宽分别是1和2,∴T1(﹣16,1),T2(﹣14,2),T3(﹣12,3),T4(﹣10,4),T5(﹣8,5),T6(﹣6,6),T7(﹣4,7),T8(﹣2,8),∵L过点T1,∴k=﹣16×1=﹣16,故答案为:﹣16;(2)∵L过点T4,∴k=﹣10×4=﹣40,∴反比例函数解析式为:y=﹣,当x=﹣8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(﹣16,1),T8(﹣2,8)时,k=﹣16,若曲线L过点T2(﹣14,2),T7(﹣4,7)时,k=﹣14×2=﹣28,若曲线L过点T3(﹣12,3),T5(﹣8,5)时,k=﹣12×3=﹣36,若曲线L过点T4(﹣10,4),T5(﹣8,5)时,k=﹣40,∵曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,∴﹣36<k<﹣28,∴整数k=﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个,∴答案为:7.【点评】本题考查了反比例函数的应用,求出各点的坐标是本题的关键.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m的值.【分析】(1)根据有理数的加法、除法法则计算即可;(2)根据题意列不等式,解不等式,由m是负整数即可求出m的值.【解答】解:(1)==﹣2;(2)根据题意得,<m,∴﹣4+m<3m,∴m﹣3m<4,∴﹣2m<4,∴m>﹣2,∵m是负整数,∴m=﹣1.【点评】此题考查了有理数的运算,解不等式.熟练掌握有理数的运算法则,解不等式的方法是解本题的关键.21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.【分析】(1)根据题意列出代数式即可;(2)根据题意得到25+4a2+(﹣16﹣12a),根据整式加减的法则计算,然后配方,根据非负数的性质即可得到结论.【解答】解:(1)A区显示的结果为:25+2a2,B区显示的结果为:﹣16﹣6a;(2)这个和不能为负数,理由:根据题意得,25+4a2+(﹣16﹣12a)=25+4a2﹣16﹣12a=4a2﹣12a+9;∵(2a﹣3)2≥0,∴这个和不能为负数.【点评】本题考查了配方法的应用,非负数的性质,整式的加减,正确的理解题意是解题的关键.22.(9分)如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA=2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S (答案保留π).扇形EOD【分析】(1)①利用公共角相等,根据SAS证明三角形全等便可;②由全等三角形得∠C=∠E,再利用三角形外角性质得结论;(2)当CP与小半圆O相切时,∠C最大,求出∠DOE便可根据扇形的面积公式求得结果.【解答】解:(1)①在△AOE和△POC中,,∴△AOE≌△POC(SAS);②∵△AOE≌△POC,∴∠E=∠C,∵∠1+∠E=∠2,∴∠1+∠C=∠2;(2)当∠C最大时,CP与小半圆相切,如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴.【点评】本题主要考查了圆的切线的性质,全等三角形的判定与性质,三角形的外角性质,直角三角形的性质,扇形的面积计算,关键在于掌握各个定理,灵活运用这些性质解题.23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x (厘米),Q =W 厚﹣W 薄.①求Q 与x 的函数关系式;②x 为何值时,Q 是W 薄的3倍?[注:(1)及(2)中的①不必写x 的取值范围]【分析】(1)由木板承重指数W 与木板厚度x (厘米)的平方成正比,可设W =kx 2(k≠0).将x =3时,W =3代入,求出k =,即可得出W 与x 的函数关系式;(2)①设薄板的厚度为x 厘米,则厚板的厚度为(6﹣x )厘米,将(1)中所求的解析式代入Q =W 厚﹣W 薄,化简即可得到Q 与x 的函数关系式;②根据Q 是W 薄的3倍,列出方程﹣4x+12=3×x 2,求解即可.【解答】解:(1)设W =kx 2(k≠0).∵当x =3时,W =3,∴3=9k ,解得k =,∴W 与x 的函数关系式为W =x 2;(2)①设薄板的厚度为x 厘米,则厚板的厚度为(6﹣x )厘米,∴Q =W 厚﹣W 薄=(6﹣x )2﹣x 2=﹣4x+12,即Q 与x 的函数关系式为Q =﹣4x+12;②∵Q 是W 薄的3倍,∴﹣4x+12=3×x 2,整理得,x 2+4x ﹣12=0,解得,x 1=2,x 2=﹣6(不合题意舍去),故x为2时,Q是W的3倍.薄【点评】本题考查了二次函数的应用,待定系数法求二次函数的解析式,求出W与x的函数关系式是解题的关键.24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【分析】(1)根据待定系数法求得即可;(2)画出直线l,求得两直线的交点,根据勾股定理即可求得直线l'被直线l和y轴所截线段的长;(3)求得两条直线与直线y=a的交点横坐标,分三种情况讨论求得即可.【解答】解:(1)∵直线l:y=kx+b中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线l的解析式为y=3x+1;∴直线l′的解析式为y=x+3;(2)如图,解得,∴两直线的交点为(1,4),∵直线l′:y=x+3与y轴的交点为(0,3),∴直线l'被直线l和y轴所截线段的长为:=;(3)把y=a代入y=3x+1得,a=3x+1,解得x=;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;当a﹣3+=0时,a=,当(a﹣3+0)=时,a=7,当(+0)=a﹣3时,a=,∴直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为或7或.【点评】本题考查了一次函数图象与几何变换,两直线相交问题,待定系数法求一次函数的解析式,分类讨论是解题的关键.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.【分析】(1)利用概率公式计算即可.(2)利用两点之间的距离公式计算即可.(3)不妨设甲连续k次正确移动后两人相距2个单位,则有|8+2k﹣4k|=2,解得k=3或5.如果k次中,有1次两人都对都错,则有|6+2(k﹣1)﹣4(k﹣1)|=2,解得k=3或5,如果k次中,有2次两人都对都错,则有|4+2(k﹣2)﹣4(k﹣2)|=2,解得k =3或5,探究规律,可得结论.【解答】解:(1)∵经过第一次移动游戏,甲的位置停留在正半轴上,∴必须甲对乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,=.∴P甲对乙错(2)由题意m=5﹣4n+2(10﹣n)=25﹣6n.n=4时,离原点最近.(3)不妨设甲连续k次正确移动后两人相距2个单位,则有|8+2k﹣4k|=2,解得k=3或5.如果k次中,有1次两人都对都错,则有|6+2(k﹣1)﹣4(k﹣1)|=2,解得k=3或5,如果k次中,有2次两人都对都错,则有|4+2(k﹣2)﹣4(k﹣2)|=2,解得k=3或5,…,综上所述,满足条件的k的值为3或5.【点评】本题考查概率公式,数轴,代数式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tanC=.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=,请直接写出点K被扫描到的总时长.【分析】(1)如图1中,过点A作AH⊥BC于H.解直角三角形求出AH即可.(2)利用相似三角形的性质求解即可.(3)分两种情形:当0≤x≤3时,当3<x≤9时,分别画出图形求解即可.(4)求出CK的长度,以及CQ的最大值,利用路程与速度的关系求解即可.【解答】解:(1)如图1中,过点A作AH⊥BC于H.∵AB=AC,AH⊥BC,∴BH=CH=4,∠B=∠C,∴tan∠B=tan∠C==,∴AH=3,AB=AC===5.∴当点P在BC上时,点P到A的最短距离为3.(2)如图1中,∵∠APQ=∠B,∴PQ∥BC,∴△APQ∽△ABC,∵PQ将△ABC的面积分成上下4:5,∴=()2=,∴=,∴AP=,∴PM=AP=AM=﹣2=.(3)当0≤x≤3时,如图1﹣1中,过点P作PJ⊥CA交CA的延长线于J.∵PQ∥BC,∴=,∠AQP=∠C,∴=,∴PQ=(x+2),∵sin∠AQP=sin∠C=,∴PJ=PQ•sin∠AQP=(x+2).当3≤x≤9时,如图2中,过点P作PJ⊥AC于J.同法可得PJ=PC•sin∠C=(11﹣x).(4)由题意点P的运动速度==单位长度/秒.当3<x≤9时,设CQ=y.∵∠APC=∠B+∠BAP=∠APQ+∠CPQ,∠APQ=∠B,∴∠BAP=∠CPQ,∵∠B=∠C,∴△ABP∽△PCQ,∴=,∴=,∴y=﹣(x﹣7)2+,∵﹣<0,∴x=7时,y有最大值,最大值=,∵AK=,∴CK=5﹣=<当y=时,=﹣(x﹣7)2+,解得x=7±,∴点K被扫描到的总时长=(+6﹣3)÷=23秒.方法二:①点P在AB上的时候,有11/4个单位长度都能扫描到点K;②在BN阶段,当x在3~5.5(即7﹣1.5)的过程,是能扫到K点的,在5.5~8.5(即7+1.5)的过程是扫不到点K的,但在8.5~9(即点M到N全部的路程)能扫到点K.所以扫到的时间是[(9﹣8.5)+(5.5﹣3)+]÷=23(秒).【点评】本题属于三角形综合题,考查了等腰三角形的性质,解直角三角形,相似三角形的判定和性质,二次函数的性质等知识,解题的关键是理解题意,学会构建二次函数解决CQ的最值问题,属于中考压轴题.。
2020年河北省邯郸市中考数学模拟试卷(原卷+解析卷)
试题解析一.选择题(共12小题)1.下列几个数中,属于无理数的数是()A.0.1B.√4C.πD.−3 4【解答】解:A.0.1是有限小数,属于有理数,故本选项不合题意;B.√4=2,是整数,属于有理数,故本选项不合题意;C.π是无理数,故本选项符合题意;D.−34是分数,属于有理数,故本选项不合题意.故选:C.2.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科学记数法表示为()A.3.7×10﹣5克B.3.7×10﹣6克C.37×10﹣7克D.3.7×10﹣8克【解答】解:1克=1000毫克,将0.000037毫克用科学记数法表示为:3.7×10﹣8克.故选:D.3.数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a的值是()A.3B.4.5C.6D.18【解答】解:∵数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,∴9﹣a=2a﹣9,解得:a=6,故选:C.4.下列函数中,y是x的反比例函数的是()A.y=2x B.y=−23x﹣1C.y=22x−1D.y=﹣x【解答】解:A、y=2x是正比例函数,故本选项不符合题意.B、y是x的反比例函数,故本选项符合题意;C、y不是x的反比例函数,故本选项不符合题意;D、y=﹣x是正比例函数,故本选项不符合题意;故选:B.5.函数y =√x−1x的自变量x 的取值范围是( )A .x >1B .x ≥1C .x ≥1且x ≠0D .x ≤1【解答】解:根据题意得:x ﹣1≥0且x ≠0, 解得:x ≥1. 故选:B . 6.方程2x−3=12x+1的解为( )A .x =3B .x =2C .x =−53D .x =−12【解答】解:去分母得:4x +2=x ﹣3, 解得:x =−53,经检验x =−53是分式方程的解, 故选:C .7.已知二元一次方程组{x +y =12x +4y =9,则x 2−2xy+y 2x 2−y 2的值是( )A .﹣5B .5C .﹣6D .6【解答】解:{x +y =1①2x +4y =9②,②﹣①×2得,2y =7,解得y =72, 把y =72代入①得,72+x =1,解得x =−52,∴x 2−2xy+y 2x 2−y 2=(x−y)2(x+y)(x−y)=x−y x+y=−52−72−52+72=−6故选:C .8.若2m =a ,32n =b ,m ,n 为正整数,则23m +10n 的值等于( ) A .a 3b 2B .a 2b 3C .a 3+b 2D .3a +2b【解答】解:∵32n =b , ∴25n =b , ∴210n =b 2,∴23m +10n =(2m )3•210n =a 3b 2, 故选:A .9.A ,B 两地相距180km ,新修的高速公路开通后,在A ,B 两地间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1h .若设原来的平均车速为xkm /h ,则根据题意可列方程为( ) A .180x −180(1+50%)x =1 B .180(1+50%)x −180x =1 C .180x−180(1−50%)x=1D .180(1−50%)x−180x=1【解答】解:设原来的平均车速为xkm /h ,则根据题意可列方程为:180x−180(1+50%)x=1.故选:A .10.由二次函数y =2(x ﹣3)2+1可知( ) A .其图象的开口向下 B .其图象的对称轴为x =﹣3C .其最大值为1D .当x <3时,y 随x 的增大而减小 【解答】解: ∵y =2(x ﹣3)2+1,∴抛物线开口向上,对称轴为x =3,顶点坐标为(3,1), ∴函数有最小值1,当x <3时,y 随x 的增大而减小, 故选:D .11.二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y =−ax 与正比例函数y =bx 在同一坐标系内的大致图象是( )A .B .C .D .【解答】解:∵二次函数y =ax 2+bx +c 的图象开口方向向下, ∴a <0,对称轴在y 轴的左边, ∴x =−b2a <0, ∴b <0,∴反比例函数y =−a x的图象在第一三象限, 正比例函数y =bx 的图象在第二四象限, 故选:D .12.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是( )A .两个转盘转出蓝色的概率一样大B .如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性变小了C .先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D .游戏者配成紫色的概率为16【解答】解:A 、A 盘转出蓝色的概率为12、B 盘转出蓝色的概率为13,此选项错误;B 、如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性不变,此选项错误;C 、由于A 、B 两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D 、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种, 所以游戏者配成紫色的概率为16,故选:D .二.填空题(共6小题)13.若点(m +3,﹣4)和点(﹣4,n +1)关于x 轴对称,则m +n = ﹣4 . 【解答】解:∵点(m +3,﹣4)和点(﹣4,n +1)关于x 轴对称, ∴m +3=﹣4,n +1=4, 解得:m =﹣7,n =3, 则m +n =﹣4. 故答案为:﹣4.14.分解因式:4m 2﹣16n 2= 4(m +2n )(m ﹣2n ) . 【解答】解:原式=4(m +2n )(m ﹣2n ). 故答案为:4(m +2n )(m ﹣2n )15.已知:y =y 1+y 2,y 1与x 2成正比例,y 2与x 成反比例,且x =1时,y =3;x =﹣1时,y =1,则x =−12时,y = −32 . 【解答】解:∵y 1与x 2成正比例, ∴y 1=ax 2成正比例, ∵y 2与x 成反比例, ∴y 2=bx ∵y =y 1+y 2, ∴y =ax 2+bx,∵x =1时,y =3;x =﹣1时,y =1, ∴{3=a +b 1=a −b ,解得{a =2b =1,∴y =2x 2+1x ,则x =−12时,y =2×14−2=−32. 故答案为:−32.16.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数会比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有 (2m +3) 人(用含有m 的代数式表示)【解答】解:∵设会弹古筝的有m 人,则会弹钢琴的人数为:m +10, ∴该班同学共有:m +m +10﹣7=2m +3, 故答案为:(2m +3). 17.观察下面的变形规律:11×2=1−12,12×3=12−13,13×4=13−14,……(1)若n 为正整数,请你猜想:1n(n+1)=1n−1n+1;(2)求和:11×2+12×3+13×4+⋯+12019×2020= 20192020.【解答】解:(1)若n 为正整数,1n(n+1)=1n−1n+1,故答案为:1n −1n+1;(2)11×2+12×3+13×4+⋯+12019×2020=1−12+12−13+13−14+⋯+12019−12020 =1−12020 =20192020, 故答案为:20192020.18.某公司在农村租用了720亩闲置土地种植了乔木型、小乔木型和灌木型三种茶树.为达到最佳种植收益,要求种植乔木型茶树的面积是小乔木型茶树面积的2倍,灌木型茶树的面积不得超过乔木型茶树面积的75倍,但种植乔木型茶树的面积不得超过270亩.到茶叶采摘季节时,该公司聘请当地农民进行采摘,每人每天可以采摘0.4亩乔木型茶叶,或者采摘0.5亩小乔木型茶叶,或者采摘0.6亩灌木型茶叶,若该公司聘请一批农民恰好20天能采摘完所有茶叶,则种植乔木型茶树的面积是 260 亩.【解答】解:设种植小乔木型茶树x 亩,则种植乔木型茶树2x 亩,灌木型茶树(720﹣3x )亩,依题意,得:{720−3x ≤75×2x 2x ≤270,解得:124429≤x ≤135.设有a 个工人来采摘茶叶,则2x 0.4a+x 0.5a+720−3x 0.6a=20,整理,得:x +600=10a , ∴a =60+x10, ∵a 为正整数, ∴x 10为整数,∴x 为10的倍数, 又∵124429≤x ≤135,∴x =130, ∴2x =260. 故答案为:260. 三.解答题(共5小题)19.先化简,再求值:(2x 2x+1−14x 2+2x )÷(1−4x 2+14x),其中x =3.【解答】解:原式=4x 2−12x(2x+1)÷4x−4x 2−14x =(2x+1)(2x−1)2x(2x+1)•4x −(2x−1)2=−22x−1, 当x =3时,原式=−25.20.已知关于x ,y 的二元一次方程组{x +y =3①2x −3y =3k +4②的解满足x +2y >4,求k 的取值范围.【解答】解:{x +y =3①2x −3y =3k +4②,①×3+②得5x =3k +13 解得x =3k+135, ①×2﹣②得5y =2﹣3k 解得y =2−3k5, ∵方程组{x +y =3①2x −3y =3k +4②的解满足x +2y >4,∴3k+135+2(2−3k)5>4,∴k 的取值范围是k <﹣1.21.如图,已知反比例函数y =kx 的图象与一次函数y =x +b 的图象交于点A (1,4),点B (﹣4,n ). (1)求n 和b 的值; (2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.【解答】解:(1)把A 点(1,4)分别代入反比例函数y =kx ,一次函数y =x +b , 得k =1×4,1+b =4, 解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =4x 的图象上, ∴n =4−4=−1;(2)如图,设直线y =x +3与y 轴的交点为C , ∵当x =0时,y =3, ∴C (0,3),∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.22.如图,在△ABC 中,∠B =90°,cosA =57,D 是AB 上的一点,连接DC ,若∠BDC =60°,BD =2√3.试求AC 的长.【解答】解:在△ABC 中,∠B =90°,cosA =57, ∴AB AC=57.设:AB =5x ,AC =7x , 由勾股定理 得BC =2√6x ,在Rt △DBC 中,∠BDC =60°,BD =2√3, ∴BC =BD tan60°=2√3×√3=6, ∴2√6x =6, 解得 x =√62, ∴AC =7x =7√62.23.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,若两车合作,各运12趟才能完成,需支付运费共4800元.若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的2倍,已知乙车每趟运费比甲车少200元. (1)分别求出甲、乙两车每趟的运费; (2)若单独租用甲车运完此堆垃圾,需多少趟?(3)若同时租用甲、乙两车,则甲车运x 趟,乙车运y 趟,才能运完此堆垃圾,其中x ,y 均为正整数.①当x =10时,y = 16 ;当y =10时,x = 13 ; ②用含x 的代数式表示y ; 探究:(4)在(3)的条件下:①用含x 的代数式表示总运费w ;②要想总运费不大于4000元,甲车最多需运多少趟?【解答】(1)解:设甲、乙两车每趟的运费分别为m 元、n 元, 由题意得{m −n =20012(m +n)=4800解得:{m =300n =100答:甲、乙两车每趟的运费分别为300元、100元;(2)解:设单独租用甲车运完此堆垃圾,需运a 趟,由题意得 12(1a +12a)=1,解得 a =18,经检验a =18是原方程的解;答:单独租用甲车运完此堆垃圾,需运18趟; (3)①由题意得:x 18+y 36=1,∴当x =10时,y =16; 当y =10时,x =13; 故答案为:16,13. ②∵x 18+y 36=1,∴y =36﹣2x ,(4)①w =300x +100y =300x +100(36﹣2x ) =100x +3600,(0<x <18,且x 为正整数), ②由题意,得100x +3 600≤4 000. ∴x ≤4.答:甲车最多需运4趟.。
河北省2020年中考数学试卷B卷(新版)
河北省2020年中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10个小题,每小题3分,满分30分.) (共10题;共30分)1. (3分) (2020七下·临河期末) 在实数:3.14159,,1.010010001....,,,中,无理数有()A . 1个B . 2个C . 3个D . 4个2. (3分)(2018·长春模拟) 如图所示的几何体是由五个完全相同的正方体组成的,它的俯视图是()A .B .C .D .3. (3分) (2016·内江) 2016年“五一”假期期间,某市接待旅游总人数达到了9 180 000人次,将9 180 000用科学记数法表示应为()A . 918×104B . 9.18×105C . 9.18×106D . 9.18×1074. (3分) (2019八下·南沙期末) 某鞋店试销一种新款女鞋,销售情况如下表所示:型号2222.52323.52424.525数量(双)351015832鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A . 平均数B . 众数C . 中位数D . 方差5. (3分) (2017九上·丹江口期中) 如图,点A,B,C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A . 25°B . 50°C . 60°D . 80°6. (3分) (2016七下·邻水期末) 在方程组中,若未知数x,y满足x+y>0,则m的取值范围在数轴上的表示应是如图所示的()A .B .C .D .7. (3分)已知关于x的一元二次方程x2﹣bx+c=0的两根分别为x1=1,x2=﹣2,则b与c的值分别为()A . b=﹣1,c=2B . b=1,c=﹣2C . b=1,c=2D . b=﹣1,c=﹣28. (3分)某班级为筹备运动会,准备用365元购买两种运动服.其中甲种运动服20元/套,乙种运动服35元/套.在钱都用尽的条件下.有购买方案()A . 1种B . 2种C . 3种D . 4种9. (3分)(2018·威海) 若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y= (k<0)上,则y1 , y2 ,y3的大小关系是()A . y1<y2<y3B . y3<y2<y1C . y2<y1<y3D . y3<y1<y210. (3分) (2019八上·桐梓期中) 如图,∠1=∠2,∠3=∠4,则下面结论中错误的是()A . △ADC≌△BCDB . △ABD≌△BACC . △AOB≌△CODD . △AOD≌△BOC二、填空题(本大题共6个小题,每小题3分,满分18分.) (共6题;共18分)11. (3分) (2020八上·乌海期末) 分解因式:9m3-4m=________。
2020年中考数学试卷(word版,含答案)
2020年初中学业水平考试数学答题注意事项1、本试卷共6页,满分150分,考试试卷150分钟。
2、答案全部写在答题卡上,写在本试卷上无效。
3、答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其它答案,答非选择题必须用0.5毫米黑色墨水签字笔,在答题卡上对应题号的答题区域书写答案,注意不要答错位置,也不要超界。
4、作图必须用2B铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共8小题,每小题3分,共24分。
在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.2019的相反数是11A. B.-2019 C.- D.-2019201920192.下列运算正确的是A.a2+a3=a5B.(a2)3=a5C.a6÷a3=a2D.(ab2)3=a3b63.一组数据:2、4、4、3、7、7,则这组数据的中位数是A.3B. 3.5C.4D.74.一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等A.105°B.100°C.75°D.60°5.一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是A.20πB.15πC.12πD.9π6.不等式x一1≤2的非负整数解有A.1个B.2个C.3个D.4个7.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是A.63—πB.63-2πC.63+πD.3+2π( 计算:( )-1 -(π-1)0 + 1 - 3 )÷8. 如图在平面直角坐标系 xoy 中,菱形 ABCD 的顶点 A 与原点 o 重合,顶点 B 落在 x 轴的k正半轴上,对角线 AC 、BD 交于点 M ,点 D 、M 恰好都在反比例函数 y= (x>0)的图像上xAC,则 的值为BDA.2B. 3C. 2D. 5二、填空题, 本大题共 10 小题,每小题 3 分,共 30 分,不需写出解答过程,请把答案直 接填写在答题卡相应位置上)9. 实数 4 的算术平方根为▲ 10. 分解因式 a 2-2a=▲ 11. 宿迁近年来经济快速发展,2018 年 GDP 约达到 275 000 000 000 元。
河北省邯郸市2020年(春秋版)中考数学模拟试卷B卷
河北省邯郸市2020年(春秋版)中考数学模拟试卷B卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2019八上·驿城期中) 下列实数中的无理数是()A .B .C .D .2. (2分)下列各式能用完全平方式进行分解因式的是()A . x2+1B . x2+2x-1C . x2+x+1D . x2+4x+43. (2分) (2018九上·淮阳期中) 化简﹣()2得()A . 2B . ﹣4x+4C . xD . 5x﹣24. (2分)(2016·石家庄模拟) 不等式组的解集在数轴上表示正确的是()A .B .C .D .5. (2分) (2019八上·桐梓期中) 如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3等于()A . 50°B . 30°C . 20°D . 15°6. (2分)(2017·天津模拟) 如图是由6个大小相同的正方体组成的几何体,它的左视图是()A .B .C .D .7. (2分)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A .B .C .D .8. (2分)(2020·宿州模拟) 如图⊙O的直径垂直于弦,垂足是,,,的长为()A .B . 4C .D . 89. (2分) (2019八下·潘集期中) 如图,将矩形沿折叠,使顶点恰好落在的中点上.若,,则的长为()A . 4B .C . 4.5D . 510. (2分)(2020·龙东) 已知关于x的分式方程的解为正数,则c的取值范围是()A .B . 且C .D . 且11. (2分) (2019八下·东莞期末) 某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h和注水时间t之间关系的是()A .B .C .D .12. (2分)如图,在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作半圆O交BC于点M,N,半圆O与AB,AC相切,切点分别为D,E,则半圆O的半径和∠MND的度数分别为()A . 2;22.5°B . 3;30°C . 3;22.5°D . 2;30°二、填空题: (共6题;共9分)13. (1分)(2017·巨野模拟) 在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20303550100学生数(人)51051510在这次活动中,该班同学捐款金额的众数和中位数分别是________.14. (1分) (2017八下·鞍山期末) 如图,在▱ABCD中,AC,BD相交于点O,点E是BC边上的中点,且OE=2cm,则边CD的长是________ cm.15. (1分) (2020九上·北京月考) 在平面直角坐标系xOy中,直线y=kx+4与x,y轴分别交于点A,B,若将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,则k的值为________.16. (1分)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为________ .17. (4分)观察下列等式:①1+6×1=42﹣9×12;②1+6×2=72﹣9×12;③1+6×3=102﹣9×32;…根据上述规律解集下列问题:(1)完成第四个等式:1+6×________=________2﹣9×________2;(2)写出你猜想的第n个等式(用含n的式子表示)________18. (1分)如图,AD是⊙O的直径,弦BC⊥AD,连接AB、AC、OC,若∠COD=60°,则∠BAD=________三、解答题: (共6题;共54分)19. (5分)(2018·兰州) 先化简,再求值:,其中.20. (5分)(2018·山西) 2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.21. (10分) (2019九上·南阳月考) 暑假到了,即将迎来手机市场的销售旺季.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)40002500售价(元/部)43003000该商场计划投入15.5万元资金,全部用于购进两种手机若干部,期望全部销售后可获毛利润不低于2万元.(毛利润=(售价﹣进价)×销售量)(1)若商场要想尽可能多的购进甲种手机,应该安排怎样的进货方案购进甲乙两种手机?(2)通过市场调研,该商场决定在甲种手机购进最多的方案上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.22. (9分)(2016·深圳模拟) 某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为________,并把条形统计图补充完整;(2)扇形统计图中m=________,n=________,表示“足球”的扇形的圆心角是________度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.23. (10分) (2020九上·兴国期末) 如图,在中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作于点H,连接DE交线段OA于点F.(1)试猜想直线DH与⊙O的位置关系,并说明理由;(2)若AE=AH,EF=4,求DF的值.24. (15分)(2019·东湖模拟) △ABC中,BC=12,高AD=8,矩形EFGH的一边GH在BC上,顶点E、F分别在AB、AC上,AD与EF交于点M.(1)求证:;(2)设EF=x,EH=y,写出y与x之间的函数表达式;(3)设矩形EFGH的面积为S,求S与x之间的函数表达式,并写出S的最大值.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共6题;共9分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共6题;共54分)19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
邯郸市2020版中考数学试卷B卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分) (2019八上·深圳期末) 下列运算中正确的是()
A .
B .
C .
D .
2. (2分)下列说法正确的是
A . 相等的圆心角所对的弧相等
B . 无限小数是无理数
C . 阴天会下雨是必然事件
D . 在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k
3. (2分) (2016八上·无锡期末) 下列说法:
①有理数和数轴上的点一一对应;
②成轴对称的两个图形是全等图形;
③- 是17的平方根;
④等腰三角形的高线、中线及角平分线重合.
其中正确的有()
A . 0个
B . 1
C . 2个
D . 3个
4. (2分)(2019·陕西) 若正比例函数的图象经过点O(a-1,4),则a的值为()
A . -1
B . 0
C . 1
D . 2
5. (2分) (2019·陕西) 下列计算正确的是()
A .
B .
C .
D .
6. (2分)(2019·陕西) 如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E。
若DE=1,则BC的长为()
A . 2+
B .
C .
D . 3
7. (2分)(2019·陕西) 在平面直角坐标系中,将函数的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()
A . (2,0)
B . (-2,0)
C . (6,0)
D . (-6,0)
8. (2分)(2019·陕西) 如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为()
A . 1
B .
C . 2
D . 4
9. (2分)(2019·陕西) 如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()
A . 20°
B . 35°
C . 40°
D . 55°
10. (2分)(2019·陕西) 在同一平面直角坐标系中,若抛物线与
关于y轴对称,则符合条件的m,n的值为()
A . m= ,n=
B . m=5,n= -6
C . m= -1,n=6
D . m=1,n= -2
二、填空题 (共4题;共4分)
11. (1分)(2017·金华) 分解因式: ________
12. (1分)(2019·陕西) 若正六边形的边长为3,则其较长的一条对角线长为________.
13. (1分)(2019·陕西) 如图,D是矩形AOBC的对称中心,A(0,4),B(6,0),若一个反比例函数的图象经过点D,交AC于点M,则点M的坐标为________.
14. (1分)(2019·陕西) 如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC 边上,且BM=6. P为对角线BD上一点,则PM—PN的最大值为________.
三、解答题 (共11题;共95分)
15. (5分) (2019七下·常熟期中) 计算:
(1) ;
(2) ;
(3)
16. (5分)(2017·裕华模拟) 计算:
(1)(﹣2)3÷ +3×|1﹣(﹣2)2|
(2)﹣12﹣(﹣)÷ ×[﹣2+(﹣3)2].
17. (5分)(2019·陕西) 如图,在△ABC中,AB=AC,AD是BC边上的高。
请用尺规作图法,求作△ABC的外接圆。
(保留作图痕迹,不写做法)
18. (5分)(2019·陕西) 如图,点A,E,F,B在直线l上,AE=BF,AC//BD,且AC=BD,求证:CF=DE
19. (15分)(2019·陕西) 本学期初,某校为迎接中华人民共和国建国七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动。
校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如下图所示:
根据以上信息,解答下列问题:
(1)补全上面两幅统计图,写出本次所抽取学生四月份“读书量”的众数;
(2)求本次所抽取学生四月份“读书量”的平均数;
(3)已知该校七年级有1200名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数。
20. (5分)(2019·陕西) 小明利用刚学过的测量知识来测量学校内一棵古树的高度。
一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示。
于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器DC,测得古树的顶端A的仰角为45°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动带点F 时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF=1.6米,测倾器的高度CD=0.5米。
已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,求这棵古树的高度AB。
(小平面镜的大小忽略不计)
21. (10分)(2019·陕西) 根据记录,从地面向上11km以内,每升高1km,气温降低6℃;又知在距离地面11km以上高空,气温几乎不变。
若地面气温为m(℃),设距地面的高度为x(km)处的气温为y(℃)(1)写出距地面的高度在11km以内的y与x之间的函数表达式;
(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26℃时,飞机距离地面的高度为7km,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12km的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12km时,飞机外的气温。
22. (10分)(2019·陕西) 现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球。
其中,A 袋装有2个白球,1个红球;B袋装有2个红球,1个白球。
(1)将A袋摇匀,然后从A袋中随机取出一个小球,求摸出小球是白色的概率;
(2)小华和小林商定了一个游戏规则:从摇匀后的A,B两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜。
请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平。
23. (10分)(2019·陕西) 如图,AC是⊙O的一条弦,AP是⊙O的切线。
作BM=AB并与AP交于点M,延长MB交AC于点E,交⊙O于点D,连接AD.
(1)求证:AB=BE;
(2)若⊙O的半径R=5,AB=6,求AD的长.
24. (10分)(2019·陕西) 在平面直角坐标系中,已知抛物线L:经过点A(-3,0)和点B(0,-6),L关于原点O对称的抛物线为 .
(1)求抛物线L的表达式;
(2)点P在抛物线上,且位于第一象限,过点P作PD⊥y轴,垂足为D.若△POD与△AO B相似,求符合条件的点P的坐标.
25. (15分)(2019·陕西) 问题提出:
(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;
问题探究:
(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;
问题解决:
(3)如图3,有一座草根塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的草根景区BCDE。
根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由。
(塔A的占地面积忽略不计)
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共4题;共4分)
11-1、
12-1、
13-1、
14-1、
三、解答题 (共11题;共95分)
15-1、
15-2、
15-3、
16-1、
16-2、
17-1、18-1、
19-1、19-2、19-3、
20-1、21-1、
21-2、22-1、
22-2、23-1、
23-2、24-1、
25-1、25-2、
25-3、。