2019年中考数学突破专题之 阅读理解问题——几何问题代数化

合集下载

2019届中考数学总复习:代数几何综合问题

2019届中考数学总复习:代数几何综合问题

2019届中考数学总复习:代数几何综合问题【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.【思路点拨】过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG.求证△BEC≌△BGM,△ABE≌△ABG,设CE=x,在直角△ADE中,根据AE2=AD2+DE2求x的值,即CE的长度.【答案与解析】解:过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG,∴∠AMB=90°,∵AD∥CB,∠D CB=90°,∴∠D=90°,∴∠AMB=∠DCB=∠D=90°,∴四边形BCDM为矩形.∵BC=CD,∴四边形BCDM是正方形,∴BC=BM,且∠ECB=∠GMB,MG=CE,∴Rt△BEC≌Rt△BGM.∴BG=BE,∠CBE=∠GBM,∵∠CBE+∠EBA+∠ABM=90°,且∠ABE=45°∴∠CBE+∠ABM=45°∴∠ABM+∠GBM=45°∴∠ABE=∠ABG=45°,∴△ABE≌△ABG,AG=AE=10.设CE=x,则AM=10-x,AD=12-(10-x)=2+x,DE=12-x,在Rt△ADE中,AE2=AD2+DE2,∴100=(x+2)2+(12-x)2,即x2-10x+24=0;解得:x1=4,x2=6.故CE的长为4或6.【总结升华】本题考查了直角三角形中勾股定理的运用,考查了全等三角形的判定和性质,本题中求证△ABE≌△ABG,从而说明AG=AE=10是解题的关键.类型二、函数与几何问题2.如图,二次函数y =(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.【思路点拨】(1)将点A(1,0)代入y=(x-2)2+m求出m的值,根据点的对称性,将y=3代入二次函数解析式求出B的横坐标,再根据待定系数法求出一次函数解析式;(2)根据图象和A、B的交点坐标可直接求出满足kx+b≥(x-2)2+m的x的取值范围.【答案与解析】解:(1)将点A(1,0)代入y=(x-2)2+m得,(1-2)2+m=0,1+m=0,m=-1,则二次函数解析式为y=(x-2)2-1.当x=0时,y=4-1=3,故C点坐标为(0,3),由于C和B关于对称轴对称,在设B点坐标为(x,3),令y=3,有(x-2)2-1=3,解得x=4或x=0.则B点坐标为(4,3).设一次函数解析式为y=kx+b,将A(1,0)、B(4,3)代入y=kx+b中,得,解得,则一次函数解析式为y=x-1;(2)∵A、B坐标为(1,0),(4,3),∴当kx+b≥(x-2)2+m时,1≤x≤4.【总结升华】本题考察了待定系数法求二次函数,一次函数函数解析式以及数形结合法解不等式.求出B点坐标是解题的关键.举一反三:【变式】如图,二次函数2(0)=++≠的图象与x轴交于A、B两点,其中A点坐标为(-1,0),y ax bx c a点C(0,5)、D(1,8)在抛物线上,M为抛物线的顶点.(1)求抛物线的解析式. (2)求△MCB 的面积.【答案】解:(1)设抛物线的解析式为2y ax bx c =++,根据题意,得058a b c c a b c -+=⎧⎪=⎨⎪++=⎩, 解之,得145a b c =-⎧⎪=⎨⎪=⎩. ∴所求抛物线的解析式为245y x x =-++.(2)∵C 点的坐标为(0,5).∴OC =5.令0y =,则2450x x -++=,解得121,5x x =-=.∴B 点坐标为(5,0).∴OB =5.∵2245(2)9y x x x =-++=--+,∴顶点M 坐标为(2,9).过点M 作MN ⊥AB 于点N ,则ON =2,MN =9.∴11(59)9(52)551522MCB BNM OBC OCMN S S S S ∆∆∆=+-=+⨯⨯--⨯⨯=梯形. 类型三、动态几何中的函数问题3.如图,在平面直角坐标系中,已知点A (-2,-4),OB=2,抛物线y=ax 2+bx+c 经过点A 、O 、B三点.(1)求抛物线的函数表达式;(2)若点M 是抛物线对称轴上一点,试求AM+OM 的最小值;(3)在此抛物线上,是否存在点P ,使得以点P 与点O 、A 、B 为顶点的四边形是梯形?若存在,求点P 的坐标;若不存在,请说明理由.【思路点拨】(1)把A 、B 、O 的坐标代入到y=ax 2+bx+c 得到方程组,求出方程组的解即可;(2)根据对称求出点O 关于对称轴的对称点B ,连接AB,根据勾股定理求出AB 的长,就可得到AM+OM 的最小值.(3)①若OB ∥AP ,根据点A 与点P 关于直线x=1对称,由A (-2,-4),得出P 的坐标;②若OA ∥BP ,设直线OA 的表达式为y=kx ,设直线BP 的表达式为y=2x+m ,由B (2,0)求出直线BP 的表达式为y=2x-4,得到方程组,求出方程组的解即可;③若AB ∥OP ,设直线AB 的表达式为y=kx+m ,求出直线AB ,得到方程组求出方程组的解即可. 【答案与解析】解:(1)由OB=2,可知B (2,0),将A (-2,-4),B (2,0),O (0,0)三点坐标代入抛物线y=ax 2+bx+c ,得4420420a b c a b c c -=-+⎧⎪=++⎨⎪=⎩ 解得:1,21,0.a b c ⎧=-⎪⎪=⎨⎪=⎪⎩∴抛物线的函数表达式为y=212x x -+(2)由y=212x x -+=211(1)22x x --+可得,抛物线的对称轴为直线x=1,且对称轴x=1是线段OB的垂直平分线,连接AB 交直线x=1于点M ,M 点即为所求.∴MO=MB ,则MO+MA=MA+MB=AB,作AC ⊥x 轴,垂足为C ,则|AC|=4,|BC|=4,∴AB=42, ∴MO+MA 的最小值为42. 答:MO+MA 的最小值为42.(3)①如图1,若OB ∥AP ,此时点A 与点P 关于直线x=1对称,由A (-2,-4),得P (4,-4),则得梯形OAPB .② 如图2,若OA ∥BP ,设直线OA 的表达式为y=kx ,由A (-2,-4)得,y=2x .设直线BP 的表达式为y=2x+m ,由B (2,0)得,0=4+m ,即m=-4, ∴直线BP 的表达式为y=2x-4. 由12⎧⎪⎨⎪⎩2y=2x-4,y=-x+x.解得x 1=-4,x 2=2(不合题意,舍去), 当x=-4时,y=-12,∴点P (-4,-12),则得梯形OAPB .③ 如图3,若AB ∥OP ,设直线AB 的表达式为y=kx+m ,则4202k m k m -=-+⎧⎨=+⎩,. 解得12k m =⎧⎨=-⎩,.∴AB 的表达式为y=x-2. ∵AB ∥OP ,∴直线OP 的表达式为y=x .由2,12y x y x x =⎧⎪⎨=-+⎪⎩得 x 2=0,解得x=0,(不合题意,舍去),此时点P 不存在.综上所述,存在两点P (4,-4)或P (-4,-12),使得以点P 与点O 、A 、B 为顶点的四边形是梯形. 【总结升华】本题主要考查对梯形,解二元二次方程组,解一元二次方程,二次函数的性质,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用性质进行计算是解此题的关键.举一反三:【变式】如图,直线434+-=x y 与x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在,请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.【答案】(1)证明:y=443x -+ ∵当x=0时,y=4; 当y=0时,x=3, ∴B (3,0),C (0,4), ∵A (-2,0),由勾股定理得:BC=22345+= ∵AB=3-(-2)=5, ∴AB=BC=5,∴△ABC 是等腰三角形; (2)解:①∵C (0,4),B (3,0),BC=5, ∴sin ∠B=40.85OC BC == 过N 作NH ⊥x 轴于H .∵点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度, 又∵AB=BC=5,∴当t=5秒时,同时到达终点, ∴△MON 的面积是S=12OM NH ⨯⨯ ∴S=20.4t t-⨯②点M 在线段OB 上运动时,存在S=4的情形.理由如下: ∵C (0,4),B (3,0),BC=5, ∴sin ∠B=40.85OC BC == 根据题意得:∵S=4, ∴|t-2|×0.4t=4,∵点M 在线段OB 上运动,OA=2, ∴t-2>0,即(t-2)×0.4t=4,化为t 2-2t-10=0, 解得:111,111(t t =+=-舍去)∴点M 在线段OB 上运动时,存在S=4的情形,此时对应的t 是(111t =+)秒. ③∵C (0,4)B (3,0)BC=5, ∴cos ∠B=30.65OB BC == 分为三种情况:I 、当∠NOM=90°时,N 在y 轴上,即此时t=5;II 、当∠NMO=90°时,M 、N 的横坐标相等,即t-2=3-0.6t ,解得:t=3.125, III 、∠MNO 不可能是90°,即在运动过程中,当△MON 为直角三角形时,t 的值是5秒或3.125秒. 类型四、直角坐标系中的几何问题4.(2015•阳山县一模)如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边分别交于点M 、N ,直线m 运动的时间为t (秒). (1)点A 的坐标是 ,点C 的坐标是 ; (2)当t= 秒或 秒时,MN=AC ; (3)设△OMN 的面积为S ,求S 与t 的函数关系式.【思路点拨】(1)根据BC∥x 轴,AB∥y 轴即可求得A 和C 的坐标;(2)分成MN 是△OAC 的中位线和MN 是△ABC 的中位线时两种情况进行讨论;(3)根据时间t 值的范围不同,M,N 与矩形的两边相交构成不同的三角形,画出图形进行分类讨论,然后正确表示出△OMN 的面积即可. 【答案与解析】 解:(1)A 的坐标是(4,0),C 的坐标是(0,3); (2)当MN 是△OAC 的中位线时,M 是OA 的中点,则t=OA=×4=2; 当MN 是△ABC 的中位线时,如图1. 则△AME∽△OCA,则AE=OA=×4=2,则E 的坐标是(6,0),即平移了6个单位长度.故答案是:2或6.(3)当0<t≤4时,OA=t ,则ON=t , 则S △OMN =×t×t=238t (0<t≤4). 即当4<t <8时,如图1.设直线AC 的解析式是y=kx+b ,根据题意得,解得:,则直线AC 的解析式是y=﹣x+3.设MN 的解析式是y=﹣x+c ,E 的坐标是(t ,0),代入解析式得:c=t , 则直线MN 的解析式是y=﹣x+t .令x=4,解得y=﹣3+t ,即M 的坐标是(4,﹣3+t ). 令y=3,解得:x=t ﹣4,则N 的坐标是(t ﹣4,3). 则S 矩形OABC=3×4=12, S △OCN =OC•CN=×3•(t ﹣4)=36.2t -S △OAM =OA•AM=×4•(﹣3+t )=﹣6.S △BMN =BN•BM=[4﹣(t ﹣4)][3﹣(﹣3+t )]=t 2﹣6t+24. 则S=12﹣(﹣6)﹣(t ﹣6)﹣(t 2﹣6t+24),即S=﹣t 2+3t(4<t <8).【总结升华】本题考查了矩形的性质以及待定系数法求一次函数的解析式,直线平行的条件,正确利用t 表示出M 和N 的坐标是关键.类型五、几何图形中的探究、归纳、猜想与证明问题5.一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(01),,然后接着按图中箭头所示方向运动,即(00)(01)(11)(10)→→→→,,,,…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是_______.【思路点拨】由题目中所给的质点运动的特点找出规律,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,即可得出第35秒时质点所在位置的坐标.【答案与解析】解:质点运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒12 3 xy1 2 3 …数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时质点所在位置的坐标是(5,0).【总结升华】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.举一反三:【变式】(2016•泰山区一模)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2014次碰到矩形的边时,点P的坐标为()A.(1,4) B.(5,0) C.(6,4) D.(8,3)【答案】B.【解析】解:如图,经过6次反弹后动点回到出发点(0,3),∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故选;B.【巩固练习】一、选择题1.(2017•河北一模)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.2.如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()二、填空题3. 将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象如图所示,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足的条件的t的值,则t=.4. (2017•宝山区一模)如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A 恰好与B 重合,联结CD 交BE 于F ,如果AC=8,tanA=,那么CF :DF= .三、解答题5.一个形如六边形的点阵.它的中心是一个点(算第一层)、第二层每边有两个点,第三层每边有三个点……依次类推.(1)试写出第n 层所对应的点数; (2)试写出n 层六边形点阵的总点数;(3)如果一个六边形点阵共有169个点,那么它一共有几层?6.如图,Rt △ABC 中,∠B=90°,AC=10cm ,BC=6cm ,现有两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以2cm/s 的速度,沿AB 向终点B 移动;点Q 以1cm/s 的速度沿BC 向终点C 移动,其中一点到终点,另一点也随之停止.连接PQ .设动点运动时间为x 秒. (1)用含x 的代数式表示BQ 、PB 的长度; (2)当x 为何值时,△PBQ 为等腰三角形;(3)是否存在x 的值,使得四边形APQC 的面积等于20cm 2?若存在,请求出此时x 的值;若不存在,请说明理由.7.阅读理解:对于任意正实数a 、b ,∵2()0,a b -≥20,2,a ab b a b ab ∴-+≥∴+≥a b =只有当时,等号成立。

2019届全国中考数学汇编含详细分析1:代数问题

2019届全国中考数学汇编含详细分析1:代数问题

而甲种雪糕数量为 x ,乙种雪糕数量为 1.5x 。(数量=金额÷价格)
40
30
20
从而得方程: x 1.5x 。故选B。
x+3y=4 a 2. (2020浙江杭州3分)已知关于x,y的方程组 x y=3a ,其中﹣3≤a≤1,给出下列结论:
x=5 ① y= 1是方程组的解;
②当a=﹣2时,x,y的值互为相反数; ③当a=1时,方程组的解也是方程x+y=4﹣a的解; ④若x≤1,则1≤y≤4. 其中正确的是【 】 A.①② B.②③ C.②③④ D.①③④ 【答案】C。 【考点】二元一次方程组的解,解一元一次不等式组。 【分析】解方程组得出x、y的表达式,根据a的取值范围确定x、y的取值范围,逐一判断:
【答案】C。
【考点】由实际问题抽象出一元二次方程(增长率问题)。
【分析】由于每次提价的百分率都是x,第一次提价后的价格为100(1+x),
第一次提价后的价格为100(1+x)
(1+x) =100(1+x)2。据此列出方程:100(1
+x)2=121。
故选C。
a2 b2 1 a b 1
6. (2020云南省3分)若
【答案】A。
【考点】不等式的性质。
【分析】根据不等式的性质,计算后作出判断:
a<c
a +1< c +1
a+b < c+d
∵a、b、c、d都是正实数,且 b d ,∴ b d ,即 b d 。
b>d
d<b
∴ a+b c+d ,即 c+d a+b ,∴③正确,④不正确。
a<c
b>d
b +1> d +1 a+b > c+d

几何方法与代数方法比较——2019年深圳中考数学压轴题

几何方法与代数方法比较——2019年深圳中考数学压轴题

考点聚焦几何方法与代数方法比较——2019年深圳中考数学压轴题■孙成高纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关的,其特点是通过建立点与数,即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,利用几何图形的性质研究数量关系,寻求代数问题。

另一方面又可借助几何直观,得到某些代数问题的解答。

这就是我们常说的“数形结合”的数学思想方法。

华罗庚先生曾经说过:“数无形时少直觉,形少数时难入微”,充分说明了数形结合数学思想方法对数学学习的重要性。

下面以2019年深圳中考数学第23题为例,通过几何方法和代数方法的比较,来体会数学中数形结合的魅力。

1原题呈现题目:已知在平面直角坐标系中,点A(3,0),B(-3,0),C(-3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD。

(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=17时,求所有F点的坐标:(直接写出);②求BG CF的最大值。

2试题分析本题的设计层次很清晰,第(1)问是常见的切线证明,学生较易得分,第(2)问稳中求新,生中有熟,但学生要得出正确答案需要有一定的几何模型构造功底或代数计算能力,区分度比较明显,是一道优秀的几何原创探究题,下面我们来用几何方法和代数方法来分别解析本题的第(2)问,从中得到一些解决问题的通法。

3解法对比3.1几何法:当tan∠ACF=17时,求所有F点的坐标。

因为已知A(3,0),C(-3,8),此题我们可以对图像进行简化,减少其他线段和图像对解题分析造成干扰,如图1所示,需要分两种情况讨论。

简化图形后,为了利用tan∠ACF=17这个已知条件,这里的通法是在已知点A处构造直角(若在未知点F处构造直角,则未知量增加,计算量会加大,不利于解题),具体解法如下:图1图2如图2,先讨论点F在点A的右侧,在点A处构造∠CAH= 90°,交线段CF为点H,过点C、H分别向x轴作垂线,垂足为点J、I。

2019年中考数学《阅读理解专题训练》 附答案

2019年中考数学《阅读理解专题训练》 附答案
例如: = .
所以可将代数式 的值看作点 到点 的距离.
利用材料一,解关于x的方程: ,其中 ;
利用材料二,求代数式 的最小值,并求出此时y与x的函数关系式,写出x的取值范图;
将 所得的y与x的函数关系式和x的取值范围代入 中解出x,直接写出x的值.
2.规定:求若干个相同的有理数(不等于0)的除法运算叫做除方,如 , 等.类比有理数的乘方, 记作 ④,读作“ 的圈4次方”,一般地,我们把 ( )记作 ⓝ,读作“a的圈n次方”.
① __________(用含有k,n的代数式表示);
②若 4420,求 的值。
4.阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为: 其中m>n>0,m,n是互质的奇数.
应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.
①把 拆成两个分子为1的正的真分数之差,即 _______;
②把 拆成两个分子为1的正的真分数之和,即 _______;
深入探究
定义“ ”是一种新的运算,若 , , ,则 计算的结果是_________。
拓展延伸
第一次用一条直径将圆周分成两个半圆(如图),在每个分点标上质数k,记2个数的和为 ;第二次将两个半圆都分成 圆,在新产生的分点标上相邻的已标的两个数的和的 ,记4个数的和为 ;第三次将四个 圆都分成 圆,在新产生的分点标上相邻的已标的两个数的和的 ,记8个数的和为 ;第四次将八个 圆都分成 圆,在新产生的分点标上相邻的已标的两个数的和的 ,记16个数的和为 ;……,如此进行了n次。
②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;

2019年北京市中考数学总复习课件:题型突破(05) 代数综合

2019年北京市中考数学总复习课件:题型突破(05) 代数综合
2 3
由抛物线的对称轴为直线 x=2,可知抛物线经过点(1,3), 点(1,3)在线段 BC 上,此时抛物线与线段 BC 有两个公共点, 综上所述,当 ≤n< 或 n=3 时,抛物线与线段 BC 有一个公共点.
5 2 3 3
类型2 直线与抛物线交点类问题(针对2017 27题,2016 27题)
7.[2018· 丰台一模] 在平面直角坐标系 xOy 中,抛物线 y=ax2-4ax+3a 的最高点的纵坐标是 2. (1)求抛物线的对称轴及抛物线的表达式.
类型1 确定参数取值范围类问题(针对2018 26题,2015 27题)
1.[2018· 朝阳一模] 在平面直角坐标系 xOy 中,抛物线 y=ax2-4ax-4(a≠0)与 y 轴交于点 A,其对称轴与 x 轴交于 点 B. (1)求点 A,B 的坐标;
解:(1)y=ax2-4ax-4=a(x-2)2-4a-4.
(2)∵抛物线 y=nx2-4nx+5n(n>0),∴y=nx2-4nx+4n+n=n(x-2)2+n,
∴抛物线的对称轴为直线 x=2,顶点坐标为(2,n). ∵点 B(0,3),点 C(3,3),∴①当 n>3 时,函数 y=nx2-4nx+5n 的最
小值 n>3,抛物线与线段 BC 无公共点; ②当 n=3 时,抛物线顶点为(2,3),在线段 BC 上,此时抛物线与线段 BC 有一个公共点;
类型1 确定参数取值范围类问题(针对2018 26题,2015 27题)
2.[2018· 东城一模] 在平面直角坐标系 xOy 中,抛物线 y=ax -4ax+3a-2(a≠0)与 x 轴交于 A,B 两点(点 A 在点 B

中考数学题型专题 几何问题代数化及参数型函数问题

中考数学题型专题 几何问题代数化及参数型函数问题

几何问题代数话及参数型函数问题专题一、几何问题代数化【导例】如何求tan 15°?华罗庚教授曾说过:“数缺形少直观,形少数难入微,数形结合百般好,隔离分家万事休”。

我们在处理某些几何类数学问题时,可以通过相应的知识联系,结合题型特征,把相应的几何问题代数化。

代几题型特点:一种是以几何图形为载体,通过线段,角等图形寻找各元素之间的数量关系,建立代数方程或函数模型来求解;二是把数量关系与几何图形建立联系,使之直观化,形象化,以形导数,由数思形,从而寻找解题捷径。

解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中找寻这两部分知识之间的结合点,从而发现解题的突破口。

类型一、构造方程或代数式来使几何问题代数化例1.已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.专题导入方法点睛经典例题剖析类型二、建立平面直角坐标系来处理相应问题例2.如图,矩形ABCD中,AC与BD相交于点E,AD:AB=√3:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH 的值最小,此时BHCF=()A.√32B.2√33C.√62D.321.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是()A.0<AD<3B.1≤AD<52C.157≤AD<52D.158≤AD<522.如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是.(1)EF=√2OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=√2OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=34;(5)OG•BD=AE2+CF2.强化练习专题二、参数型函数问题专题导入【导例】已知四边形OABC的一边OA在x轴上,O为原点,B点坐标为(4,2)。

2019年苏州市中考《构造几何图形、巧解代数问题》复习指导

2019年苏州市中考《构造几何图形、巧解代数问题》复习指导

构造几何图形 巧解代数问题在数学教学中,数和形是两个最重要的研究对象.对于一类代数问题,若能转化为图形性质的问题,往往会使复杂问题简单化,抽象问题具体化,从而获得简洁的解决方案. 一、整式乘法法则的探究 例1 探究乘法法则: ()()a b c d a c a d b c b d++=+++. 解 如图1,构造长、宽为()a b +和()c d +的矩形,再将其分割为四个小矩形,通过 “总体—分割”的两种方法计算矩形的面积,易得()()a b c d ac ad bc bd ++=+++.评析 此法则的探究过程也可通过连续利用乘法分配律来得到,即 ()()()(a b c d a c d b c d ++=+++a c a d b c b d=+++. 但构造的图形更直观、更简洁,更利于激发学生的探求欲,开阔学生的视野. 二、恒不等式的证明例2 若a b <,且a 、b证明 如图2,构造面积分别为a 、b 的正方形(a b <),易得<评析 此式为学生刚接触平方根知识的一个结论,用文字可叙述为:被开方数越小,则其算术平方根越小.基于学生的现有知识储备还很有限,直接代数证明方法比较困难.构造的几何图形,有效的呈现了被开方数和算术平方根的问题,有利于学生的理解. 例3 已知: 0,0a b ≥≥,求证:2a b+≤. 解 如图3,在⊙O 中,弦CD ⊥直径AB ,垂足为E .设,AE a BE b ==,则由相交弦定理和垂径定理,可得CE =Q 直径是圆中最长的弦,,2AB CD AB CE ∴≤∴≤,2a b+≤.例4 已知,,0a c b c c >>>,求证: ≤.解 如图4Rt ABD ∆和Rt ACD ∆.ABD ACD ABC S S S ∆∆∆+=Q ,sin BAC =∠.sin BAC ∠≤)c a b评析 此不等式直接证明,难度较大、较繁琐.而注意到22+=222+=则可以构造共边的直角三角形来解决. 三、求函数最值例5 求y =.解 如图5, 5,3,AB CA CA AB ==⊥,垂足为,4,A DB DB AB =⊥,垂足为,B P 是AB 上的动点.设AP x =,则2C PD P + 因而,所求y 的最小值即为线段CP DP +的最小值.作C 点关于AB 的对称点C ',将AC '平移至BD ',连接C D ',则C D '即为CP DP +的最小值.在Rt C D D ''∆中,C D '===即y =.评析 将所求代数式转化为线段的和,在最值的探求过程中,发现实际上就是初中几何里典型的“将军饮马”模型,陌生问题熟悉化,转化思想略见一斑.总之,适当地将一些代数问题几何化,能提高解题的效率,拓宽解题的思路,渗透数学思想、提升数学素养!2019-2020学年数学中考模拟试卷一、选择题1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P ,若点P 的坐标为(3a ,b+1),则a 与b 的数量关系为( )A.3a =﹣b ﹣1B.3a =b+1C.3a+b ﹣1=0D.3a =2b2.如图,在Rt △ABC 中,∠ACB=90°,CD 是∠ACB 的平分线,交AB 于点D ,过点D 分别作AC 、BC 的平行线DE 、DF ,则下列结论错误的是( )A .AD BD =B .FC DF =C .ACD BCD ∠=∠D .四边形DECF 是正方形3.一个圆锥的轴截面是一个边长为2cm 的等边三角形,则它的侧面积是( ).A .4πB .2πC .πD .4.给出下列4个命题:①对顶角相等;②同位角相等;③在同一个圆中,同一条弦所对的圆周角都相等;④圆的内接四边形对角互补.其中,真命题为 ( ) A .①②④B .①③④C .①④D .①②③④5.将点A (﹣2,3)绕坐标原点逆时针旋转90后得到点A',则点A'的坐标为( ) A .(2,3)B .(3,2)C .(﹣2,﹣3)D .(﹣3,﹣2)6.对于平面图形上的任意两点P ,Q ,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是( ) A .平移B .旋转C .轴对称D .位似7.A 、B 、C 、D 四名同学随机分为两组,两个人一组去參加辩论赛,问A 、B 两人恰好分到一组的概率( ) A .14B .13C .16D .128.如图,Rt △ABC 中,∠ACB =90°,AC =4,BC =6,点D 在BC 上,延长BC 至点E ,使CE=12BD ,F 是AD 的中点,连接EF ,则EF 的长是( )A B C .3 D .49.二次函数y =ax 2+bx+c (a≠0)的图象的对称轴是直线x =1,其图象的一部分如图所示.下列说法错误的是A .abc <0B .a ﹣b+c <0C .3a+c <0D .当﹣1<x <3时,y >010.下列运算正确的是( ) A .()336x x =B .325x x x ?C .33x x -=D .426x x x +=11.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别于函数1y x=-,4y x=的图像交于B 、A 两点,则∠OAB 大小的变化趋势为 ( )A .逐渐变小B .逐渐变大C .时大时小D .保持不变12.如图,过点A 1(1,0)作x 轴的垂线,交直线y =2x 于点B ;点A 2与点O 关于直线A 1B 1对称;过点A 2(2,0)作x 轴的垂线,交直线y =2x 于点B 2;点A 3与点O 关于直线A 2B 2对称;过点A 3作x 轴的垂线,交直线y =2x 于点B 3;按B 3此规律作下去,则点B n 的坐标为( )A .(2n ,2n ﹣1)B .(2n ,2n+1)C .(2n+1,2n )D .(2n ﹣1,2n )二、填空题13.如图,正三角形ABC 的边长为2,点A ,B 的圆上,点C 在圆内,将正三角形ABC 绕点A逆时针旋转,当边AC 第一次与圆相切时,旋转角为_____.14.如图,在长方形ABCD 中,DC =6cm ,在DC 上存在一点E ,沿直线AE 把△ADE 折叠,使点D 恰好落在BC 边上的点F 处,若△ABF 的面积为24cm 2,那么折叠的△ADE 的面积为_____.15.已知:反比例函数y =kx的图象经过点A (2,﹣3),那么k =_____. 16.计算:a·a 2=______.17.已知△ABC 的三边长分别为5,7,8,△DEF 的三边分别为5,2x ,3x ﹣5,若两个三角形全等,则x=__. 18.甲、乙两人在相同的情况下各打靶10次,打靶的成绩如图,这两人10次打靶平均命中环数都为7环,则2s 甲___2s 乙(填“>”、“<”或“=”).三、解答题19.如图,AB 是⊙O 的直径,点P 是BA 延长线上一点,直线PE 切⊙O 于点Q ,连接BQ .(1)∠QBP =25°,求∠P 的度数; (2)若PA =2,PQ =4,求⊙O 的半径.20.在平面直角坐标系xOy 中. 已知抛物线22y ax bx a =++-的对称轴是直线x=1. (1)用含a 的式子表示b ,并求抛物线的顶点坐标;(2)已知点()0,4A -,()2,3B -,若抛物线与线段AB 没有公共点,结合函数图象,求a 的取值范围;(3)若抛物线与x 轴的一个交点为C (3,0),且当m x n ≤≤时,y 的取值范围是6m y ≤≤,结合函数图象,直接写出满足条件的m ,n 的值.21.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息. a. 实心球成绩的频数分布表如下:b. 实心球成绩在7.07.4x ≤<这一组的是:a7.0 7.0 7.0 7.1 7.1 7.1 7.2 7.2 7.3 7.3 c. 一分钟仰卧起坐成绩如下图所示:根据以上信息,回答下列问题: (1) ①表中m 的值为__________;②一分钟仰卧起坐成绩的中位数为__________;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀. ①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如下:其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E 的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.22.如图,某风景区内有一瀑布,AB 表示瀑布的垂直高度,在与瀑布底端同一水平位置的点D 处测得瀑布顶端A 的仰角β为45°,沿坡度i =1:3的斜坡向上走100米,到达观景台C ,在C 处测得瀑布顶端A 的仰角α为37°,若点B 、D 、E 在同一水平线上.(参考数据:sin37°≈0.6,cos37°≈0.8,≈3.16)(1)观景台的高度CE 为 米(结果保留准确值); (2)求瀑布的落差AB (结果保留整数).23.为弘扬“绿水青山就是金山银山”精神,某地区鼓励农户利用荒坡种植果树,某农户考察三种不同的果树苗A 、B 、C ,经引种试验后发现,引种树苗A 的自然成活率为0.8,引种树苗B 、C 的自然成活率均为0.9.(1)若引种树苗A 、B 、C 各10棵. ①估计自然成活的总棵数;②利用①的估计结论,从没有自然成活的树苗中随机抽取两棵,求抽到的两棵都是树苗A 的概率: (2)该农户决定引种B 种树苗,引种后没有自然成活的树苗中有75%的树苗可经过人工栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.若每棵树苗引种最终成活后可获利300元,不成活的每棵亏损50元,该农户为了获利不低于20万元,问至少引种B 种树苗多少棵?24.如图,在ABC △中,90ACB ︒∠=,:4:3AC BC =,点D 在ABC △外部,且90D ︒∠=.(1)尺规作图:作ABC △的外接圆O (保留作图痕迹,不写作法和证明);(2)若:12:25CD AB =,求证:CD 是O 的切线.25.(1)计算:;(2)化简:【参考答案】*** 一、选择题二、填空题13.75°14.503cm215.-616.a317.418.<三、解答题19.(1)∠P=40°;(2)⊙O的半径为3.【解析】【分析】(1)连接QO,直线PE切⊙O于点Q,可得∠PQD=90°,然后根据圆周角定理及推论,可得∠QOP,从而求出∠P的度数;(2)设OQ=r ,则PO=2+r,由勾股定理可得,r2+42=(2+r)2,求出r即可得出⊙O的半径.【详解】(1)连接OQ,∵OQ=OB,∴∠OQB=∠B=25°,∴∠POQ=∠B+∠OQB=50°,∵直线PE切⊙O于点Q,∴∠PQO=90°,∴∠P=90°﹣∠POQ=40°;(2)∵PA=2,PQ=4,设OQ=r,则PO=2+r,∵PQ2+OQ2=OP2,∴r 2+42=(2+r )2, 解r =3,∴⊙O 的半径为3. 【点睛】此题考查了切线的性质,等腰三角形的性质,以及勾股定理的应用,熟练掌握切线的性质是解本题的关键.20.(1)2b a =-,抛物线的顶点为()1,2-;(2)10a -<<或0a >;(3)25m n =-⎧⎨=⎩或25.m n ⎧=+⎪⎨=⎪⎩ 【解析】 【分析】 (1)由12ba-=,则2b a =-.得到抛物线方程.则当1x =时,抛物线的顶点为()1,2-. (2)分条件讨论0a > ,0a <,将点B 代入方程得3442a a a -=-+-,解得1a =-. 由于抛物线与线段AB 没有公共点,则10a -<<或0a >.(3)根据题意抛物线与x 轴的一个交点为C (3,0),且当m x n ≤≤时,y 的取值范围是6m y ≤≤,作出图象,即可得出答. 【详解】 解:(1)∵12ba-=, ∴2b a =-.∴抛物线为222y ax ax a =-+-. 当1x =时,222y a a a =-+-=-, ∴抛物线的顶点为()1,2-.(2)若0a >,抛物线与线段AB 没有公共点;若0a <,当抛物线经过点()2,3B -时,它与线段AB 恰有一个公共点,此时3442a a a -=-+-,解得1a =-.∵抛物线与线段AB 没有公共点,∴结合函数图像可知,10a -<<或0a >.(3)根据题意作抛物线与x 轴交点图,通过图象即可得出25m n =-⎧⎨=⎩或25.m n ⎧=⎪⎨=⎪⎩ 【点睛】本题考查二元一次函数和一元一次函数的综合,解题的关键是熟练掌握二元一次函数和一元一次函数的性质和求解.21.(1)①9;②45;(2)①估计全年级女生实心球成绩达到优秀的人数约为65人;②同意,理由详见解析. 【解析】 【分析】(1)①因为已知检测总人数和其它组的频数,所以可以得到m;②结合题意,根据中位数求法即可得到答案;(2)①由题意得到参与测试女生实心球成绩达到优秀(人)的百分比,再乘以150,即可得出答案.②结合题中数据,即可得出答案.【详解】解:(1)①因为已知检测总人数为30人,所以m=30-(2+10+6+2+1)=9;②根据中位数求法,由于数据为30个,所以去第15和16位的平均数,即45;(2)①由题意得到参与测试女生实心球成绩达到优秀(人)的百分比为1330,所以可得131506530⨯=(人).答:估计全年级女生实心球成绩达到优秀的人数约为65人.②同意,理由答案不唯一,如:如果女生E的仰卧起坐成绩未达到优秀,那么至少,,A D F有可能两项测试成绩都达到优秀,这与恰有4人两项测试成绩都达到优秀矛盾,因为女生E的一分钟仰卧起坐成绩达到了优秀.【点睛】本题考查频数、中位数等,解题的关键是读懂题目信息,掌握频数、中位数的知识.22.(1);(2)瀑布的落差约为411米.【解析】【分析】(1)通过解直角△CDE得到:CE=CD•sin37°.(2)作CF⊥AB于F,构造矩形CEBF.由矩形的性质和解直角△ADB得到DE的长度,最后通过解直角△ACF求得答案.【详解】(1)∵tan∠CDE=13 CE CD=∴CD=3CE.又CD=100米,∴100==∴CE=.故答案是:(2)作CF⊥AB于F,则四边形CEBF是矩形.∴CE=BF=,CF=BE.在直角△ADB中,∠DB=45°.设AB=BD=x米.∵CECD=13,∴DE=.在直角△ACF 中,∠ACF =37°,tan ∠ACF 0.75AF CF ==≈ 解得x≈411.答:瀑布的落差约为411米.【点睛】本题考查解直角三角形、仰角、坡度等概念,解题的关键是添加辅助线构造直角三角形,记住坡度的定义,属于中考常考题型.23.(1)①自然成活的有26棵;②16;(2)至少引种B 种树苗700棵. 【解析】【分析】(1)①根据成活率求得答案即可;②列出树状图,利用概率公式求解即可;(2)设引B 树苗x 棵,则最终成活棵数为:0.9x+0.1x×0.75×0.8=0.96x ,未能成活棵数为0.04x ,利用农户为了获利不低于20万元列出不等式求解即可.【详解】解:(1)①10×0.8+10×0.9+10×0.9=26(棵),答:自然成活的有26棵;②在这12种情况下,抽到的2棵均为树苗A 的有2种,∴P =16; (2)设引B 树苗x 棵,则最终成活棵数为:0.9x+0.1x×0.75×0.8=0.96 x ,未能成活棵数为0.04 x300(0.96 x )﹣50(0.04x )≥200000 x≥100000143=69943143∴x =700棵答:该户至少引种B 种树苗700棵.【点睛】本题考查了利用频率估计概率及列表法求概率的知识,解题的关键是能够正确的通过列树状图将所有等可能的结果列举出来,难度不大.24.(1)如图所示,O 为所求作的圆,见解析;(2)见解析. 【解析】【分析】(1)根据圆的定义,确定圆心和半径即可;(2)根据相似三角形判定证Rt ABC Rt CBD △△∽,证90BCD OCB ︒∠+∠=可得结论.【详解】(1)如图所示,O 为所求作的圆:(2)由作图可知,OB OC =,∴OBC OCB ∠=∠.∵在ABC △中,90ACB ︒∠=,:4:3AC BC =,∴可设4AC a =,3BC a =,则5AB a =又∵:12:25CD AB =, ∴12 2.425CD AB a ==. ∵90D ︒∠=,∴ 1.8BD a ===, ∴ 2.441.83CD a BD a ==. ∵:4:3AC BC =, ∴CD AC BD BC=. ∵90ACB D ︒∠=∠=,∴Rt ABC Rt CBD △△∽,∴OBC CBD ∠=∠.∴OCB CBD ∠=∠.∵90BCD CBD ︒∠+∠=,⊥,∴90BCD OCB︒∠+∠=,即CD OC∵OC为O的半径,∴CD是O的切线.【点睛】考核知识点:相似三角形的判定和性质,切线判定.25.(1)1;(2)2a+4.【解析】【分析】(1)直接利用特殊角的三角函数值以及绝对值的性质分别化简得出答案,(2)直接去括号,进而分解因式化简即可.【详解】解:(1)原式=2+2﹣4×﹣1=1;(2)原式=×﹣×,=3(a+1)﹣(a﹣1),=2a+4.【点睛】本题主要考查了实数就散和分式的混合运算,解决本题的关键是要正确掌握相关运算法则.2019-2020学年数学中考模拟试卷一、选择题1.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C. D.2的运算结果应在()A.5到6之间B.6到7之间C.7到8之间D.8到9之间3.在数学拓展课《折叠矩形纸片》上,小林折叠矩形纸片ABCD进行如下操作:①把△ABF翻折,点B落在CD边上的点E处,折痕AF交BC边于点F;②把△ADH翻折,点D落在AE边长的点G处,折痕AH交CD边于点H.若AD=6,AB=10,则EHEF的值是( )A.54B.43C.53D.324.下面两幅图是由几个小正方形搭成的几何体的主视图与俯视图,则搭成这个几何体的小正方体的个数为()A.3个B.4个C.5个D.6个5.2019年3月5日,第十三届全国人民代表大会第二次会议的《政府工作报告》中指出,我国经济运行保持在合理区间.城镇新增就业13610000、调查失业率稳定在5%左右的较低水平,数字13610000科学记数法表示为()A.1.361×104B.1.361×105C.1.361×106D.1.361×1076.如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.下列结论错误的是()A.AD =CDB.∠A =∠DCBC.∠ADE =∠DCBD.∠A =∠DCA7.如图,从一个直径为4的圆形铁皮中剪下一个圆心角为60°的扇形ABC ,将剪下来的扇形围成一个圆锥,则圆锥的底面半径为( )A .23 BCD.8.如图,将ABC 绕点A 逆时针旋转110,得到ADE ,若点D 在线段BC 的延长线上,则ADE ∠的大小为( )A .55B .50C .45D .359.已知AB 是圆O 的直径,AC 是弦,若AB =4,AC =,则sin ∠C 等于( )AB .12CD10.已知x 1,x 2是一元二次方程x 2﹣3x+1=0的两实数根,则12111313x x +--的值是( ) A .﹣7 B .﹣1 C .1 D .711.如图二次函数2y ax bx c =++的图象与y 轴正半轴相交,其顶点坐标为(112,)下列结论正确的是( )A .abc>0B .a=bC .a=4c-4D .方程21ax bx c ++=有两个不相等的实数根12.如图,已知在Rt ∆ABC 中,E,F 分别是边AB,AC 上的点AE=13AB ,AF=13AC,分别以BE 、EF 、FC 为直径作半圆,面积分别为S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( )A .S 1+S 3=2S 2B .S 1+S 3=4 S 2C .S 1=S 3=S 2D .S 2=13(S 1+S 3) 二、填空题 13.某班共有48个学生,且男生比女生多10个,设男生x 个,女生y 个,根据题意,列出方程组:_____.14.如图,AC 、BD 相交于点O ,A D ∠=∠,请补充一个条件,使AOB ≌DOC △,你补充的条件是__________.(填出一个即可)15.如果一个三角形两边为3cm ,7cm ,且第三边为奇数,则三角形的周长是_________.16.启明中学周末有20人去万达看电影,20张票分别为A 区第6排1号到20号,分票采取随机抽取的办法,小亮第一个抽取,他抽取的座位号是10号,接着小颖从其余的票中任意抽取一张,取得的一张恰与小亮邻座的概率是______.17.化简:239m m --=_____. 18.如图,AB ⊥CD ,且AB =CD .E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为_____.三、解答题19.如图,一次函数y=﹣12x+3的图象与反比例函数y=kx(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为2.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.20.如图,在平面直角坐标系中,二次函数y=﹣14x2+bx+c的图象与y轴交于点A(0,8),与x轴交于B、C两点,其中点C的坐标为(4,0).点P(m,n)为该二次函数在第二象限内图象上的动点,点D的坐标为(0,4),连接BD.(1)求该二次函数的表达式及点B的坐标;(2)连接OP,过点P作PQ⊥x轴于点Q,当以O、P、Q为顶点的三角形与△OBD相似时,求m的值;(3)连接BP,以BD、BP为邻边作▱BDEP,直线PE交x轴于点T.当点E落在该二次函数图象上时,求点E的坐标.21.央视“经典咏流传”开播以来受到社会广泛关注。

中考数学解题方法及提分突破训练:几何变换法专题(含解析)

中考数学解题方法及提分突破训练:几何变换法专题(含解析)

解题方法及提分突破训练:几何变换法专题在几何题或代数几何综合题的解证过程中,经常会使用几何变换的观点来解决问题。

从图形的特点出发,利用几何变换,可将图形的全部或一部分移动到一个新的位置,构成一个新的关系,从而使问题获得解决。

这种几何变换不改变被移动部分图形的形状和大小,而只是它的位置发生了变化,这种移动有利于找出图形之间的关系,从而使解题更为简捷。

移动图形一般有三种方法:(1)平移法。

(2)旋转法:利用旋转变换。

(3)对称:可利用中心对称和轴对称。

一真题链接1.(2012中考)如图,在Rt△ABC中,∠B=90°,沿AD折叠,使点B落在斜边AC上,若AB=3,BC=4,则BD= .2.(2012泰安)将抛物线23y x=向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.23(2)3y x=++B.23(2)3y x=-+C.23(2)3y x=+-D.23(2)3y x=--3.(2012绍兴)如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为。

4.(2012张家界)如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.考点:作图-旋转变换;作图-平移变换。

.二名词释义在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。

所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。

中学数学中所涉及的变换主要是初等变换。

有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。

另一方面,也可将变换的观点渗透到中学数学教学中。

将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阅读理解问题——几何问题代数化
1.观察下图:
第1题图
我们把正方形中所有x、y相加得到的多项式称为“正方形多项式”,如第1个图形中的“正方形多项式”为4x+y,第2个图形中的“正方形多项式”为9x+4y,遵循以上规律,解答下列问题:
(1)第4个图形中的“正方形多项式”为,第n(n为正整数)个图形中的“正方形多项式”为;
(2)如果第1个图形中的“正方形多项式”为5,第4个图形中的“正方形多项式”为2.
①求x和y的值;
②求“正方形多项式”的值Q的最大值(或最小值),并说明是第几个图形. 解:(1)25x+16y,(n+1)2x+n2y;
【解法提示】∵第1个图形中“正方形多项式”为4x+y,
第2个图形中“正方形多项式”为9x+4y,
第3个图形中“正方形多项式”为16x+9y,
∴第4个图形中的“正方形多项式”为25x+16y,
第n (n 为正整数)个图形中的“正方形多项式”为(n +1)2x +n 2y . (2)①依题意,得45
25162
x y x y +=⎧⎨+=⎩,
解得 2
3x y =⎧⎨
=-⎩
, ②Q =(n +1)2x +n 2y =−n 2+4n +2=−(n −2)2+6, 当n =2时,Q 最大值为6,
∴第2个图形中,“正方形多项式”的值最大,最大值为6.
2.如图,正方形ABCD 内部有若干个点,用这些点以及正方形ABCD 的
顶点A 、B 、C 、D 把原正方形分割成一些三角形(互相不重叠):
第2题图
(1)填写如表: (2)如果原正方形被分割成2018个三角形,此时正方形ABCD 内部有多少个点? (3)上述条件下,正方形又能否被分割成2019个三角形?若能,此时正方形ABCD
内部有多少个点?若不能,请说明理由.
解:(1)如下表:
正方形ABCD 内点的个数
1
2
3
4

n
分割成三角形的个数
4
6
____ ____

____
(2)设点数为n , 则2(n +1)=2018, 解得n =1008.
答:原正方形被分割成2018
个三角形时正方形ABCD 内部
有1008个点;
(3)设点数为n , 则2(n +1)=2019, 解得n =1008.5.
答:原正方形不能被分割成2019个三角形.
3.【问题提出】如何把n 个边长为1的小正方形,剪拼成一个大正方形? 探究一:若n 是完全平方数,我们不用剪切小正方形,可直接将小正方形拼成一个大正方形.
探究二:若n =2,5,10,13等,这些数都可以用两个正整数平方和的算术平方根来表示,如:22112+=;22125+=.
解决方法:以n =5为例.
(1)计算:拼成的大正方形的面积是5,边长为5;
(2)剪切:如图①,将5个小正方形按如图所示分成5部分,虚线为剪切线;
正方形ABCD 内点的个数 1
2
3
4

n
分割成三角形的个数
4
6
8
10
… 2(n +1)
第3题图
(3)拼图:以图①中的虚线为边,拼成一个边长为5的大正方形,如图②.
请你仿照上面的研究方式,用13个边长为1的小正方形剪拼成一个大正方形.
【问题拓展】如图③,给你两个大小不相等的正方形ABCD和EFGH,设正方形ABCD的边长为a,正方形EFGH的边长为b.
请你仿照上面的研究方式,把它剪拼成一个大正方形.
第3题图③
解:【问题提出】(1)计算:拼成的大正方形的面积是13,边长为13.(2)剪切如解图①:
第3题解图①
(3)拼图如解图②:
第3题解图②
【问题拓展】(1)计算:拼成的大正方形的面积是a2+
b2,边长为22

a b
(2)剪切如解图③:
第3题解图③
(3)拼图如解图④:
第3题解图④
4.【问题提出】如图①,由n ×n ×n (长×宽×高)个小立方块组成的正
方体中,到底有多少个长方体(包括正方体)呢?
第4题图
【问题研究】我们先从较为简单的情形入手.
(1)如图②,由2×1×1个小立方块组成的长方体中,长共有1+2=
32
3
2=⨯条线段,宽和高分别只有一条线段,所以图中共有3×1×1=3个长方体;
(2)如图③,由2×2×1个小立方块组成的长方体中,长和宽分别有1+2=
32
3
2=⨯条线段,高有1条线段,所以图中共有3×3×1=9个长方体; (3)如图④,由2×2×2个小立方块组成的长方体中,长宽高分别有1+2=
23
32
⨯=条线段,所以图中共有 个长方体;
(4)由2×3×6个小立方块组成的长方体中,长共有1+2=
23
32
⨯=条线段,宽共有 条线段,高共有 条线段,所以图中共有 个长方体.
【问题解决】由n ×n ×n 个小立方块组成的正方体中,长、宽、高各有 条线段,所以图中共有 个长方体. 解:【问题探究】(3)27; (4)6,21,378;
【问题解决】2)1(+n n , 3
2)1(⎥⎦⎤
⎢⎣⎡+n n .
5.在图中,每个正方形都由边长为1的小正方形组成,请完成下列各
题.
第5题图
(1)观察图形,按要求填写下列表格; 正方形边长 1 3
5
7
白色小正方形个数
_____
______ ______ ______
(2)在边长为n (其中n ≥1)的正方形中,所有黑色的小正方形的面积和为S 1,白色小正方形的面积为S 2,试用
正方形边长 2 4 6 8 白色小正方形
个数
_____
______
_______
______
含n的代数式分别表示S 1,S 2;
(1)在(2)中,是否存在偶数n ,使得S 1=8
1S 2?若存在,求出n的值;若不存在,请说明理由.(本题可能要用到的参考公式:(a +b )2=a 2+2ab +b
2,(a -b )2=a 2-2ab +b 2)
解:(1)补充如下表: 正方形边长 1 3 5 7 白色小正方形
个数
4
16
36
(2)n 为奇数时,S 1=2n -1;S 2=(n -1)2; n为偶数时,S 1=2n ;S 2=n 2-2n ;
(3)存在,理由如下: 由题意得,2n =8
1(n 2-2n ), 解得n =18或0(舍去), ∴存在偶数n =18使得S 1=8
1S 2.
正方形边长 2 4 6 8 白色小正方形
个数
8
24
48。

相关文档
最新文档