2021 等比数列的性质及应用
【全套】2021届新课改地区高三数学一轮专题复习——第35讲 等比数列(解析版)

为( )
A.-2+ 2 2
B.- 2
C. 2
D.- 2或 2
(2)等比数列{an}的各项均为正数,且 a1a5=4,则 log2a1+log2a2+log2a3+log2a4+log2a5=________. 【答案】 (1)B (2)5 【解析】 (1)设等比数列{an}的公比为 q,因为 a3,a15 是方程 x2+6x+2=0 的两根,所以 a3·a15=a29=2,
1 (q4)3 1 (q4)2
1 23 1 22
7. 3
1 q
(2):(基本量法) 设数列 an 的首项是 a1 ,公比为 q ,则由 a3 a2 4 , a4 16 ,得
a1q a1q
2 3
a1q 16
4
解得
aq122 , S3 a1 a2 a3 a1 a1q a1q2 2 4 8 14 .
项 a1>0,公比 0<q<1 或首项 a1<0,公比 q>1,则数列为递减数列;若公比 q=1,则数列为常数列;公比
q<0,则数列为摆动数列.
1
an
(5)若{an}和{bn}均为等比数列,则{λan}(λ≠0)、{|an|}、an 、{a2n}、bn 、{manbn}(m≠0)仍为等比数列.
1 / 14
变式 2、 (1)[2018·如东中学]在等比数列{an}中,各项均为正值,且 a6a10+a3a5=41,a4a8=5,则 a4+a8=
____; (2)[2016·常熟中学]等比数列{an}的首项 a1=-1,前 n 项和为 Sn,若SS150=3312,则公比 q=___.
【答案】(1) 51(2)-1 2
解得
q=1,代入①得 2
a1=2,
届数学一轮复习第六章数列第三节等比数列及其前n项和学案理含解析

第三节等比数列及其前n项和[最新考纲][考情分析][核心素养]1.理解等比数列的概念。
2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系。
等比数列的基本运算,等比数列的判断与证明,等比数列的性质与应用仍是2021年高考考查的热点,三种题型都有可能出现,分值为5~12分.1.数学运算2.逻辑推理‖知识梳理‖1.等比数列的有关概念(1)定义①文字语言:从错误!第2项起,每一项与它的前一项的错误!比都等于错误!同一个常数.②符号语言:错误!错误!=q(n∈N*,q为非零常数).(2)等比中项:如果a,G,b成等比数列,那么错误!G叫做a 与b的等比中项.即:G是a与b的等比中项⇔a,G,b成等比数列⇒G26ab.2.等比数列的有关公式(1)通项公式:a n=错误!a1q n-1.(2)前n项和公式3.等比数列的性质(1)通项公式的推广:a n=a m·q n-m(m,n∈N*).(2)对任意的正整数m,n,p,q,若m+n=p+q,则错误!a m·a n =错误a p·a q.特别地,若m+n=2p,则a m·a n=a2p.(3)若等比数列前n项和为S n,则S m,S2m-S m,S3m-S2m仍成等比数列,即(S2m-S m)213S m(S3m-S2m)(m∈N*,公比q≠1).(4)数列{a n}是等比数列,则数列{pa n}(p≠0,p是常数)也是错误!等比数列.(5)在等比数列{a n}中,等距离取出若干项也构成一个等比数列,即a n,a n+k,a n+2k,a n+3k,…为等比数列,公比为错误!q k.►常用结论1.若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),错误!,{a2,n},{a n·b n},错误!仍是等比数列.2.一个等比数列各项的k次幂仍组成一个等比数列,新公比是原公比的k次幂.3.{a n}为等比数列,若a1·a2·…·a n=T n,则T n,错误!,错误!,…成等比数列.4.当q≠0且q≠1时,S n=k-k·q n(k≠0)是{a n}成等比数列的充要条件,这时k=错误!.5.有穷等比数列中,与首末两项等距离的两项的积相等,特别地,若项数为奇数时,还等于中间项的平方.‖基础自测‖一、疑误辨析1.判断下列结论是否正确(请在括号中打“√”或“×”).(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.()(2)三个数a,b,c成等比数列的充要条件是b2=ac。
2021届高考二轮复习讲义数列第02讲 等比数列及其前n项和(无答案)

第02讲 等比数列及其前n 项和知识精讲一. 等比数列的概念一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q 表示(0)q ≠,即:1(0,0)n n na q q a a +=≠≠ 根据q 判断数列的单调性: 当11a >{}1n q a >⇔是递增数列; {}01n q a <<⇔是递减数列;{}=1n q a ⇔是常数列二. 等比数列的通项公式推导等比数列的通项公式:3121221n n n n a a aa q q q q a a a a ---====,,,,, 将这1n -个式子的等号两边分别相乘得:11n na q a -=,即()1*1n n a a q n N -=∈. 这种方法就叫做累乘法.三. 等比中项如果三个数 a G b ,,组成等比数列⇔2G ab =,G 叫做a 与b 的等比中项. 两个符号相同的非零实数,有两个等比中项,一正一负.若数列是等比数列⇔任意相邻三项之间都存在如下关系:211(2)n n n a a a n -+=≥四. 等比数列的性质设{}n a 为等比数列,公比为q ,则:1. 若在等比数列中,若n m u v +=+,则n m u v a a a a ⋅=⋅;特殊地,若2m p q =+,则2mp q a a a =⋅; 推广到三项,即m ,n ,t ,p ,q ,*s N ∈且m n t p q s ++=++m n t p q s a a a a a a ⇒=; 推广到一般形式,只要两边项数一样,且下标和相等,则各项之积相等.2. n m n m a a q -=*(,)m n N ∈;3. 在等比数列{}n a 中,等距离取出若干项也构成一个等比数列,即n a ,n m a +,2n m a +,……为等比数列,公比为m q .4. 若{}{} n n a b ,均为等比数列,且公比分别为()1212 0q q q q ⋅≠,,则数列{} n pa ,{}mn a ,{}n n a b ⋅,n n a b ⎧⎫⎨⎬⎩⎭也为等比数列,且公比分别为111122 mq q q q q q ⋅,,,.五. 等比数列的前n 项和公式()()111(1)11n n na q S a q q q⎧=⎪=⎨-≠⎪-⎩.用错位相减法推导等比数列前n 项和公式:211111n n S a a q a q a q -=++++,等式两边同乘q 得:211111n n n qS a q a q a q a q -=++++,将这两式相减得:()11111(1)n n n q S a a q a q --=-=-, 从而得到等比数列的前n 项和公式()1(1)11n n a q S q q-=≠-;当1q =时,1n S na =.六. 等比数列{}n a 前n 项和公式与指数函数. 区别和联系区别联系n S定义域为*N 图象是一系列的孤立点 (1)解析式都是指数型; (2)n S 图象是指数型函数()f x 图象上一系列的点.()f x定义域为R图象是一条指数型曲线2. 观察()0nn S Aq B AB =+≠和111(1)111n n a q a aS q q q q--==+--- 得11a A B q-=-=-3. 有指数型函数的性质可得:当10 10q a <<<,时,0A >,n S 递减有最大值, 当10 10q a <<>,时,0A <,n S 递增有最小值; 当110q a ><,时,0A <,n S 递减有最大值, 当110q a >>,时,0A >,n S 递增有最小值.七. 等比数列的前n 项和的性质等比数列{}n a 的前n 项和可以构成一个等比数列,即k S ,2k k S S -,32k k S S -成等比数列.公比为k q (k 为偶数时,1q ≠-)如下图所示:323212312213kkk k k kS k k k k kS S S S S a a a a a a a a ++--++++++++++三点剖析一、等比数列的判定方法:(1)定义法:对于数列{}n a ,若1(0)n na q q a +=≠,则数列{}n a 是等比数列; (2)等比中项:对于数列{}n a ,若221n n n a a a ++⋅=,则数列{}n a 是等比数列;(3)等比数列与对数的结合等比数列{}n a 中,若n m u v +=+,则n m u v a a a a ⋅=⋅,相应的,lg lg lg lg n m u v a a a a +=+,{}lg n a 是等差数列,公差为lg q .(4)前n 项和法:()0n n S Aq A Aq =-≠⇔{}n a 等比数列.等比数列的概念例题1、 在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是________例题2、 已知x ,22x +,33x +是等比数列的前三项,则该数列第四项的值是( )A.-27B.12C.272D.272-例题3、 已知等差数列{}n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A.-4 B.-6C.-8D.-10例题4、 己知数列{}n a 是等差数列,数列{}n b 是等比数列,对一切*n N ∈,都有1n n na b a +=,则数列{}n b 的通项公式为_________.例题5、 在正项等比数列{}n a 中,已知412a =,563a a +=,则12n a a a ⋯的最小值为( ) A.1256B.1512C.11024D.12048随练1、 在数列{}n a 中,12n n a a +=,若54a =,则456a a a = . 随练2、 已知等比数列{}n a 中,各项都是正数,且1a ,312a ,22a 成等差数列,则91078a a a a ++=( )A.12+B.12C.322+D.322-随练3、 在等差数列{}n a 中,如果m ,n ,p ,*r N ∈,且3m n p r ++=,那么必有3m n p r a a a a ++=,类比该结论,在等比数列{}n b 中,如果m ,n ,p ,*r N ∈,且3m n p r ++=,那么必有( ) A.3m n p r b b b b ++=B.3m n p r b b b b ++= C.3m n p r b b b b = D.3m n p r b b b b =随练4、 公差不为0的等差数列{}n a 的部分项1ak ,2ak ,3ak …构成等比数列{}n ak ,且11k =,22k =,36k =,则5k =________.随练5、 在等比数列{}n a 中,22a =,5128a =. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若2log n n b a =,数列{}n b 的前n 项和为n S ,360n S =,求n 的值.等比数列的性质例题1、 已知{}n a 为各项都是正数的等比数列,若484a a =,则567a a a =________.例题2、 若等比数列{a n }的各项均为正数,且a 8a 10+a 7a 11=2e 6,则lna 1+lna 2+…+lna 17=________.例题3、 已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9=________.例题4、 定义在00-∞⋃+∞(,)(,)上的函数f x (),如果对于任意给定的等比数列{}{}n n a f a ,()仍 是等比数列,则称f x ()为“保比等比数列”.现有定义在00-∞⋃+∞(,)(,)上的如下函数: ①2f x x =(); ②2x f x =(); ③f x x =()④ln f x x =(). 则其中是“保比等比数列”的f x ()的序号为 .随练1、 在等比数列{}n a 中,已知24a =,616a =,则4a =________.随练2、 设等比数列{a n }的前n 项和S n ,若a 1=-2,S 6=9S 3,则a 5的值为________随练3、 已知数列{}n a 是递增等比数列,152417,16a a a a +==,则公比q =( ) A.-4 B.4C.-2D.2随练4、 等比数列{}n a 中,42a =,75a =,则数列{lg }n a 的前10项和等于( ) A.2 B.lg50C.10D.5等比数列的前n 项和例题1、 已知数列{a n }满足a 1=1,*12()n n a a n N +=∈,则S 10=________.例题2、 已知等比数列{}n a 各项均为正数,满足313a a +=,356a a +=,则324354657l a a a a a a a a a a ++++=( )A.62B.2C.61D.612例题3、 数列112,124,138,…的前n 项和为n S =( )A.21n n-B.12n n -C.(1)1122n n n +-+D.(1)122n n n +-例题4、 已知正项等比数列{}n a 的前n 项和为n S 且8426S S -=,则9101112a a a a +++的最小值为_________.例题5、 等比数列{a n }的前n 项和为S n ,已知S 2,S 4,S 3成等差数列. (1)求数列{a n }的公比q ;(2)若a 1-a 3=3,问218是数列{a n }的前多少项和.随练1、 等比数列{a n }的前n 项和S n =2n -1,则a 12+a 22+…+a n 2=________.随练2、 已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和. (1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比为q 满足q 2-(a 4+1)q +S 4=0.求{b n }的通项公式及其前n 项和T n .随练3、 已知数列{}n a 的前n 项和为22n S n n =+. (1)求数列{}n a 的通项公式;(2)若等比数列{}n b 的通项公式为2()2n n n a k b n-=,求k 的值及此时数列{}n b 的前n 项和n T .等比数列的判定例题1、 已知数列{}n a 的前n 项和为n S ,且11n a +=131n a ++,265a S =,则=____.例题2、 设n n S T ,,分别为数列{}n a ,{}n b 的前n 项和,647227n n S a =﹣,()2819n n n n a b +=-+,则当n =____时,n T 最小.例题3、 已知数列是等差数列,;数列的前项和是,且. (1)求数列的通项公式;(2)求证:数列是等比数列.{}na 25=6,=18a a {}nb n n T 1n n T b +={}na{}nb例题4、 已知数列{}n a 中,首项15a =,()121n n a a n N *+=+∈. (1)求证:数列{}1n a +是等比数列;(2)求数列{}n a 的通项公式n a 以及前n 项和n S .例题5、 设n S 表示数列{}n a 的前n 项和.1()若{}n a 是等差数列,试证明:1()2n n n a a S +=; 2()若110a q =≠,,且对所有的正整数n ,有11nn q S q -=-,判断{}n a 是否为等比数列.例题6、 设数列{}n a 满足1421n n n a a a +-=+*()n N ∈ (Ⅰ)若13a =,21nn n a b a -=-*()n N ∈求证数列{}n b 是等比数列,并求{}n b 的通项公式n b ; (Ⅱ)若1n n a a +>对*n N ∀∈恒成立,求1a 的取值范围。
高中数学4-3-1等比数列的概念第2课时等比数列的性质及应用新人教A版选择性必修第二册

琴,故朱载堉被誉为“钢琴理论的鼻祖”.“十二平均律”是指一个八
度有 13 个音,相邻两个音之间的频率之比相等,且最后一个音频率是最 初那个音频率的 2 倍,设第二个音的频率为 f2,第八个音的频率为 f8,则 ff82等于( A )
A. 2
B.3 2
C.4 2
D.6 2
[分析] 建立等比数列模型⇒运用等比数列的性质求解.
一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是
( C) (参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)
A.2018年
B.2019年
C.2020年
D.2021年
[解析] (1)一年后的价格为:8 100×1-13=5 400; 两年后的价格为:5 400×1-13=3 600; 三年后的价格为:3 600×1-13=2 400.
对点训练❸ 设{an}是各项为正数的无穷数列,Ai是长、宽分 别为ai,ai+1的矩形的面积(i=1,2,…),则{An}为等比数列的充要条件为 (D)
A.{an}是等比数列 B.a1,a3,…,a2n-1,…或a2,a4,…,a2n,…是等比数列 C.a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列 D.a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列,且 公比相同
2.等比数列的项的对称性
有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项
的积(若有中间项则等于中间项的平方),即 a1·an=a2·____a_n_-_1____= ak·_____a_n-__k+_1______=a2n+1(n 为正奇数).
2
3.等比数列的运算的性质
2021届新高考数学总复习:等比数列的通项及其性质(附答案解析)

10.在等比数列{an}中,若a5=2a4,a2=2,则a6=( )
A.64B.16C.8D.32
11.若等比数列{an}满足:a1=1,a1+a2+a3=7,则a4=( )
A.8B.﹣27C.8或﹣27D.﹣8或﹣27
12.已知各项均为正数的等比数列{an}中,a2=2,a3a4a5=29,则a3=( )
【解答】解:设等比数列{an}的公比为q,则a1a3a5= •a2q•a2q3=(a2q)3=8,则a2q=a3=2.
又a2a4= •a3q=a32=22=4.
故选:B.
4.在等比数列{an}中,a3=2,a7=18,则a3与a7的等比中项为( )
A.4B.6C.±6D.±4
【解答】解:∵等比数列{an}中,a3=2,a7=18,
A. B.2C.±2D.
7.等比数列{an}中,an∈R+,a5•a6=32,则log2a1+log2a2+…+log2a10的值为( )
A.10B.20C.25D.160
8.已知各项均为正数的等比数列{an}中,a2=2,a5=2a4+3a3,则a6=( )
A.2B.54C.162D.243
9.设{an}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=( )
A.16B.32C.64D.256
16.在正项等比数列{an}中,若a3a7=4,则 =( )
A.16B.8C.4D.2
17.在等比数列{an}中,已知a1a3=4,a9=256,则a8=( )
A.128或﹣128B.128C.64或﹣64D.64
2021届高考数学(新课标) 题型全归纳 数列要点讲解

数 列一、高考要求理解数列的有关概念,了解递推公式是给出数列的一种方法,并能依据递推公式写出数列的前n 项.理解等差(比)数列的概念,把握等差(比)数列的通项公式与前n 项和的公式. 并能运用这些学问来解决一些实际问题.了解数学归纳法原理,把握数学归纳法这一证题方法,把握“归纳—猜想—证明”这一思想方法. 二、热点分析1.数列在历年高考中都占有较重要的地位,一般状况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n 项和公式、极限的四则运算法则、无穷递缩等比数列全部项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式学问的综合性试题,在解题过程中通常用到等价转化,分类争辩等数学思想方法,是属于中高档难度的题目.2.有关数列题的命题趋势 (1)数列是特殊的函数,而不等式则是深刻生疏函数和数列的重要工具,三者的综合求解题是对基础和力气的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点 (2)数列推理题是新毁灭的命题热点.以往高考常使用主体几何题来考查规律推理力气,近两年在数列题中也加强了推理力气的考查。
(3)加强了数列与极限的综合考查题3.娴熟把握、机敏运用等差、等比数列的性质。
等差、等比数列的有关性质在解决数列问题时应用格外广泛,且格外机敏,主动发觉题目中隐含的相关性质,往往使运算简洁秀丽 .如243546225a a a a a a ++=,可以利用等比数列的性质进行转化:从而有223355225a a a a ++=,即235()25a a +=. 4.对客观题,应留意寻求简捷方法 解答历年有关数列的客观题,就会发觉,除了常规方法外,还可以用更简捷的方法求解.现介绍如下: ①借助特殊数列. ②机敏运用等差数列、等比数列的有关性质,可更加精确 、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有机敏、简捷的解法5.在数列的学习中加强力气训练 数列问题对力气要求较高,特殊是运算力气、归纳猜想力气、转化力气、规律推理力气更为突出.一般来说,考题中选择、填空题解法机敏多变,而解答题更是考查力气的集中体现,尤其近几年高考加强了数列推理力气的考查,应引起我们足够的重视.因此,在平常要加强对力气的培育。
第四章 4.3.1 第2课时 等比数列的应用及性质 【新人教版】高中数学选修性必修第2册

反思 感悟
判断一个数列是等比数列的常用方法 (1)定义法:若数列{an}满足aan+n1=q(n∈N*,q 为常数且不为零) 或aan-n1=q(n≥2,且 n∈N*,q 为常数且不为零),则数列{an}是 等比数列. (2)通项公式法:若数列{an}的通项公式为an=a1qn-1(a1≠0, q≠0),则数列{an}是等比数列.
021等于
019
A.-3
B.-1
√C.1
√D.9
解析 由 3a1,12a3,2a2 成等差数列可得 a3=3a1+2a2,
即a1q2=3a1+2a1q,
∵a1≠0,∴q2-2q-3=0.
解得q=3或q=-1.
∴a2 a2
020-a2 018-a2
021=a2 019 a2
00128011--qq=aa22
又a1,a3,a5均不为0, ∴a1,a3,a5成等比数列.
(2)已知数列{an}是首项为
2,公差ቤተ መጻሕፍቲ ባይዱ-1
的等差数列,令
bn=
1 2
an
,
求证数列{bn}是等比数列,并求其通项公式.
解 依题意an=2+(n-1)×(-1)=3-n,
于是 bn=123-n. 12-n
而bbn+n 1=213-n=12-1=2. 2
等比数列.
(数4)列若,{a且n}是公等比比分数别列是,q公,比1q,为q2q,. 则数列{λan}(λ≠0),a1n,{a2n}都是等比
(5)若{an},{bn}是项数相同的等比数列,公比分别是 p 和 q,那么{anbn}与 p
abnn也都是等比数列,公比分别为 pq 和 q .
预习小测 自我检验
第四章 4.3.1 等比数列的概念
专题32 等比数列(解析版)

(2)等比中项:如果a,G,b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等比中项⇔a,G,b成等比数列⇒G2=ab.
【小问2详解】由(1)知, ,所以 ,即 ,亦即 ,解得 ,所以满足等式的解 ,故集合 中的元素个数为 .
3.(2022·浙江卷T20)已知等差数列 的首项 ,公差 .记 的前n项和为 .
(1)若 ,求 ;
(2)若对于每个 ,存在实数 ,使 成等比数列,求d的取值范围.
【答案】(1) (2)
【分析】(1)利用等差数列通项公式及前 项和公式化简条件,求出 ,再求 ;
2023高考一轮复习讲与练
专题32等比数列
练高考 明方向
1.(2022·全国乙(理)T8)已知等比数列 的前3项和为168, ,则 ()
A.14B.12C.6D.3
【答案】D
【分析】设等比数列 的公比为 ,易得 ,根据题意求出首项与公比,再根据等比数列的通项即可得解.
【详解】解:设等比数列 的公比为 ,若 ,则 ,与题意矛盾,
基本方法:
等比数列的三种常用判定方法:
定义法:若 =q(q为非零常数,n∈N*),则{an}是等比数列
等比中项法:若数列{an}中,an≠0,且a =an·an+2(n∈N*),则数列{an}是等比数列
通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N*),则{an}是等比数列
(Ⅰ)证明 是等比数列,并求其通项公式;
(Ⅱ)若 ,求 .
【答案】(Ⅰ) ;(Ⅱ) .