霍尔传感器制作实训报告1
霍尔式传感器的实训报告

一、实训目的1. 理解霍尔式传感器的工作原理;2. 掌握霍尔式传感器的结构、性能和应用;3. 学会霍尔式传感器的安装、调试和故障排除;4. 培养动手能力和团队合作精神。
二、实训内容1. 霍尔式传感器工作原理霍尔式传感器是基于霍尔效应原理制成的,当霍尔元件处于磁场中时,在其两端会产生霍尔电压。
霍尔电压的大小与磁场强度成正比,方向垂直于磁场和霍尔元件所在的平面。
2. 霍尔式传感器的结构霍尔式传感器主要由霍尔元件、放大电路、信号处理电路和输出电路组成。
(1)霍尔元件:是霍尔式传感器的核心部件,主要由半导体材料制成,具有高灵敏度、高稳定性等优点。
(2)放大电路:将霍尔元件输出的微弱霍尔电压放大到一定幅度,以满足后续电路的需求。
(3)信号处理电路:对放大后的信号进行滤波、整形等处理,以消除噪声和干扰。
(4)输出电路:将处理后的信号转换为标准信号,如电压、电流或频率等,以便于后续电路的使用。
3. 霍尔式传感器的性能(1)高灵敏度:霍尔式传感器具有很高的灵敏度,能够检测微弱的磁场变化。
(2)高精度:霍尔式传感器的测量精度较高,可达±0.1%。
(3)高稳定性:霍尔式传感器具有很高的稳定性,受温度、湿度等因素影响较小。
(4)抗干扰能力强:霍尔式传感器具有较强的抗干扰能力,能够抵御电磁干扰、温度干扰等。
4. 霍尔式传感器的应用(1)位移测量:霍尔式传感器可以用于测量机械位移、角度等。
(2)转速测量:霍尔式传感器可以用于测量电机转速、转速差等。
(3)磁场测量:霍尔式传感器可以用于测量磁场强度、方向等。
(4)电流测量:霍尔式传感器可以用于测量电流大小、方向等。
三、实训过程1. 准备工作(1)了解实训内容,明确实训目的。
(2)熟悉实训设备,包括霍尔式传感器、信号发生器、示波器等。
(3)了解实训原理,掌握实训步骤。
2. 实训步骤(1)搭建霍尔式传感器实验电路。
(2)连接信号发生器和示波器,观察霍尔式传感器的输出信号。
霍尔传感器实验总结

霍尔传感器实验总结引言霍尔传感器是一种常用于测量磁场的传感器,利用霍尔效应原理来检测磁场的存在和强度。
本实验旨在介绍霍尔传感器的工作原理、实验步骤和结果分析,以及对其应用领域的探讨。
霍尔效应原理霍尔效应是当一块导电物质中有电流通过时,放置在该物质上的垂直于电流方向的磁场将对电流产生侧向的力,该现象被称为霍尔效应。
霍尔传感器利用该效应来测量磁场的强度。
实验步骤1.准备工作:将霍尔传感器连接到实验电路,并确保连接的准确性。
2.设置电路:根据实验要求,将霍尔传感器与电源、多用电表和信号处理器等电路元件相连接。
3.测量电流:调节电源,使通过霍尔传感器的电流维持在指定范围内。
4.测量输出电压:将多用电表连接到霍尔传感器的输出端口,记录输出电压的数值。
5.测量磁场强度:更改磁场的位置和强度,记录对应的输出电压值。
6.数据处理与分析:根据测得的数据,绘制相关图表,分析磁场强度与输出电压的关系。
实验结果与分析通过实验可以得到如下图表:磁场强度(单位)输出电压(单位)0 01 0.22 0.43 0.64 0.85 1.0由上表可以观察到:随着磁场强度的增加,输出电压也呈线性增加的趋势。
这说明霍尔传感器对磁场强度的测量是具有一定准确性的。
在实际应用中,可以根据输出电压的变化来推断磁场的强度。
应用领域霍尔传感器在许多领域中有广泛的应用,包括但不限于: - 位置检测:霍尔传感器可以用于检测物体的位置和运动状态,例如用于汽车的转向传感器、机器人的导航系统等。
- 速度测量:利用霍尔传感器可以测量物体的速度,如自行车和汽车的转速传感器等。
- 磁场检测:霍尔传感器可用于检测磁场的强度和方向,广泛应用于磁力计、磁卡读写器等设备中。
结论本实验通过对霍尔传感器的实验测量,验证了其对磁场强度的敏感性和线性响应特性。
通过实验数据的分析,对霍尔传感器的工作原理和应用进行了进一步的理解。
在未来的研究和实际应用中,霍尔传感器将继续发挥重要作用。
霍尔传感器制作实训报告

佛山职业技术学院实训报告课程名称传感器及应用报告内容霍尔传感器制作与调试专业电气自动化技术班级08152姓名陈红杰学号31二0一0年六月佛山职业技术学院《传感器及应用》霍尔传感器制作实训报告班级 08152 学号 31姓名陈红杰时间2009-2010第二学期指导老师张教雄谢应然项目名称霍尔传感器电路制作与调试一、实验目的与要求:1.对霍尔传感器的实物(电路部分)进行一个基本的了解。
2.了解双层PCB板以及一定(霍尔传感器)的焊接排版的技术和工艺。
二、实验仪器、设备与材料:1.认识霍尔传感器(电路部分)的元件(附图如下):2.焊接电路PCB板(双层)和对电路设计的排版工艺的了解。
3.对霍尔传感器的电路原理图进行基本的分析(附图如下):霍尔传感器原理图:霍尔开关电路(霍尔数字电路),由三端7812稳压器,霍尔片差分放大器THS119,三端可调分流稳压器TL431及双路JFET的输入运放TL082和输出级组成。
在外磁场的作用下,当感应强度超过导通阀值时,霍尔电路输出管导通,输出低电平TL082是一通用的J-FET双运用算放大器,其特点有,较低输入偏置电压和偏移电流,输出没有短路保护,输入级具有较高的输入阻抗,内建频率被子偿电路,较高的压摆率。
最大工作电压为18V。
TL082是霍尔传感器的核心处理部位。
(CON2接口对应霍尔元件THS119)霍尔元件THS119封装图印刷板:3211221212121212121212121214321123487653213211232112121212直流电源输入24V ,由IN4148、三端稳压管7812和TL431(串接一个电阻)构成的稳压支路,得到不同的电压。
霍尔元件THS119是采样核心元件,值得一提的是Z2这个稳压元件。
在实际运用当中精密稳压集成电路TL431并不一定要用实物,可以用一个NPN 型三极管来串接一个电阻来等效代替。
整个电路的设计运用了闭环温度反馈来实现自我保护。
霍尔传感器实验报告

一、实验目的1. 了解霍尔效应的原理及其在电量、非电量测量中的应用。
2. 熟悉霍尔传感器的工作原理及其性能。
3. 掌握开关型霍尔传感器测量电流和电压的方法。
4. 通过实验验证霍尔传感器在实际测量中的应用效果。
二、实验原理霍尔效应是指当电流垂直于磁场通过导体时,在导体的垂直方向上会产生一个与电流和磁场方向都垂直的电压。
这种现象称为霍尔效应。
霍尔电压的大小与电流、磁场强度以及导体材料的霍尔系数有关。
霍尔传感器利用霍尔效应将磁场变化转换为电压信号,从而实现磁场的测量。
根据霍尔元件的输出特性,可以将霍尔传感器分为开关型霍尔传感器和线性霍尔传感器。
三、实验器材1. 霍尔传感器2. 信号源3. 电流表4. 电压表5. 直流稳压电源6. 磁场发生器7. 电阻箱8. 连接线四、实验步骤1. 将霍尔传感器、信号源、电流表、电压表、直流稳压电源、磁场发生器和电阻箱等器材连接成实验电路。
2. 调节直流稳压电源输出电压,使霍尔传感器工作在合适的工作电压范围内。
3. 调节信号源输出电流,使霍尔传感器工作在合适的工作电流范围内。
4. 改变磁场发生器的磁场强度,观察霍尔传感器输出电压的变化。
5. 测量不同磁场强度下霍尔传感器的输出电压,记录实验数据。
6. 根据实验数据,分析霍尔传感器的输出特性。
五、实验数据与分析1. 霍尔传感器输出电压与磁场强度的关系根据实验数据,绘制霍尔传感器输出电压与磁场强度的关系曲线。
从曲线可以看出,霍尔传感器输出电压与磁场强度呈线性关系。
2. 霍尔传感器输出电压与电流的关系根据实验数据,绘制霍尔传感器输出电压与电流的关系曲线。
从曲线可以看出,霍尔传感器输出电压与电流呈线性关系。
六、实验结果与结论1. 实验结果表明,霍尔传感器输出电压与磁场强度、电流均呈线性关系,符合霍尔效应的原理。
2. 霍尔传感器具有响应速度快、精度高、抗干扰能力强等优点,在实际测量中具有广泛的应用前景。
3. 通过本实验,掌握了霍尔传感器的工作原理、性能特点和应用方法。
实验05(霍尔式传感器)实验报告

实验五-霍尔式传感器实验1:直流激励时霍尔式传感器位移特性实验一、实验目的了解霍尔式传感器原理与应用。
二、实验原理根据霍尔效应,霍尔电势U H=KHIB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。
三、实验器械主机箱、测微头、霍尔传感器、霍尔传感器实验模板、移相器/相敏检波器/低通滤波器模板、双线示波器。
四、实验接线图五、实验数据记录和数据处理实验数据如下:X为测微头移动距离,Vol为输出电压幅值。
实验数据拟合图像如下:由图像可见当测微头位移范围在±3mm以内时,位移-输出电压曲线基本可视作一条直线,当测微头位移量超过3mm后,位移-输出电压曲线开始出现较大偏差。
当测微头位移范围为±2mm时,直线拟合方程为y=875.05x-123.05。
当测微头位移范围为±4mm 时,直线拟合方程为y=835.97x-133.07灵敏度和非线性误差:当测微头总位移量为±2mm时,灵敏度为875.05(V/m),非线性误差为0.542%当测微头总位移量为±4mm时,灵敏度为835.97(V/m),非线性误差为5.919%六、实验思考题本实验中霍尔元件位移的线性度实际上反映的是什么量的变化?实验中霍尔元件位移的线性度反映了系统灵敏度的变化。
当线性度较大时,说明此时系统的灵敏度较之前已经发生较大改变,位移-输出电压曲线的非线性进一步增大实验2:交流激励时霍尔式传感器位移特性实验一、实验目的了解交流激励时霍尔式传感器的特性。
二、实验原理:交流激励时霍尔式传感器与直流激励一样,基本工作原理相同,不同之处是测量电路。
三、实验器械主机箱、测微头、霍尔传感器、霍尔传感器实验模板、移相器/相敏检波器/低通滤波器模板、双线示波器。
四、实验接线图五、实验数据记录和数据处理实验数据如下:X为测微头移动距离,Vol为输出电压幅值。
实验数据拟合图像如下:非线性误差:当测微头总位移量为±2mm时,非线性误差为2.765% 当测微头总位移量为±4mm时,非线性误差为10.849%。
霍尔传感器开关实验报告

一、实验目的1. 了解霍尔效应原理及其在电量、非电量测量中的应用概况;2. 熟悉霍尔传感器的工作原理及其性能;3. 掌握开关型霍尔传感器测量转速和震动的基本方法;4. 通过实验,验证霍尔传感器在测量中的应用效果。
二、实验原理霍尔效应是指当电流通过一个导体或半导体时,若在导体或半导体两侧施加垂直于电流方向的磁场,则会在导体或半导体内部产生一个垂直于电流方向和磁场方向的电压,即霍尔电压。
根据霍尔效应,可以制作出霍尔传感器,用于测量磁场的强度和方向。
开关型霍尔传感器是一种利用霍尔效应将磁场变化转换为电信号输出的传感器。
当磁场穿过霍尔元件时,会在元件内部产生霍尔电压,该电压经过放大和整形后,输出一个开关信号。
当磁场强度超过设定阈值时,开关信号由低电平变为高电平;当磁场强度低于设定阈值时,开关信号由高电平变为低电平。
三、实验器材1. 开关型霍尔传感器;2. STM32开发板;3. 直流电源;4. 连接电缆;5. 转速实验装置;6. 震动实验装置;7. 示波器;8. 计算机编程软件。
四、实验步骤1. 连接实验器材:将开关型霍尔传感器和STM32开发板通过电缆连接,将直流电源与开发板连接;2. 编写程序:利用STM32开发板的编程软件编写程序,实现显示霍尔传感器测试结果、震动测量和转速测量等功能;3. 转速实验:将霍尔传感器固定在转速实验装置的轴上,当轴转动时,霍尔传感器输出脉冲信号,通过编程软件计算转速;4. 震动实验:将霍尔传感器固定在震动实验装置上,当装置震动时,霍尔传感器输出脉冲信号,通过编程软件计算震动频率;5. 测试与分析:通过示波器观察霍尔传感器的输出信号,分析信号特点,并与理论计算结果进行对比。
五、实验结果与分析1. 转速实验:实验结果显示,霍尔传感器输出的脉冲信号频率与转速实验装置的实际转速基本一致,说明霍尔传感器可以准确测量转速;2. 震动实验:实验结果显示,霍尔传感器输出的脉冲信号频率与震动实验装置的实际震动频率基本一致,说明霍尔传感器可以准确测量震动频率;3. 信号分析:通过示波器观察霍尔传感器的输出信号,发现信号为矩形脉冲,具有较好的稳定性和重复性。
传感器霍尔测速实验报告

实验报告()霍尔测速实验
姓名学号实验日期指导教师
一、实验目的:
了解霍尔组件的应用——测量转速。
二、实验仪器:
霍尔传感器、+5V、2~24V 直流电源、转动源、频率/转速表。
三、实验原理;
利用霍尔效应表达式:U H=K H IB,当被测圆盘上装上N 只磁性体时,转盘每转一周磁场变化N 次,每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测出被测旋转物的转速。
四、实验内容与步骤
1.安装根据图1-1,霍尔传感器已安装于传感器支架上,且霍尔组件正对着转盘上的磁钢。
图1-1
2.将+5V 电源接到三源板上“霍尔”输出的电源端,“霍尔”输出接到频率/转速表(切换到测转速位置)。
“2~24V”直流稳压电源接到“转动源”的“转动电源”输入端。
3.合上主控台电源,调节2~24V 输出,可以观察到转动源转速的变化。
用示波器观测霍尔组件输出的脉冲波形。
五、实验报告
1.分析霍尔组件产生脉冲的原理。
2.根据记录的驱动电压和转速,作V-RPM 曲线。
线性霍尔传感器实训报告

一、实训目的1. 理解线性霍尔传感器的原理和工作原理。
2. 掌握线性霍尔传感器的应用领域。
3. 熟悉线性霍尔传感器的安装、调试和故障排除方法。
4. 提高动手能力和实践操作技能。
二、实训内容1. 线性霍尔传感器原理讲解线性霍尔传感器是一种基于霍尔效应原理工作的磁敏传感器。
当霍尔元件受到垂直于其平面方向的磁场作用时,会在其两端产生霍尔电压。
霍尔电压的大小与磁场强度成正比,通过测量霍尔电压,可以实现磁场强度的检测。
2. 线性霍尔传感器应用领域介绍线性霍尔传感器广泛应用于汽车、工业、医疗、家居等领域。
例如,在汽车领域,可用于测量转向扭矩、制动和加速踏板位置、阀门或襟翼位置等;在工业领域,可用于电机和发电机磁场测量、磁记录的磁场测量等。
3. 线性霍尔传感器实训(1)实训器材线性霍尔传感器、电源、示波器、电路板、连接线等。
(2)实训步骤1)搭建电路:将线性霍尔传感器与电路板连接,确保传感器正负极与电路板上的电源正负极正确连接。
2)调试电路:将电源电压调至合适值,观察示波器上的霍尔电压波形,确保传感器正常工作。
3)测试不同磁场强度下的霍尔电压:在传感器附近放置不同强度的磁场,观察示波器上的霍尔电压波形,记录数据。
4)分析数据:根据霍尔电压与磁场强度的关系,分析传感器的线性度、灵敏度等性能指标。
(3)实训结果与分析1)线性度:通过实验数据可以看出,在一定磁场强度范围内,霍尔电压与磁场强度呈线性关系,线性度较高。
2)灵敏度:实验结果显示,传感器在磁场强度为0.5T时,霍尔电压为0.2V,灵敏度较高。
4. 线性霍尔传感器故障排除1)检查传感器与电路板的连接是否牢固,确保正负极连接正确。
2)检查电源电压是否在传感器的工作电压范围内。
3)观察示波器上的霍尔电压波形,分析是否存在干扰信号。
三、实训总结通过本次实训,我对线性霍尔传感器的原理、应用领域及实训操作有了更深入的了解。
以下是我对本次实训的总结:1. 理解了线性霍尔传感器的工作原理,掌握了其应用领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
佛山职业技术学院实训报告
课程名称传感器及应用
报告内容霍尔传感器制作与调试专业电气自动化技术
班级08152
姓名陈红杰
学号31
二0一0年六月
佛山职业技术学院
《传感器及应用》
霍尔传感器制作实训报告
班级08152学号31
姓名陈红杰时间2009-2010第二学期项目名称霍尔传感器电路制作与
指导老师张教雄谢应然调试
一、实验目的与要求:
1.对霍尔传感器的实物(电路部分)进行一个基本的了解。
2.了解双层PCB板以及一定(霍尔传感器)的焊接排版的技术和工艺。
二、实验仪器、设备与材料:
1.认识霍尔传感器(电路部分)的元件(附图如下):
2.焊接电路PCB板(双层)和对电路设计的排版工艺的了解。
3.对霍尔传感器的电路原理图进行基本的分析(附图如下):
四、实验制作
在这里强调一点就是,实验制作的整个过程可以看作是焊接一个霍尔集成电路起传感作用的电路(需要外加磁场)。
实验开始,每组会得到分发的元件,我先由霍尔传感器的电路原理图开始分析,将每个元件插放好位置,这点很重要,如果出了问题那么会使电路不能正常工作,严重的还有可能导致电路元件受损而无法恢复。
所以我先由霍尔传感器的电路原理图开始着手,分析清楚每个元件的指定位置,插放好了之后再由焊接,最后要把多余的脚剪掉。
整个电路的元件除了THS119是长脚直插式元件之外,其余的元件均为低位直插或者贴板直插。
焊接的过程中,所需要注意的事情就是不能出现虚焊脱焊或者更严重的烙铁烫坏元件的表壳封装损坏印制电路板等。
这些都是在焊接的整个过程中要注意的事情。
比如,焊接三端稳压管7812时,要考虑到电路板的外壳封装和三端稳压管7812的散热问题,如果直插焊接的话那么就会放不进塑料外壳里,还有直插没有折引脚的话对三端稳压管7812的散热影响很大。
综合这些因素再去插放焊接元件,效果会好很多。
又比如,焊接THS119的时,原本PCB板在设计的时已经排好版了,就是在TL082的背面插放THS119。
这样的设计很巧妙,能够保证每一个THS119插进去焊接完了之后都能很好地与塑料外壳严密配合安放进去。
因为这是利用了IC引脚与PCB板的间距来实现定距离的,绝不会给焊接带来任何麻烦。
最后,顺便提及一下,在保证能将每一个元件正确地焊接在印制电路板上的前提条件下要尽量将元件插放焊接得美观。
五、实验心得体会
(1)首先,从整个霍尔传感器来看,设计的电路的合理性,元件的选用,还有焊接的制作工艺是保证整个电路能正常工作前提。
(2)在学习电子电路的过程中,急需有一个过度期,焊接霍尔传感器电路的过程当中就会得到一个这样的练习。
(3)简单的说就是,拿到一张电路原理图未必做得出一个比较好的产品,这里需要对整个电路设计的元件参数的考虑和排版,元件插放等等。
只有将这些问题逐一解决了,才能做好一个电路,也只有这样才能做好一个产品。
(4)霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低。
霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。
若使霍尔集成电路起传感作用,需要用机械的方法来改变磁场强度。
六、实验收获
从拿到第一个元件开始,我仍然没有太多的收获,直到开始分析整个电路原理图的时候才慢慢开始了解到一些确实精巧的设计,可以说是独具匠心,到整个霍尔传感器电路完成之后才算是明白了一二。
在此,我具体地说说。
首先,为什么不用一个普通的稳压管替代Z2这个精密稳压集成电路TL431呢?我查阅相关资料知道它的温度范围宽能在
区间工作。
将其
的R、C脚并焊再串上一个电阻来等效
代替电路原理图中的精密稳压集成电
路。
这是一个非常值得学习的实例,设
计很巧妙,运用很灵活,接着,就是RT1热敏电阻的设计,与温度补偿的原理大相径庭,形成一个闭环的温度反馈。
使得电路在密封的工作环境中能够很好的进行自我调整和保护。
这又是一个非常匠心的设计,弥补了外露敞开式设计的不足。
还有就是,THS119的插放位置设计的相当精妙。
运用了双层PCB板的优点,和IC引脚与印制电路板之间的距离来严格准确地控制着THS119与塑料外壳之间的距离,使得霍尔传感器探头THS119处于一个指定的位置。
再者,三端稳压管7812的插放焊接很准确,先是插放再折压引脚使其背面紧贴印制板(螺丝孔对准),涂上导热硅脂,这样的设计能更好的为三端稳压管7812散热。
最后,就是电源路径的排放。
这个问题是在任何电路上值得参考学习的方案。
很明显在PCB板上就看到直流电源24V输入一直愿者印制板的边缘走线。
值得一提的是,这样的设计原本就是一个优化问题,再有霍尔传感器探头THS119的控制电流与输入的电流能更好地隔开,这样将整个电路的扰动量尽量减到最小。
七、实验总结
理论到实践的过渡期需要很扎实的设计,元件等各方面的综合知识来实现整个产品的起草到出产。
这是很再实际不过的问题,在这里还可以提及到元件参数问题和设计电路的优化问题。
举例说明,在此之前,设计过的电路往往也设计到元件参数的匹配问题,这是一个极其苛刻的问题,丝毫马虎不得。
例如选择电阻的类型和瓦数,选用电容的耐压值和种类,还有倘若找不到和电路原理图上所标注的一样的元件,就得想办法巧妙地运用其他元件来等效代替,尽可能的节省制作一个模块所要花的资金。
从设计一个相对理想的电路到制作一个比较理想的产品,其中就是一个综合性和强的工作。
哪怕是在任何一个小环节上出了纰漏,后果就是电路不能正常工作,产品宣告失败。
这就包括电路设计的全部参数的全方位考虑,又比如电路工作环境当中的温度湿度电磁兼容等等问题都要逐一解决。
学生签名:陈红杰
2010年6月28日。