温度传感器报告
温度传感器实验报告

温度传感器实验报告实验报告:温度传感器实验一、实验目的本实验旨在探究温度传感器的工作原理和特性,通过实际操作来了解温度传感器在温度测量中的应用。
二、实验原理温度传感器是一种将温度变化转化为可测量电信号的装置。
根据测量原理,温度传感器可分为多种类型,如热电偶、热敏电阻、红外线温度传感器等。
本实验中,我们将使用热电偶温度传感器进行实验。
热电偶温度传感器基于热电效应原理,将温度变化转化为热电势差信号。
热电偶由两种不同材料的导体组成,当两种导体连接在一起时,如果它们之间存在温差,就会在电路中产生电动势。
当温度发生变化时,热电势也会相应变化,从而实现对温度的测量。
三、实验步骤1.准备实验器材(1)热电偶温度传感器(2)数据采集器(3)恒温水槽(4)计时器(5)实验用的不同温度的水2.进行实验操作(1)将热电偶温度传感器连接到数据采集器上。
(2)将恒温水槽中的水加热至一定温度,然后将热电偶温度传感器放入水中,记录数据采集器显示的数值。
(3)将恒温水槽中的水降温至另一不同温度,然后将热电偶温度传感器放入水中,记录数据采集器显示的数值。
(4)重复步骤(3),直至记录下不同温度下的数据。
(5)将实验数据整理成表格,并进行数据分析。
四、实验数据分析实验数据如下表所示:根据热电偶温度传感器的测量原理,我们可以计算出每一组数据的热电势差值ΔT。
将所有热电势差值进行平均,得到平均热电势差值ΔTave。
根据公式T = ΔT / ΔTave × Tref,我们可以计算出实验测量的温度值T。
其中,Tref为参考温度值,本实验中取为25℃。
根据上述公式,我们计算得到实验测量的温度值如下表所示:通过对比实验测量的温度值与实际温度值之间的误差,我们可以评估实验结果的准确性。
同时,我们还可以分析实验数据的变化趋势,例如在不同温度范围内热电势的变化趋势等。
五、实验结论通过本次实验,我们了解了温度传感器的原理和特性,并掌握了热电偶温度传感器的使用方法。
温度传感器测试报告

温度传感器测试报告1. 引言温度传感器是一种检测和测量周围环境温度的设备。
本报告旨在介绍对温度传感器进行的测试,以确保其准确性和可靠性。
2. 测试目标本次测试的主要目标是评估温度传感器的以下性能指标: - 准确性:传感器测量结果与实际温度之间的偏差。
- 稳定性:传感器在长时间使用过程中的测量稳定性。
- 响应时间:传感器对温度变化的快速响应能力。
3. 测试设备和环境为了进行测试,我们使用了以下设备和环境: - 温度传感器:型号XYZ,具有数字输出接口。
- 控制器:用于记录和控制温度传感器的测试环境。
- 温度计:作为参考标准,用于测量真实温度值。
- 温度稳定室:用于提供稳定的温度环境。
4. 测试步骤步骤一:准备工作1.确保所有测试设备和仪器都处于正常工作状态。
2.将温度传感器连接到控制器,并确保连线正确无误。
3.使用温度计校准控制器,以确保其准确测量真实温度。
步骤二:准确性测试1.将温度传感器放置在温度稳定室中,并设置室温为25°C。
2.记录温度传感器的测量结果,并与温度计的读数进行比较。
3.重复步骤1和2,分别将温度稳定室的温度设置为20°C、30°C、35°C等不同温度值。
4.统计并计算传感器测量结果与实际温度之间的偏差。
步骤三:稳定性测试1.将温度传感器放置在温度稳定室中,并设置室温为25°C。
2.持续记录传感器的测量结果,并观察其变化情况。
3.在一段时间内,逐渐增加或减少室温,以模拟实际使用中的温度变化。
4.观察传感器是否能够稳定地测量温度,并记录其响应时间。
步骤四:响应时间测试1.在温度稳定室中,将温度设置为一个已知的目标值。
2.突然改变目标温度值,并记录传感器的测量结果。
3.通过比较目标温度变化和传感器测量结果之间的时间差,计算传感器的响应时间。
5. 测试结果与分析根据我们的测试数据和分析,我们得出以下结论: - 温度传感器在25°C的环境下,准确度达到了±0.5°C。
温度传感器特性的研究实验报告

温度传感器特性的研究实验报告温度传感器特性研究实验报告一、实验目的本实验旨在研究温度传感器的特性,包括其灵敏度、线性度、迟滞性以及重复性等,通过对实验数据的分析,以期提高温度传感器的性能并为相关应用提供理论支持。
二、实验原理温度传感器是一种将温度变化转化为电信号的装置,其特性受到材料、结构及环境因素的影响。
本次实验将重点研究以下特性:1.灵敏度:温度传感器对温度变化的响应程度;2.线性度:温度传感器输出信号与温度变化之间的线性关系;3.迟滞性:温度传感器在升温与降温过程中,输出信号与输入温度变化之间的关系;4.重复性:温度传感器在多次重复测量同一温度时,输出信号的稳定性。
三、实验步骤1.准备材料与设备:包括温度传感器、恒温水槽、加热装置、数据采集器、测温仪等;2.将温度传感器置于恒温水槽中,连接数据采集器与测温仪;3.对温度传感器进行升温、降温操作,并记录每个过程中的输出信号;4.在不同温度下重复上述操作,收集足够的数据;5.对实验数据进行整理与分析。
四、实验结果及数据分析1.灵敏度:通过对比不同温度下的输出信号,发现随着温度的升高,输出信号逐渐增大,灵敏度整体呈上升趋势。
这表明该温度传感器具有良好的线性关系。
2.线性度:通过对实验数据的线性拟合,得到输出信号与温度之间的线性关系式。
结果表明,在实验温度范围内,输出信号与温度变化之间具有较好的线性关系。
3.迟滞性:在升温与降温过程中,发现输出信号的变化存在一定的差异。
升温过程中,输出信号随着温度的升高而逐渐增大;而在降温过程中,输出信号却不能完全恢复到初始值。
这表明该温度传感器具有一定的迟滞性。
4.重复性:通过对同一温度下的多次测量,发现输出信号具有良好的重复性。
这表明该温度传感器在重复测量同一温度时具有较高的稳定性。
五、结论与建议本次实验研究了温度传感器的特性,发现该传感器具有良好的灵敏度和线性度,但在降温过程中存在一定的迟滞性。
此外,该温度传感器具有良好的重复性。
温度传感器实验报告

温度传感器实验报告温度传感器是一种重要的工具,可以用来测量温度变化。
在本次实验中,我们使用了一款新的温度传感器,并对其进行了详细的测试和分析。
本报告将对这款温度传感器的性能进行简要概述,以及实验中面临的一些问题和改进措施。
一、温度传感器简介温度传感器是一种测量和控制温度变化的装置,它具有准确、稳定、较快的响应速度以及可调节的灵敏度等特点。
本次实验涉及到的温度传感器是一款智能型温度传感器,采用了特殊的传感材料,可以满足不同的温度测量范围,并具有较高的精度。
二、实验过程及结果本次实验的测量范围为0℃至100℃,共采样200次。
经过图表分析,实验结果显示:温度传感器的测量精度较高,变化范围在±0.1℃内,且抗干扰能力良好;响应速度在30毫秒内,可在较短时间内完成测量;数据处理能力强,可以根据实际需要对数据进行实时处理。
三、问题与改进措施在实验过程中,我们发现了几个问题:1)由于温度传感器的灵敏度不够高,在极端的温度环境中会出现较大的测量偏差。
2)虽然温度传感器的响应速度较快,但响应曲线的拐点时间间隔较大,不够连续,会影响测量结果。
为了解决这些问题,可以采取以下改进措施:1)增加温度传感器的灵敏度,使其能够在极端温度环境中进行准确的测量;2)重新调整温度传感器的响应曲线,缩短拐点间隔,提高测量连续性;3)开发新的数据分析算法,加快数据处理速度,提高测量准确度。
四、结论经过本次实验,证明了温度传感器具有良好的测量性能和抗干扰能力,而且具有良好的可靠性,可以用于温度测量。
但实验也发现了几个问题,提出了一些改进建议,以提高温度传感器的性能和使用效率。
最后,我们对本次实验结果表示肯定,也希望今后的研究可以继续改进温度传感器的设计,以实现更加准确、可靠的测量。
温度传感器实验报告

温度传感器实验报告一、实验目的。
本实验旨在通过使用温度传感器,对不同温度下的电压信号进行测量和分析,从而掌握温度传感器的工作原理和特性,提高实验操作和数据处理能力。
二、实验仪器与设备。
1. Arduino开发板。
2. LM35温度传感器。
3. 连接线。
4. 电脑。
5. 串口数据线。
三、实验原理。
LM35是一种精密温度传感器,其输出电压与摄氏温度成线性关系。
在本实验中,我们将使用LM35温度传感器测量不同温度下的输出电压,并通过Arduino开发板将数据传输至电脑进行分析处理。
四、实验步骤。
1. 将LM35温度传感器与Arduino开发板连接,将传感器的输出端(中间脚)连接到Arduino的模拟输入引脚A0,将传感器的VCC端连接到Arduino的5V电源引脚,将传感器的地端连接到Arduino的地引脚。
2. 编写Arduino程序,通过模拟输入引脚A0读取LM35传感器的输出电压,并将其转换为摄氏温度值。
3. 将Arduino开发板通过串口数据线与电脑连接,将温度数据传输至电脑端。
4. 在电脑上使用串口通讯软件监测并记录温度数据。
5. 将LM35传感器分别置于不同温度环境下(如冰水混合物、常温水、温水等),记录并分析传感器输出的电压和对应的温度数值。
五、实验数据与分析。
通过实验测得的数据,我们可以绘制出LM35温度传感器的电压输出与温度之间的线性关系图。
通过分析图表数据,可以得出传感器的灵敏度、稳定性和线性度等特性参数。
六、实验结论。
通过本次实验,我们深入了解了LM35温度传感器的工作原理和特性,掌握了使用Arduino开发板对传感器输出进行数据采集和分析的方法。
同时,我们也了解到了温度传感器在不同温度环境下的表现,为今后的工程应用提供了重要参考。
七、实验总结。
温度传感器是一种常用的传感器元件,具有广泛的应用前景。
通过本次实验,我们不仅学会了对温度传感器进行实验操作,还掌握了数据采集和分析的方法,为今后的实验和工程应用打下了坚实的基础。
温度传感实验报告

一、实验目的1. 了解温度传感器的基本原理和种类。
2. 掌握温度传感器的测量方法及其应用。
3. 分析不同温度传感器的性能特点。
4. 通过实验验证温度传感器的测量精度和可靠性。
二、实验器材1. 温度传感器实验模块2. 热电偶(K型、E型)3. CSY2001B型传感器系统综合实验台(以下简称主机)4. 温控电加热炉5. 连接电缆6. 万用表:VC9804A,附表笔及测温探头7. 万用表:VC9806,附表笔三、实验原理1. 热电偶测温原理热电偶是由两种不同金属丝熔接而成的闭合回路。
当热电偶两端处于不同温度时,回路中会产生一定的电流,这表明电路中有电势产生,即热电势。
热电势与热端和冷端的温度有关,通过测量热电势,可以确定热端的温度。
2. 热电偶标定以K型热电偶作为标准热电偶来校准E型热电偶。
被校热电偶的热电势与标准热电偶热电势的误差可以通过以下公式计算:\[ \Delta E = \frac{E_{\text{标}} - E_{\text{校}}}{E_{\text{标}}}\times 100\% \]其中,\( E_{\text{标}} \) 为标准热电偶的热电势,\( E_{\text{校}} \) 为被校热电偶的热电势。
3. 热电偶冷端补偿热电偶冷端温度不为0,因此需要通过冷端补偿来减小误差。
冷端补偿可以通过测量冷端温度,然后通过计算得到补偿后的热电势。
4. 铂热电阻铂热电阻是一种具有较高稳定性和准确性的温度传感器。
其电阻值与温度呈线性关系,常用于精密温度测量。
四、实验内容1. 热电偶测温实验将K型热电偶和E型热电偶分别连接到实验台上,通过调节加热炉的温度,观察并记录热电偶的热电势值。
同时,使用万用表测量加热炉的实际温度,分析热电偶的测量精度。
2. 热电偶标定实验以K型热电偶为标准热电偶,对E型热电偶进行标定。
记录标定数据,计算误差。
3. 铂热电阻测温实验将铂热电阻连接到实验台上,通过调节加热炉的温度,观察并记录铂热电阻的电阻值。
温度传感器实验报告

温度传感器实验报告
一、实验目的
本实验旨在通过使用温度传感器来检测不同环境下的温度变化,并通过实验数据分析温度传感器的性能和准确度。
二、实验仪器
1. Arduino Uno控制板
2. DS18B20数字温度传感器
3. 杜邦线
4. 电脑
三、实验步骤
1. 连接DS18B20温度传感器到Arduino Uno控制板上。
2. 使用Arduino软件编写读取温度传感器数据的程序。
3. 通过串口监视器读取传感器采集到的温度数据。
4. 将温度传感器放置在不同环境温度下,记录数据并进行分析。
四、实验数据
在室内环境下,温度传感器读取的数据平均值为25摄氏度;在户外阳光下,温度传感器读取的数据平均值为35摄氏度。
五、实验结果分析
通过实验数据分析可知,DS18B20温度传感器对环境温度有较高的
敏感度和准确性,能够较精准地反映环境温度的变化。
在不同环境温
度下,传感器能够稳定地输出准确的温度数据。
六、实验结论
本实验通过对DS18B20温度传感器的测试和分析,验证了其在温
度检测方面的可靠性和准确性。
温度传感器可以广泛应用于各种领域,如气象监测、工业控制等。
通过本次实验,我们对温度传感器的性能
有了更深入的了解。
七、参考文献
1. DS18B20温度传感器数据手册
2. Arduino Uno官方网站
以上为实验报告内容,谢谢!。
温度传感器实训报告

温度传感器实训报告一、引言温度传感器是一种用来测量环境温度的设备,广泛应用于工业自动化、气象、医疗、农业等领域。
本实训旨在通过使用温度传感器,学习其工作原理和应用技巧,并实现温度测量和数据显示功能。
二、实训目的1. 了解温度传感器的基本原理和分类;2. 掌握温度传感器的接线方法和使用技巧;3. 学习如何使用开发板进行温度传感器的数据采集和处理;4. 实现温度传感器数据的显示和存储。
三、实训内容1. 温度传感器的原理与分类温度传感器根据测量原理的不同,可以分为接触式和非接触式两种类型。
接触式温度传感器通过与待测物体接触,通过物体的导热性质来测量温度;非接触式温度传感器则是通过测量物体辐射的红外线来推算温度。
2. 温度传感器的接线和使用温度传感器一般有3个引脚,分别是VCC、GND和OUT。
其中,VCC和GND分别用于连接电源正负极,OUT则是用来输出温度信号。
在实际接线时,需要根据具体传感器的引脚定义进行连接。
3. 温度传感器的数据采集和处理在实训中,我们将使用开发板进行温度传感器数据的采集和处理。
首先,将温度传感器与开发板连接好,并通过编程设置相应的引脚模式和通信协议。
然后,通过指令或程序读取传感器输出的模拟信号,并进行模数转换得到数字温度值。
最后,根据需要可以对数据进行进一步的处理,如单位转换、数据滤波等。
4. 温度传感器数据的显示和存储为了实现温度数据的显示和存储,我们可以通过连接显示屏或使用串口通信等方式将数据输出到外部设备。
同时,可以将数据存储到开发板的存储器中,或通过网络传输到云平台进行进一步的分析和处理。
四、实训结果通过本次实训,我们成功实现了温度传感器的数据采集和处理,并将数据显示在了外部设备上。
同时,我们还实现了数据的存储和传输功能,方便后续的数据分析和应用。
五、实训总结本次实训使我们对温度传感器有了更深入的了解,并掌握了其使用方法和技巧。
通过实际操作,我们不仅提高了对传感器的实际应用能力,也加深了对传感器原理和数据处理的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度传感器报告
温度传感器是指能感受温度并能转换成可用输出信号的传感器。
温度是和人类生活环境有着密切关系的一个物理量,是工业过程三大参量(流量、压力、温度)之一,也是国际单位制(SI)中七个基本物理量之一。
温度测量是一个经典而又古老的话题,很久以来,这方面己有多种测温元件和传感器得到普及,但是直到今天,为了适应各工业部门、科学研究、医疗、家用电器等方面的广泛要求,仍在不断研发新型测温元件和传感器、新的测温方法、新的测温材料、新的市场应用。
要准确地测量温度也非易事,如测温元件选择不当、测量方法不宜,均不能得到满意结果。
据有关部门统计,2009年我国传感器的销售额为327亿元人民币,其中温度传感器占整个传感器市场的14%,主要应用于通信电子产品、家用电器、楼宇自动化、医疗设备、仪器仪表、汽车电子等领域。
温度传感器的特点
作为一个理想的温度传感器,应该具备以下要求:测量范围广、精度高、可靠性好、时漂小、重量轻、响应快、价格低、能批量生产等。
但同时满足上述条件的温度传感器是不存在的,应根据应用现场灵活使用各种温度传感器。
这是因为不同的温度传感器具有不同的特点。
● 不同的温度传感器测量范围和特点是不同的。
几种重要类型的温度传感器的温度测量范围和特点,如表1所示。
● 测温的准确度与测量方法有关。
根据温度传感器的使用方法,通常分为接触测量和非接触测量两类,两种测量方法的特点如
● 不同的测温元件应采用不同的测量电路。
通常采用的测量电路有三种。
“电阻式测温元件测量电路”,该测量电路要考虑消除非线性误差和热电阻导线对测量准确度的影响。
“电势型测温元件测量电路”,该电路需考虑线性化和冷端补偿,信号处理电路较热电阻的复杂。
“电流型测温元件测量电路”,半导体集成温度传感器是最典型的电流型温度测量元件,当电源电压变化、外接导线变化时,该电路输出电流基本不受影响,非常适合远距离测温。
温度测量的最新进展
● 研制适应各种工业应用的测温元件和温度传感器。
铂薄膜温度传感器膜厚1μm,可置于极小的测量空间,作温度场分布测量,响应时间不超过1ms,偶丝最小直径25μm,热偶体积小于1×10-4mm3,质量小于1μg。
多色比色温度传感器能实时求出被测物体发射率的近似值,提高辐射测温的精
度。
谐振式石英音叉温度传感器温度分辨率可达0.0009℃,准确度可达0.02℃,测量范围可达-200~260℃,线性度可达0.1~0.05%。
Z-元件构成的新型温控器件具有电路结构简单、精度高、速度快、低功耗、低成本等特点。
集成温度传感器利用扩散硅技术制作,适合批量生产,一致性好,灵敏度达11.3/℃。
W-Re温度传感器利用W-Re热电偶制作的高温传感器,能检测上限温度为2300℃,适用于还原、惰性、真空、核幅射等环境的高温测量。
智能温度传感器利用MEMS技术,将典型的测温元件、信号调理电路、带数字总线接口的微处理器组合为一整体而构成智能温度传感器系统。
● 测温技术实现从“有线”向“无线”发展。
传统的温度测量通常采用带有电缆的有线连接方式,但对于有些场合,如旋转或移动物体的温度测量、环境恶劣人员无法涉足之处、不宜采用有线的环境,随着智能温度传感器的应用,并从节省布线成本考虑,测温技术开始从“有线”向“无线”发展。
采用无源声表面波谐振器的无线温度测量虚拟仪器系统引入信号处理方法和反馈控制,降低了系统成本,提高了测量精度和测量距离,结合通用计算机平台和数据I/O板卡,通过软件进行灵活控制,可根据不同环境以及测量过程自动调节测量参数,实现自适应检测。
当发射功率为100mW时,无线检测距离为4m处,谐振频率重复测量的不确定度约为0.09kHz,3m处对温度测量灵敏度的不确定度约为0.1℃。
空调用温度、湿度传感器系统该系统有主机与分机两部分。
分机定期将置于内部的温、湿度传感器所测数据以无线方式传送给主机。
主机通过输出单元将其转换成电信号,送给控制装置。
由于分机采用电池供电,可放置在任何地方,并将控制信号以无线方式传递,十分方便。
无线巡回检测系统对于安装在现场的传感器测得的数据,不用巡检人员到现场目测或记录,而是通过无线数据收集系统,对带有无线传输模式的现场用传感器进行无线巡回检测。
这种检测系统对于危险场所及高部位的检测将十分方便。
● 测温技术实现“由点到线、由线到面、由表到里”的方向发展。
多芯热电偶传统的温度测量主要是基于“点”的温度测量,然而人们往往需要关注整个温度场的温度分布,如整个炉窑的温度分布、扩散炉内的温场、仓库各
点的温度,因此出现了多芯铠装热电偶,或用测温电缆,沿电缆线组装多支热电偶或热电阻测量“线”状温度分布。
光纤式温度分布测量技术光纤式温度分布测量技术是用一支传感器就能测出线状温度分布的划时代技术。
该技术的基本原理是将激光脉冲射到光纤中,依据到达各处返回的散射光中斯托克及反斯托克光之比,求其温度。
这种光纤式温度分布测量技术最长可测量30Km以内的温度分布。
用于测量油井从地面到地下深度方向的温度分布是很理想的。
用辐射温度计或热像仪测量表面温度分布对于物体表面温度的测量和控制,过去多用辐射温度计和热像仪,如用热像仪测量钢铁厂高炉外表层的温度分布,用红外辐射温度计测量水泥行业回转炉表面温度监视等。
但如用光纤式温度分布测量技术不仅可提高测量精度,而且可大幅度降低成本。
深部温度测量可用加长热电偶的方法,但使用极不方便。
可采用深部温度测量特殊装置,该装置有加热器、金属框、绝热层、测温元件(如热敏电阻)组成。
其原理是在加热器的表面,能消除其温度梯度,并能测出其表面温度,从而知道其深部温度。
2 新型温度传感器
2.1 用廉金属替代贵金属铂铑热电偶
我国工业炉窑的温度测量,尤其是在1300℃以上的高温领域,多采用铂铑系热电偶。
每年测温消耗的铂大约500kg。
我国是铂资源贫乏的国家,几乎全靠进口,而且价格不断飙升。
2.2 N型温度传感器
(1)N型热电偶的名义成分与性能
1)成分:NP Cr,14.2%;Si,1.4%;余Ni;NNMg,1.0%;Si,4.4%;余Ni。
2)特点:高温抗氧化性能强,250℃~550℃范围内,热循环稳定性好;使用温度高达1300℃。
2.3 新型WRe温度传感器
(1)钨铼热电偶的主要特点
1)热电极熔点高(3300℃)、强度大、极易氧化;
2)热电动势大、灵敏度高、热电动势率为S 型热电偶的2倍,B型3倍;
3)价格便宜,仅为S型热电偶的1/20,B型热电偶的1/25。
(2)钨铼热电偶的分类
美国ASTM将WRe热电偶标准等级分为3类:
1)标准化系列,有C型(WRe5-WRe26),其标准化的地位与B、S、R、N、K、J、E、T等成熟热电偶相同;
2)标准热电偶系列,有D型(WRe3-WRe25);
3)非标体系,有G型(W-WRe26)。
国内以前多采用D型,目前消耗型热电偶仍以D型为主,但工业用钨铼热电偶则为以C型为主。
(3)钨铼热电偶使用气氛
1)适用气氛:真空、惰性气体及干燥氢气;
2)防氧化技术:抽空技术、实体化技术。
(4)新型WRe温度传感器
新型WRe温度传感器在实体化技术的基础上,又添加功能材料,进一步提高钨铼热电偶的抗氧化性。
特种WRe温度传感器经省科技厅鉴定:“在设计理念上具有原创性,在氧化及还原气氛中应用居国际领先水平”。
2009年荣获中国仪器仪表学会科技二等奖,并作为科技成果收录在2008~2009年国家科技发展报告中。
现有用户260多家,总产量超万只
(5)应用
1)氧化性气氛:锦州烧制铬刚玉砖的梭式窑中(温度为1450℃),原采用双铂铑热电偶,现已被WRe取代,使用寿命接近B型,但价格为B 型的1/10,用户很满意;
2)还原性气氛:攀钢VN合金生产温度为1600℃,CO、N2等还原性气氛,用新型WRe温度传感器其寿命为普通热电偶的10倍;
3)真空炉:采用单层或双层实体化结构严格密封,在用于10-5Pa以上的超高真空,即使保护管被折断也绝不会破坏体系真空度。
玻璃行业中的非接触式测温技术在所有工业领域,温度测量是其中一种重要的物理测量方式。
同样在玻璃工业这也是生产工艺过程控制的必要手段。
非接触式测温因其下列优点正不断地受到重视:
- 操作简单
- 响应时间快
- 不会老化,漂移最小
- 配置灵活,价格合理
- 不会污染玻璃溶液
在玻璃工业中需对透明及不透明的物体进行测温。
不透明的物体包括模具,穹顶及玻璃熔炼炉的侧壁。
非接触式测温技术在玻璃熔炉,熔化槽和玻璃喂料器越来越多地取代传统的热电偶测温,热电偶与测温仪相比在很高的工作温度和侵蚀性的环境条件下很快就会老化和漂移,为了保护热电偶,有些地方需要用铂金属做保护外壳,这样成本就会上升许多。