优化设计-梯度法和共轭梯度法
优化设计梯度法和共轭梯度法

优化设计梯度法和共轭梯度法梯度法和共轭梯度法是常用的数值优化算法,用于求解非线性优化问题。
它们在工程领域中的应用广泛,能够有效解决很多实际问题。
本文将对优化设计梯度法和共轭梯度法进行介绍,并比较它们的优劣。
1. 优化设计梯度法优化设计梯度法是一种通过调整设计变量来最小化给定目标函数的方法。
它基于梯度下降的思想,每一步都会更新设计变量的取值,使得目标函数在设计变量的邻域内最小化。
优化设计梯度法的具体步骤如下:1)初始化设计变量;2)计算目标函数在当前设计变量取值下的梯度;3)根据梯度方向和步长因子更新设计变量;4)重复步骤2和步骤3,直到满足收敛条件。
优化设计梯度法的优点是简单易用,容易实现。
但是它也存在一些问题,比如容易陷入局部最小值,收敛速度慢等。
2. 共轭梯度法共轭梯度法是一种通过迭代算法求解线性方程组的方法,也可以用于非线性优化问题。
它的特点是每一步迭代都要寻找一个新的搜索方向,使得每一次迭代都能够有效利用之前的搜索历史。
共轭梯度法的具体步骤如下:1)初始化设计变量和搜索方向;2)计算目标函数在当前设计变量取值下的梯度;3)根据搜索方向和步长因子更新设计变量;4)计算新的搜索方向,使其与上一次的搜索方向共轭;5)重复步骤2到步骤4,直到满足收敛条件。
共轭梯度法的优点是能够在较少的迭代次数内收敛到最优解,且具有较好的数值稳定性。
然而,共轭梯度法在非精确线搜索时有一定局限性,并且对于非二次凸函数可能陷入非全局最小值。
3. 优化设计梯度法与共轭梯度法的比较在实际应用中,选择合适的优化算法对于问题的解决和效率的提高至关重要。
下面对优化设计梯度法和共轭梯度法进行比较。
(1)收敛速度:在一般情况下,共轭梯度法比优化设计梯度法收敛速度更快。
这是由于共轭梯度法在搜索方向上的选择更加优化。
(2)算法复杂度:优化设计梯度法通常较为简单,易于实现,而共轭梯度法则相对复杂一些,需要额外计算共轭方向。
(3)全局最优解:共轭梯度法在处理非二次凸函数时可能陷入局部最小值,而优化设计梯度法的表现相对较差。
Krylov子空间、优化问题与共轭梯度法

Krylov 子空间、优化问题与共轭梯度法自动化 富晓鹏工程实践中经常需要求解大型线性系统KU=F 。
在很多情况下矩阵K 是非常稀疏的,比如来自偏微分方程的离散化等,此时矩阵中每行仅有较少的非零元素。
面临这样的问题,我们首先面对的问题是,应该采用直接消元法还是迭代方法。
对前者来说,为充分利用系数特性,节点重编号是重要的;而对后者来说,适当的预处理是关键。
本文将重点放在后一类方法中的一种进行介绍与分析,即共轭梯度法。
共轭梯度法适用于矩阵K 为对称阵的情况,算法本身简洁高效,且与一些其他的数学理论、概念相紧密联系,本文分析了共轭梯度法与Krylov 子空间,以及优化问题之间隐含的联系,并简要给出算法框架。
1. 线性方程组迭代解法与Krylov 子空间我们考虑迭代法求解线性方程组Ax=b 。
假定未采用预处理矩阵P ,或P 矩阵已经隐含在A 与b 中。
迭代法求解格式如下:1()k k P x P A x b +⋅=-⋅+ (1)为说明问题,我们考虑简单的迭代格式P=I ,并且x 1=b 。
则迭代的最初几步为:2()2x I A b b b Ab =-+=- (2)232()33x I A x b b Ab A b =-+=-+ (3) …由上面几个式子可得,以上迭代格式第j 步的解x j 是b ,Ab ,…,A j -1b 的线性组合。
当A 矩阵稀疏时,这些向量可以采用矩阵向量乘法的稀疏技巧很快得到。
以上发现自然与Krylov 子空间的概念相联系起来。
Krylov 矩阵: K j = [b Ab A 2b … A j -1b]Krylov 子空间:K j = b ,Ab ,…,A j -1b 的所有线性组合Krylov 命名了向量b ,Ab ,…,A j -1b 的全部线性组合构成的子空间,并认为在这一子空间中,有比上例中特定元素更与线性方程组的解相接近的元素。
共轭梯度法就是在这一子空间中,每一步迭代都依照某种标准寻求最优元素的线性方程组解法。
共轭方向与共轭梯度法-最优化方法

f (X1)T P0 0 ,所以 f (X1)T P0 1P1TQ P0 0
P1TQ P0 0
(1)
以上就是搜索方向P1所必须满足的(必要) 条件。这也是使X2是极小点的充分条件。 P1,P2称为关于Q的共轭方向。
讨论表明 对于二维的具有正定矩阵Q的 二次函数f(X),从任一初始点出发,依次沿关 于Q共轭的两个方向进行一维搜索,必可达到 f(X)的无约束精确极小点。
Pk 1
0
且对j 0,1 , k 2, 有
PjT QPk PjT Q f ( X k ) k1Pk1
PjT Qf
(X
k
)
k
PT
1 j
QPk
1
f ( X k )T QPj
f ( X k )T f ( X j1) f ( X j ) j
f ( X k1 ) QX k1 b Q( X k k Pk ) b (2)
f ( X k1 ) f ( X k ) k QPk
所以
f ( X m ) f ( X m1) m1QPm1
f ( X m2 ) m2QPm2 m1QPm1
其中1 是最优步长,1>0 .因为 X * 是无约束极小点。
故 f ( X * ) 0 即 QX * b 0
f (X1) QX1 b
Q( X * 1P1) b (QX * b) 1QP1 1QP1
又因为 X1是f(X)沿P0方向的直线l0上的极小点,故
设 X En ,
,Q为对称正定矩阵,P0,
P1,···,Pm-1是关于Q共轭的m个共轭方向,
(完整版)机械优化设计习题参考答案孙靖民第四版机械优化设计

2.黄金分割法(0.618法)
原理:提高搜索效率:1)每次只插一个值,利用一个前次的插值;2)每次的缩短率λ相同。左右对称。
程序:p52
(四)插值方法
1.抛物线法
原理:任意插3点:
算得: ; ;
要求:
设函数 用经过3点的抛物线 代替,有
解线代数方程
解得:
程序框图p57
网格法 ,缩小区间,继续搜索。
Monte Carlo方法 , ,随机数。
比较各次得到的 得解
遗传算法(专题)
(二)区间消去法(凸函数)
1.搜索区间的确定:高—低--高( )则区间内有极值。
2.区间消去法原理:在区间[a, b]内插两个点a1, b1保留有极值点区间,消去多余区间。
缩短率:
(三)0.618法
可行方向—约束允许的、函数减小的方向。(图)约束边界的切线与函数等高线的切线方向形成的区域。
数学模型
用内点法或混合法,取 ,
直接方法
(一)随机方向法
1.在可行域产生一个初始点 ,因 (约束),则
--(0,1)的随机数。
2.找k个随机方向,每个方向有n个方向余弦,要产生kn个随机数 , , ,随机方向的单位向量为
3.取一试验步长 ,计算每个方向的最优点
4.找出可行域中的最好点 得搜索方向 。以 为起点, 为搜索方向得 。最优点必须在可行域内或边界上,为此要逐步增加步长。
得
穷举下去得递推公式
3.算例
p73
4.框图p72
5.特点
作业:1. 2.
(六)变尺度法
1.引言
坐标变换
二次函数
令 为尺度变换矩阵
(整理)16梯度法和共轭梯度法基本原理和特点.

16梯度法和共轭梯度法基本原理和特点?梯度法又称最速下降法,基本原理是在迭代点附近采用使目标函数值下降最快的负梯度方向作为搜索方向,求目标函数的极小值,特点;迭代计算简单,只需求一阶偏导数,所占的存储单元少,对初始点的要求不高,在接近极小点位置时收敛速度很慢,共轭的特点为在梯度法靠近极值点收敛速度放慢时,它可以构造共轭方向使其收敛速度加快,迭代计算比较简单,效果好,在每一步迭代过程中都要构造共轭的、方向,比较繁琐。
17迭代终止准则有哪三种?1)当设计变量在相邻两点之间的移动距离充分小时,可用相邻两点的矢量差的模作为终止的判据,2)当相邻两点目标函数值之差达到充分小时,可用两次迭代的目标函数之差作为终止判据。
3)当迭代点逼近极值点时,目标函数在该点的梯度已达到充分小时,可用梯度的模作为终止判据。
18.无约束设计法,1)powell法,它是在下降迭代过运算中只需计算和比较目标函数值的大小,不需计算偏导数的方法,是较好的一种直接搜索算法。
2)梯度法,又称最速下降法,它是采用使目标函数值下降最快的负梯度方向作为搜索方向来求目标函数的极小值。
3)共轭梯度法,又称FR法,是利用目标函数的梯度确定共轭方向,使得计算简便而效果好,只需利用相邻两点的梯度就可以构造一个共轭方向,这种方式产生共轭方向并进行迭代的算法称为共轭梯度法。
4)变尺度法,又称DFP法,为了得到既有快速收敛的性质,又能避免计算二阶导数矩阵及逆矩阵,减少计算工作量。
迭代公式X=X+aS,19有约束设计法?1)复合形法,在可行域中选取k个设计点作为初始复合形的顶点,然后比较复合形个各项目标函数值的大小,其中目标函数值最大的点为坏点,以坏点之外其余各点的中心为映射中心,寻坏点的映射点,以映射点替换坏点,并与原复合型除坏点之外其余各点构成就k 顶点的新的复合型,这样反复迭代直到达到精度找到最优点,2)简约梯度法,用来解决线性约束非线性规划问题。
3)罚函数法,是把一个有约束的问题转化为一系列无约束的问题求解,逐渐逼近最优值。
共轭梯度法详细解读

共轭梯度法详细解读
嘿,朋友们!今天咱就来好好唠唠共轭梯度法。
你想想啊,咱平常解决问题就像走迷宫似的,有时候会在里面转来转去找不到出路,而共轭梯度法呀,就像是在迷宫里给咱指了一条明路!比如说你想找一条最快从山这头到那头的路,共轭梯度法就能帮上大忙啦!
它可不是随随便便就出现的哦,那可是数学家们绞尽脑汁研究出来的宝贝呢!就好比一个超级英雄,专门来打救我们这些在复杂问题里苦苦挣扎的人。
在实际应用里,它可厉害着呢!比如说在工程计算中,要设计一个最完美的结构,共轭梯度法就能迅速算出最优解。
哇塞,这不就相当于有个超厉害的军师在帮咱出谋划策嘛!
你再想想,我们日常生活中很多事情都可以类比成用共轭梯度法来解决问题呀。
比如说你要规划一次旅行,怎么安排路线最合理,不就是在找那个最优的旅行路径嘛,这时候共轭梯度法的思路就能派上用场啦!它就像一个隐藏在幕后的高手,默默地为我们排忧解难。
而且哦,一旦你掌握了它,那种感觉就像是你突然掌握了一种绝世武功,能在各种难题面前游刃有余。
这可太酷了吧!
哎呀呀,共轭梯度法真的是太神奇、太有用啦!大家可一定要好好去了
解它、运用它呀,你绝对会被它的魅力折服的!相信我,没错的!。
共轭梯度法在优化问题中的应用

共轭梯度法在优化问题中的应用共轭梯度法是一种高效的优化算法,在许多优化问题中都得到了广泛的应用。
它是一种迭代方法,用于解决最小化二次函数的优化问题。
在本文中,我将介绍共轭梯度法的原理和算法,并探讨它在优化问题中的应用。
一、共轭梯度法的原理共轭梯度法的核心思想是通过迭代的方式,找到一个与之前迭代步骤方向相互垂直的搜索方向,以加快收敛速度。
在每一次迭代中,共轭梯度法根据当前的搜索方向更新搜索点,直到找到最优解或达到预定的收敛标准。
具体来说,共轭梯度法从一个初始搜索点开始,计算对应的梯度,并沿着负梯度方向进行搜索。
通过一定的方法找到一个与之前搜索方向相互垂直的新搜索方向,并以一定步长更新搜索点。
迭代过程将重复进行,直到满足收敛标准或达到最大迭代次数。
二、共轭梯度法的算法共轭梯度法的算法包括以下几个步骤:1. 初始化搜索点x0和梯度g0,设置迭代次数k=0。
2. 计算当前搜索方向d_k=-g_k(k为当前迭代次数)。
3. 通过一维搜索方法找到最佳步长α_k。
4. 更新搜索点x_k+1 = x_k + α_k * d_k。
5. 计算更新后的梯度g_k+1。
6. 判断是否满足收敛标准,若满足则算法停止,否则转到步骤7。
7. 计算新的搜索方向β_k+1。
8. 将迭代次数k更新为k+1,转到步骤3。
这个算法保证了每一次迭代中的搜索方向都是彼此相互垂直的,从而加快了收敛速度。
三、共轭梯度法的应用共轭梯度法在优化问题中有广泛的应用,特别是在二次规划、线性规划和非线性规划等领域。
在二次规划问题中,共轭梯度法可以高效地求解线性系统Ax=b,其中A是一个对称正定的矩阵。
由于共轭梯度法的特性,它只需要进行n 次迭代,其中n是问题的维度,就能得到精确的解。
这使得共轭梯度法在大规模线性系统求解中具有重要的应用价值。
在线性规划问题中,共轭梯度法可以用于求解带有线性约束的最小二乘问题。
共轭梯度法通过将线性约束转化为一系列的正交子空间,从而在求解最小二乘问题时能够更快地收敛。
最优化梯度法和共轭梯度法

函数的极小点。
以下分析算法的具体步骤。
(1) 任取初始点 x (1),第一个搜索方向取为 d (1) f ( x (1) ) ;
( 2) 设已求得点 x ( k 1) , f ( x ( k 1) ) 0 , g k 1 f ( x ( k 1) ) , 若 令
局部目标函数值下降最快的方向。 最速下降法是线性收敛的算法。
三. 共轭梯度法
1. 共轭方向和共轭方向法
R 定义 设 A 是 n n 的对称正定矩阵,对于 n中的两个非零向量d 1 和 d 2,
若有 d
1T
Ad 2 0 ,则称 d 1和d 2关于A共轭。
设 d 1 , d 2 ,, d k 是 Rn 中一组非零向量,如果 它们两两关于A
以任意的 x (1) R n为初始点,依次沿 d (1) , d ( 2 ) ,, d ( k ) 进行搜索,
得到点 x ( 2) , x ( 3) ,, x ( k 1) , 则 x ( k 1) 是函数 f ( x )在 x (1) Bk 上的
极小点,其中
Bk { x | x i d ( i ) , i R }
i
d ( i ) A g i 1 d
( i )T
T
Ad
(i )
g i 1T A d ( i ) d
( i )T
Ad ( i )
g i 1T A[ ( x ( i 1) x ( i ) ) / i ] d
( i )T
A [ ( x ( i 1) x ( i ) ) / i ]
共轭,即 d i Ad j 0 , i j , i , j 1 , 2 ,, k 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
令 ( ) 8 ( 2 4 ) 36 ( 1 6 ) 0 1
13 62
36 8 T x x 1d ( , ) 31 31
2 1 1
最速下降法的程序流程图
锯齿现象
在极小点附近,目标函 数可以用二次函数近似 ,其等值面近似
椭球面。
x2 x3
(1) d
( i )T
Ad ( j ) 0 , j 1 , 2 ,, i 1;
(2) gi T g j 0 , j 1 , 2 ,, i 1;
( 3) g iT d ( i ) g iT g i 。
注 (1)由定理3 可知搜索方向d (1) , d ( 2) ,, d ( m ) 是 A 共轭的。
基本思想: 将共轭性和最速下降方 向相结合,利用已知迭 代点
处的梯度方向构造一组 共轭方向,并沿此方向 进行搜索,求出
函数的极小点。
以下分析算法的具体步骤。
(1) 任取初始点 x (1),第一个搜索方向取为d (1) f ( x (1) ) ;
( 2) 设已求得点 x ( k 1) , 若f ( x ( k 1) ) 0 , 令 g k 1 f ( x ( k 1) ) ,
d
( k )T
Agk 1 k d
( 2)
( k )T
A d (k )
解得 k
d ( k ) A g k 1 d
( k )T
T
Ad
(k )
( 3) 搜索步长的确定 :
已知迭代点x ( k )和搜索方向d ( k ) , 利用一维搜索确定最优 步长 k ,
即求解 min
d ( 2 ) g 2 1 d ( 1)
8 16 T 4 ( , ) ( 8 , 4 )T 9 9 81 40 ( 1 , 4 )T 81
2
T ( 2) g2 d
d
( 2 )T
Ad ( 2 )
40 8 16 1 ( , ) 81 9 9 4 9 20 4 0 1 40 2 ( ) (1, 4 ) 4 81 0 2
令 g k f ( x ( k ) ) Ax ( k ) b,则有 [ g k Ad ( k ) ]T d ( k ) 0,
解得 k
T (k ) gk d
d
( k )T
Ad
(k )
( 3)
定理 3 对于正定二次函数 f ( x )
1 T x Ax bT x c , FR算法在 m n次 2 一维搜索后即终止,并 且对所有的 ( i 1 i m ),下列关系成立
f ( x ) ( 4 x1 , 2 x 2 )T .
第 1 次迭代:
令
d (1) g1 ( 8 , 4 )T ,
而
1
T (1 ) g1 d
8 (8,4) 4 4 0 8 ( 8, 4) 0 2 4
x ( 3) x ( 2) 2 d ( 2)
(
2 8 T 9 40 , ) ( 1 , 4 )T 9 9 20 81
( 0 , 0 )T
g 3 ( 0 , 0 )T
x ( 3)即为所求极小点。
则下一个搜索方向d ( k 1)按如下方式确定 :
令 d ( k 1) g k 1 k d ( k ) (1)
如何确定 k?
要求 d ( k 1) 和 d ( k ) 关于 A共轭。
则在( 1)式两边同时左乘d ( k ) A ,得
0d
( k )T
T
Ad
( k 1)
1. 任取初始点x (1) , 精度要求 ,令 k 1。
2. 令g1 f ( x (1) ) , 若 || g1 || , 停止, x (1)为所求极小点; 否则,令d (1) g1 , 利用公式( 3)计算1 , 令x ( 2) x (1) 1 d (1)。 x ( k 1)为所求极小点; 3. 令g k 1 f ( x ( k 1) ) , 若 || g k 1 || , 停止, 否则,令d ( k 1) g k 1 k d ( k ) , 其中 k 用公式( 4)计算。
T
g i f ( x ( i ) ) A x ( i ) b .
i
g i 1T ( g i 1 g i ) d
( i )T
( g i 1 g i )
2
|| g i 1 ||2 d
( i )T
gi
|| g i 1 ||2 || g i ||
( 4)
FR算法步骤:
f ( x ( k ) d ( k ) ) 。
记 令 即有
( ) f ( x ( k ) d ( k ) ) ,
( ) f ( x ( k ) d ( k ) )T d ( k ) 0,
[ A ( x ( k ) d ( k ) ) b ]T d ( k ) 0,
( 2) 算法中第一个搜索方向 必须取负梯度方向,否 则构造的搜索 方向不能保证共轭性。
T (i ) T 2 ( 3) 由定理 3的(3)可知, g i d g i g i || g i || 0 ,
所以d ( i )是迭代点x ( i ) 处的下降方向。
(4) 由定理3 , FR算法中 i的计算公式可以简化。
i
d ( i ) A g i 1 d
( i )T
T
( i ) d
( i )T
Ad ( i )
g i 1T A[ ( x ( i 1) x ( i ) ) / i ] d ( i ) A [ ( x ( i 1) x ( i ) ) / i ]
令 k : k 1。
4. 利用公式( 3)计算 k ,令 x ( k 1) x ( k ) k d ( k ) , 转3。
例 用FR 算法求解下述问题:
min
2 2 f ( x ) 2 x1 x2
初始点取为x (1) ( 2 , 2 )T 。
解:
4 0 4 0 x1 1 . , A f ( x ) ( x1 , x 2 ) 2 0 2 0 2 x 2
d 1 f ( x 1 ) ( 4 , 6 )T . x 1 d 1 ( 2 4 , 1 6 )T . 令 ( ) f ( x 1 d 1 ) ( 2 4 ) 2 3 ( 1 6 ) 2 ,
求解
min ( )
4. 令 x k 1 x k k d k , 令 k : k 1 , 转2。
2 2 例. 用最速下降法求解: min f ( x ) x1 3 x2 , 设初始点为x1 ( 2 ,1 )T ,
求迭代一次后的迭代点 x 2 。
解: f ( x ) ( 2 x1 , 6 x2 )T ,
梯度法和共轭梯度法
1. 无约束最优化问题 2. 梯度法 3. 共轭梯度法
一. 无约束最优化问题
无约束最优化问题 min
f ( x) x Rn
s .t .
其中f ( x ) 有一阶连续偏导数。
解析方法:利用函数的解析性质构造迭代公式使之收敛到最优解。
二. 梯度法(最速下降法) 迭代公式:
x k 1 x k k d k
如何选择下降最快的方向?
f ( x k ) 函数值增加最快的方向
xk
函数值下降的方向
f ( x k ) 函数值下降最快的方向
梯度法(最速下降法):
1. 搜索方向: d k f ( x k ) , 也称为最速下降方向;
2. 搜索步长 : k 取最优步长, 即满足 f ( x k k d k ) min f ( x k d k ) 。
x*
x1
注
最速下降方向反映了目 标函数的一种局部性质 。 它只是
局部目标函数值下降最 快的方向。 最速下降法是线性收敛 的算法。
三. 共轭梯度法
共轭梯度法
Fletcher R eeves 共轭梯度法 : 1 min f ( x ) x T Ax bT x c 2 其中 x R n , A是对称正定矩阵, b R n, c 是常数。
d
(1 ) T
Ad (1)
5 18
所以 x ( 2) x (1) 1 d (1)
( 2 , 2 )T
5 2 8 T ( 8 , 4 )T ( , ) 18 9 9
第 2次迭代: 8 16 g 2 ( , )T . 9 9 8 2 16 2 ( ) ( ) 2 || g 2 || 9 9 4 . 1 81 || g1 ||2 82 42
梯度法算法步骤:
1. 给定初始点 x 1 R n , 允许误差 0 , 令k 1 。 2. 计算搜索方向 d k f ( x k ) ;
3. 若 || d k || , 则停止计算, 否则,求最优步长k x k 为所求极值点;
使得 f ( x k k d k ) min f ( x k d k )。