《概率论》第二章习题
概率论第二章习题答案

概率论第二章习题答案习题1:离散型随机变量及其分布律设随机变量X表示掷一枚公正的六面骰子得到的点数。
求X的分布律。
解答:随机变量X的可能取值为1, 2, 3, 4, 5, 6。
由于骰子是公正的,每个面出现的概率都是1/6。
因此,X的分布律为:\[ P(X=k) = \frac{1}{6}, \quad k = 1, 2, 3, 4, 5, 6 \]习题2:连续型随机变量及其概率密度函数设随机变量Y表示从标准正态分布中抽取的数值。
求Y的概率密度函数。
解答:标准正态分布的概率密度函数为高斯函数,其形式为:\[ f(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, \quad -\infty < y < \infty \]习题3:随机变量的期望值已知随机变量X的分布律为:\[ P(X=k) = p_k, \quad k = 1, 2, ..., n \]求X的期望值E(X)。
解答:随机变量X的期望值定义为:\[ E(X) = \sum_{k=1}^{n} k \cdot p_k \]习题4:随机变量的方差继续使用习题3中的随机变量X,求X的方差Var(X)。
解答:随机变量X的方差定义为期望值的平方与每个值乘以其概率之和的差:\[ Var(X) = E(X^2) - (E(X))^2 \]其中,\( E(X^2) = \sum_{k=1}^{n} k^2 \cdot p_k \)习题5:二项分布设随机变量X表示n次独立伯努利试验中成功的次数,每次试验成功的概率为p。
求X的分布律和期望值。
解答:X服从参数为n和p的二项分布。
其分布律为:\[ P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, ..., n \]X的期望值为:\[ E(X) = np \]结束语:以上是概率论第二章的一些典型习题及其解答。
概率论第二章习题及答案

三、一些常用的离散型随机变量
1) Bernoulli分布 如果随机变量 X 的分布律为
PX 0 1 p q , PX 1 p
或
P{ X k } p q
X P
k 1 k
(k 0 , 1)
1 p
0 1-p
则称随机变量 X 服从参数为 p 的 Bernoulli分布. 记作 X ~ B1 , p . 其中0 p 1 为参数
第二章 随机变量及其分布
一、 随机变量的定义
设E是一个随机试验,S是其样本空间.若对每一个
S , 都有唯一确定的一个实 数X 与之对应 , 则称
X 为一个随机变量.
S
X
R
第二章 习题课
二、离散型随机变量的分布律
设离散型随机变量 X 的所有可能取值为 x1 , x2 , , xk , 并设
如果连续型随机变量X 的密度函数为 (I)
1 2 2 x f x e 2 其中 , 0 为参数, 则称随机变量X 服从参数为 , 2 的
正态分布.记作
f (x)
x 2
X ~ N ,
2
0
第二章 随机变量及其分布
4)几 何 分 布
若随机变量 X 的分布律为
PX k q k 1 p
k 1, 2,
其中 p 0,q 0,p q 1
则称随机变量 X 服从参数为 p的几何分布.
返回主目录
第二章 随机变量及其分布
5)超 几 何 分 布
如果随机变量 X 的分布律为
x
f ( t )dt,
概率论第二章习题解答(全)

概率论第二章习题1考虑为期一年的一张保险单,若投保人在投保一年内意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。
若投保人在一年内因意外死亡的概率为0.0002,因其它原因死亡的概率为0.0010,求公司赔付金额的分崣上。
解设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为0.0002;0.0010;0.9988,于是得分布律为X20(万)5万0xp 0.00020.00100.99882.(1)一袋中装有5只球,编号为1,2,3,4,5。
在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。
解(1)在袋中同时取3个球,最大的号码是3,4,5。
每次取3个球,其总取法:35541021C ⋅==⋅,若最大号码是3,则有取法只有取到球的编号为1,2,3这一种取法。
因而其概率为22335511{3}10C P X C C ====若最大号码为4,则号码为有1,2,4;1,3,4;2,3,4共3种取法,其概率为23335533{4}10C P X C C ====若最大号码为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法其概率为25335566{5}10C P X C C ====一般地3521)(C C x X p x -==,其中21-x C 为最大号码是x 的取法种类数,则随机变量X 的分布律为X 345xp 101103610(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,则样本点为S ={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件,X 的取值为1,2,3,4,5,6,最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11{1}36P X ==;最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3),9{2}36P X ==;最小点数为3的共有7种,7{3}36P X ==;最小点数为4的共有5种,5{4}36P X ==;最小点数为5的共有3种,3{5}36P X ==;最小点数为6的共有1种,1{6}36P X ==于是其分布律为X 123456kp 11369367365363361363设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品的次数,(1)求X 的分布律;(2)画出分布律的图形。
概率论第二章习题

第二章习题选择题001、设函数()f x 在区间[],a b 上等于sin x ,而在此区间外等于0,若()f x 可以作为某连续型随机变量X 的概率密度函数,则区间[],a b 为()()A 、0,2p 轾犏犏臌 ; ()B 、[]0,p ; ()C 、()0,2p ; ()D 、,02p骣÷ç-÷ç÷ç桫。
002、已知连续型随机变量()~3,2X N ,则连续型随机变量()()~0,1Y N =。
()A、()B()C 、32X - ()D 、32X +003设()~0,1,21X N Y X =-,则Y 服从分布()()A 、()0,1N ; ()B 、()1,4N -; ()C 、()1,3N -; ()D 、()1,1N -。
004、设{}{}()()22124,5,~,4,~,5P P X P P Y X N Y mmm m =?=?,则()()A 、12P P <; ()B 、12P P >; ()C 、12P P =; ()D 、不能确定12,P P 的大 005、设X 的密度函数为()f x ,分布函数为()F x ,且()()f x f x =-,则对任意给定的a都有()()A 、()()01af a f x dx -=-ò; ()B 、()()012a F a f x dx -=-ò;()C 、()()F a F a -= ; ()D 、()()21F a F a -=-。
006、下列函数中,可以做随机变量分布函数的是()()A 、()211F x x=+; ()B 、()31arctan 42F x x p=+;()C 、()0;0;01x F x xx xì<ïïï=íï³ïï+î ; ()D 、()21arctan F x x p=+。
概率论与数理统计第二章测习题

第 2 章一维随机变量及其分布一、选择题1.设 F(x)是随机变量X的分布函数,则以下结论不正确的选项是(A)若 F(a)=0 ,则对任意 x≤a 有 F(x)=0(B)若 F(a)=1 ,则对任意 x≥a 有 F(x)=1(C)若 F(a)=1/2 ,则 P( x≤a)=1/2(D)若 F(a)=1/2 ,则 P( x≥a)=1/22.设随机变量 X 的概率密度 f(x) 是偶函数,分布函数为 F(x) ,则(A)F(x)是偶函数(B)F(x) 是奇函数(C)F(x)+F(-x)=1(D)2F(x)-F(-x)=1 3.设随机变量 X1, X 2的分布函数、概率密度分别为 F1 (x) 、F2 (x) ,f 1 (x)、f 2 (x) ,若 a>0, b>0, c>0,则以下结论中不正确的选项是(A)aF (x)+bF2(x)是某一随机变量分布函数的充要条件是a+b=11(B)cF1(x) F 2(x)是某一随机变量分布函数的充要条件是c=1(C)af 1(x)+bf2(x)是某一随机变量概率密度的充要条件是a+b=1(D)cf 1(x) f 2(x)是某一随机变量分布函数的充要条件是c=14.设随机变量 X1, X2是任意两个独立的连续型随机变量,它们的概率密度分别为 f 1 (x)和 f 2 (x) ,分布函数分别为 F1 (x) 和 F2 (x) ,则(A)f 1 (x) +f 2 (x)必为某一随机变量的概率密度(B)f 1(x) f 2(x)必为某一随机变量的概率密度(C)F1(x)+F 2(x)必为某一随机变量的分布函数(D)F1(x)F 2 (x)必为某一随机变量的分布函数5.设随机变量 X 遵从正态分布N (1,12),Y遵从正态分布N (2,22) ,且P(|X1| 1) P(|Y 2| 1) ,则必有(A)1 2(B)1 2(C)1 2(D)1 26.设随机变量 X 遵从正态分布N ( ,2 ) ,则随σ的增大,概率P(|X|)(A)单调增大(B)单调减小(C)保持不变(D)增减不定7.设随机变量 X1,X2的分布函数分别为 F1 (x) 、F2(x) ,为使 aF1 (x) -bF2 (x)是某一随机变量分布函数,在以下给定的各组数值中应取(A)a3 , b2(B)a2 , b2(C)a1 , b3(D)a1 , b3 553322228.设 f(x)是连续型随机变量 X 的概率密度,则 f(x)必然是(A)可积函数(B)单调函数(C)连续函数(D)可导函数9.以下陈述正确的命题是(A)若P(X1) P(X 1), 则 P(X 1)12(B)若 X~b(n, p),则 P(X=k)=P(X=n-k), k=0,1,2,,n(C)若 X 遵从正态分布 , 则 F(x)=1-F(-x)(D)lim [ F (x) F ( x)]1x10.假设随机变量X遵从指数分布,则随机变量Y=min{X,2} 的分布函数(A)是连续函数(B)最少有两其中止点(C)是阶梯函数(D)恰好有一其中止点二、填空题1.一实习生用同一台机器连接独立的制造了 3 个同种零件,第i个零件不合格的概率为 p i1个零件中合格品的个数,则 P X2i 1,2,3 ,以 X 表示3i12.设随机变量X的概率密度函数为 f x2x0 x 1以 Y 表示对 X 的三次重复观察中0其他事件 X 1出现的次数,则 P Y2 23.设连续型随机变量X的分布密度为 f x axe 3x x 0,则 a,X的分布0x0函数为4.设随机变量的分布函数b , x0, 则 a =, b =,cF ( x)ax) 2(1c,x 0,=。
《概率论》第二章基本定理练习题

《概率论》第二章基本定理练习题一、判断题(每小题2分,共10分)1. 两个分布函数的和仍为分布函数.( )2. 存在有既非离散型随机变量,又非连续型随机变量的随机变量.( )3. 连续型随机变量X 的概率密度函数)(x f 一定是连续函数.( )4. 离散型随机变量的函数一定是离散型随机变量,连续型随机变量的函数也一定是连续型随机变量.( )5. 若)(x Φ为标准正态分布的分布函数,则)()(1a a Φ=-Φ-.( )二、选择题(每小题2分,共10分)1. 如果)(x F 是( ),则)(x F 一定不可以是连续型随机变量的分布函数. A. 非负函数 B. 连续函数 C. 有界函数 D. 单调减少函数2. 设随机变量X 的密度函数为)(x ϕ,且)()(x x ϕϕ=-,)(x F 是X 的分布函数,则对任意实数a ,有( ). A. ⎰-=-adx x a F 0)(1)(ϕ B. ⎰-=-adx x a F 0)(21)(ϕC. )()(a F a F =-D. 1)(2)(-=-a F a F 3. 下列函数中,( )可以作为连续型随机变量的分布函数.A. )(x F = ⎩⎨⎧≥<010x x e x B. 0()1xe x G x x -⎧<=⎨≥⎩C. =Φ)(x ⎩⎨⎧≥-<0100x e x xD. 00()10xx H x ex -<⎧=⎨+≥⎩4. 随机变量),(~2σμN X ,则随σ的增大,概率}{σμ<-X P ( ). A. 单调增大 B. 单调减小 C. 保持不变 D. 增减不定 5. 设随机变量X 的概率密度函数为4)3(221)(+-=x ex f π(+∞<<∞-x ),则Y =( ))1,0(~NA.32X + B. C. 32X - D. 三、填空题(每空2分,共30分)1. 设离散型随机变量X 的分布律为!}{k a k X P kλ==( ,2,1=k ),且λ为大于0的常数,则=a _________.2. 设),2(~p B X ,),3(~p B Y ,若95}1{=≥X P ,则=≥}1{Y P . 3. 某人家中,在时间间隔t (以小时计)内接到电话的次数X 服从参数为2t 的泊松分布,若他外出10分钟,则期间电话铃响一次的概率 .4. 有一大批产品,其验收方案如下,先做第一次检验:从中任取10件,经验收无次品接受这批产品,次品数大于2拒收;否则作第二次检验,其做法是从中再任取5件,仅当5件中无次品时接受这批产品,若产品的次品率为10%,以X 表示第一次检验时抽得的10件产品中所含次品数,则X 服从 .这批产品被接受的概率 .5. 以X 表示某商店从早晨开始营业起直到第一顾客到达的等待时间(以分计),X 的分布函数是⎩⎨⎧≤>-=-01)(4.0x x e x F x X ,则至少等待4分钟的概率 .恰好等待3分钟的概率 . 6. 若),0(~a U X ,对X 进行3次独立试验,至少有一次观察值大于1概率为2726,则=a . 7. 从数1,2,3,4中任取一个数,记为X ,再从1,2,…,X 中任取一个数,记为Y,则P {Y =2}= . 8. 若),(~2σμN X ,其概率密度函数为644261)(+--=x x e x f π(+∞<<∞-x ),则=μ ,=σ .9. 测量某种零件的长度(单位:cm ),它是服从参数为06.0,05.10==σμ的正态分布的随机变量.若规定长度在02.005.10±(单位:cm )内的零件为合格品,这种零件出现不合格品的概率是 .(用)(x Φ表示)10. .设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=,3,1,31,8.0,11,4.0,1,0)(x x x x x F则X 的概率分布为 .{}X ~N(5,9),(0.5)=0.6915P X a 0.6915a Φ<<<11.设已知标准正态分布函数值,为使则常数.-21-012.(),(),(1)0xe x X F xf x f x ⎧>==⎨≤⎩设连续型随机变量的分布函数为其概率密度为则 . 四、计算题(共40分)1.(10分)已知)2,1(~U X ,求23+=X Y 的概率密度函数.⎪⎩.,0其他求:(1)常数C ;(2)X 取值在⎪⎭⎫⎝⎛-21,21内的概率;(3)X 的分布函数)(x F .{}{}11()0120.5,30.5x x X f x X F x P X P X ⎧-≤≤=⎨⎩<>-3.(10分)设的概率密度为,求其他()的分布函数(),()()⎪⎩≤.0,0x 求:(1)常数A 与B ;(2)X 的概率密度函数)(x f ;(3)X 取值在)3,1(内的概率.五、应用题(共10分)某仪器装有三只独立工作的同型号的电子元件,其寿命(单位:h )都服从参数为600的指数分布,求仪器使用的最初200h 内,至少有一只原件损坏的概率.。
概率论2章习题

P{X=2}=P(A1A2A3)+P(A1A2A3)+P(A1A2A3)=P(A1)P(A2|A1)P(A3|A1A2)
+P(A1)P(A2|A1)P(A3|A1A2) +P(A1)P(A2|A1)P(A3|A1A2)
2 1 13 2 13 1 13 2 1 1 15 14 13 15 14 13 15 14 13 35
P{X<0}=P{X>a}=0
Xx 0
(1)若x<0, {Xx}是不可能事件, F(x)=P{X≤x} =0 .
ax
(2)若0≤x≤a , 事件A表示“质点落在[0,a]中小区间[0,x] 则 P(A)=P{0≤X内≤x”}与, 该小区间的长度x成比例,
令 P{0≤X≤x}=kx , (0≤x≤a),
qk-rpr =(1-p)k-rpr.
故Y的分布律为
P{Y
k}
k r
11
pr (1
p)kr ,
k r,r 1,
7. 设事件A在一次试验中发生的概率为0.3,当A发生不少于3次时, 指示灯发出信号.(1)进行了5次重复独立试验,求指示灯发出信号的概 率;(2)进行了7次重复独立试验,求指示灯发出信号的概率.
T(以日计)服从指数分布,其概率密度为
fT
(t)
1 241
e
x
241,
t0
求分布函数FT(t),并求概率P{50<T<100}.
0,
其它
解
t0, FT (t)
t
fT (t)dt 0
t>0, FT (t)
t
fT (t)dt
t 1 et 0 241
241dt
概率论第二章练习答案解析

《概率论》第二章 练习答案一、填空题:1.设随机变量X 的密度函数为f(x)=⎩⎨⎧02x 其它1〈⨯〈o 则用Y 表示对X 的3次独立重复的观察中事件(X≤21)出现的次数,则P (Y =2)= 。
⎰==≤412021)21(xdx X P649)43()41()2(1223===C Y p 2. 设连续型随机变量的概率密度函数为:ax+b 0<x<1f (x) =0 其他 且EX =31,则a = _____-2___________, b = _____2___________。
⎪⎪⎩⎪⎪⎨⎧=+=+→⎰⎰解之31)(011)(01dx b ax x dx b ax 3. 已知随机变量X 在[ 10,22 ] 上服从均匀分布,则EX= 16 , DX= 124. 设=+==)(,则,为随机变量,1041132ξξξξE E E 22104=+ξE =+)104(ξD []32161622=-=)(ξξξE E D 5. 已知X 的密度为=)(x ϕ 0b ax + 且其他,10<<x P (31<x )=P(X>31) ,则a = , b =⎰⎰⎰+=+⇒==+∞∞-10133131311dx b ax dx b ax x P x P dx x )()()〉()〈()(ϕ联立解得:4723=-=b a ,6.若f(x)为连续型随机变量X 的分布密度,则⎰+∞∞-=dx x f )(__1____。
7. 设连续型随机变量ξ的分布函数⎪⎩⎪⎨⎧≥<≤<=2,110,4/0,0)(2x x x x x F ,则 P (ξ=0.8)= 0 ;)62.0(<<ξP = 0.99 。
8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ϕ=()⎪⎩⎪⎨⎧≥)(01001002其他x x ,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 事件与概率1、字母M ,A ,X ,A ,M 分别写在一张卡片上,充分混合后重新排列,问正好得到顺序MAAM 的概率是多少?解:这五个字母自左往右数,排第i 个字母的事件为A i ,则42)(,52)(121==A A P A P ,21)(,31)(1234123==A A A A P A A A P 1)(12345=A A A A A P 。
利用乘法公式,所求的概率为()()()()12345123412312154321)()(A A A A A P A A A A P A A A P A A P A P A A A A A P =301121314252=⋅⋅⋅⋅= 2、有三个孩子的家庭中,已知有一个是女孩,求至少有一个男孩的概率。
解:有三个孩子的家庭总共有23=8个类型。
设A={三个孩子中有一女},B={三个孩子中至少有一男},A 的有利场合数为7,AB 的有利场合为6,依题意所求概率为P (B|A ),则()768/78/6)()(===A P AB P A B P . 3、若M 件产品中包含m 件废品,今在其中任取两件,求:(1)已知取出的两件中有一件是废品的条件下,另一件也是废品的条件概率;(2)已知两件中有一件不是废品的条件下,另一件是废品的条件概率;(3)取出的两件中至少有一件是废品的概率。
3、解:(1)M 件产品中有m 件废品,m M -件正品。
设A={两件有一件是废品},B={两件都是废品},显然B A ⊃,则 ()1122()/m M m m M P A C C C C -=+ 22/)(M m C C B P =, 题中欲求的概率为)(/)()(/)()|(A P B P A P AB P A B P ==121/)(/221122---=+=-m M m C C C C C C M m m M m M m . (2)设A={两件中有一件不是废品},B={两件中恰有一件废品},显然A B ⊂,则(),/)(2112M m M m m M C C C C A P --+= 211/)(M m M m C C C B P -=. 题中欲求的概率为)(/)()(/)()|(A P B P A P AB P A B P ==12/)(/2112211-+=+=---m M m C C C C C C C M m M m m M M m M m . (3)P{取出的两件中至少有一件废品}=())1()12(/2211---=+-M M m M m C C C C M m m M m .4、袋中有a 只黑球,b 只白球,甲乙丙三人依次从袋中取出一球(取后不放回),试分别求出三人各自取得白球的概率(3≥b )。
解:A={甲取出一球为白球},B={甲取出一球后,乙取出一球为白球},C={甲,乙各取出一球后,丙取出一球为白球}。
则 )()(b a a A P += 甲取出的球可为白球或黑球,利用全概率公式得 )|()()|()()(A B P A P A B P A P B P +=ba b b a b b a a b a b b a b +=-+⋅++-+-⋅+=111 甲,乙 取球的情况共有四种,由全概率公式得)|()()|()()|()()|()()(B A C P B A P B A C P B A P B A C P B A P AB C P AB P C P +++=21)1)((22)1)(()1(-+-⋅-+++-+-⋅-++-=b a b b a b a ab b a b b a b a b b 2)1)(()1(21)1)((-+⋅-++-+-+-⋅-+++b a b b a b a a a b a b b a b a ab ba b b a b a b a b a b a b +=-+-++-+-+=)2)(1)(()2)(1(. 5、从{0,1,2,…,9}中随机地取出两个数字,求其和大于10的概率。
解:设B={两数之和大于10},A i ={第一个数取到i},9,,1,0 =i 。
则101)(=i A P , 5,3,2,9/)1()|(,0)|()|(10 =-===i i A B P A B P A B P i ;,9/)2()|(-=j A B P j9,8,7,6=j 。
由全概率公式得欲求的概率为∑====90356.04516)|()()(i i i A B P A P B P . 6、甲袋中有a 只白球,b 只黑球,乙袋中有α只白球,β只黑球,某人从甲袋中任出两球投入乙袋,然后在乙袋中任取两球,问最后取出的两球全为白球的概率是多少?解:设A 1={从甲袋中取出2只白球},A 2={从甲袋中取出一只白球一只黑球},A 3={从甲袋中取出2只黑球},B={从乙袋中取出2只白球}。
则由全概率公式得)()|()()|()()|()(332211A P A B P A P A B P A P A B P B P ++=221122221222222222a a ab b a a b a b a b C Cc C C c C c c C C C C ααβαβαβ+++++++++++=++. 7、设的N 个袋子,每个袋子中将有a 只黑球,b 只白球,从第一袋中取出一球放入第二袋中,然后从第二袋中取出一球放入第三袋中,如此下去,问从最后一个袋子中取出黑球的概率是多少? 解:A 1={从第一袋中取出一球是黑球},……,A i ={从第一袋中取一球放入第二袋中,…,再从第1-i 袋中取一球放入第i 袋中,最后从第i 袋中取一球是黑球},N i ,,1 =。
则)()(,)(11b a b A P b a a A P +=+=. 一般设)()(b a a A P k +=,则)()(b a b A P k +=,得 )()()|()()|()(111b a a A P A A P A P A A P A P k k k k k k k +=+=+++. 由数学归纳法得 )()(b a a A P N += 8、飞机有三个不同的部分遭到射击,在第一部分被击中一弹,或第二部分被击中两弹,或第三部分被击中三弹时,飞机才能被击落,其命中率与每一部分的面积成正比,设三个部分的面积的百分比为0.1,0.2,0.7,若已击中两弹,求击落飞机的概率。
解:设A 1={飞机第一部分中两弹},A 2={飞机第二部分中两弹},A 3={飞机第一部分仅中一弹},A 4={其它情况},则.),(4321Ω=+++≠=A A A A j i A A j i φ.04.02.02.0)(,01.01.01.0)(21=⨯==⨯=A P A PA 3={第一弹中第一部分且第二弹中第二部分,或第一弹中第一部分且第二弹中第三部分,或第一弹中第二部分且第二弹中第一部分,或第一弹中第三部分且第二弹中第一部分},18.01.07.01.02.07.01.02.01.0)(3=⨯+⨯+⨯+⨯=A P ,.77.0)]()()([1)(3214=++-=A P A P A P A P设B={飞机被击落},则 .0)|(),3,2,1(1)|(4===A B P I A B P i由全概率公式得∑==41)()|()(i i i A P A B P B P .23.018.004.001.0=++= 错误算法: 3()0.10.20.10.70.09P A =⨯+⨯=,设B={飞机被击落},则 .0)|(),3,2,1(1)|(4===A B P I A B P i由全概率公式得∑==41)()|()(i ii A P A B P B P 0.010.040.090.14.=++= 原因是忽略了飞机中弹的次序。
9、投硬币n 回,第一回出正面的概率为c ,第二回后每次出现与前一次相同表面的概率为p ,求第n回时出正面的概率,并讨论当∞→n 时的情况。
解:设A i ={第i 回出正面},记)(i i A P p =,则由题意利用全概率公式得)()|()()|()(111i i i i i i i A P A A P A P A A P A P ++++=(1)(1)(21)(1i i i p p p p p p p =+--=-+-。
已知c p i =,依次令1,,2,1 --=n n i 可得递推关系式 ),1()12(1p p p P n n -+-=- ,),1()12(21 p p p P n n -+-=--).1()12()1()12(12p c p p p p P -+-=-+-=解得,)12(])12()12()12(1)[1(122---+-++-+-+-=n n n p c p p p p P当1≠p 时利用等比数列求和公式得11)12()12(1)12(1)1(---+-----=n n n p c p p p p .)12()12(212111---+--=n n p c p (*) (1)若1=p ,则C p C p n n n =≡∞→lim ,; (2)若0=p ,则当12-=k n 时,c p n =;当k n 2=时,c p n -=1。
若21=c ,则21lim ,21=≡∞→n n n p p 若121≠c ,则n n p c c ∞→-≠lim ,1不存在。
(3)若10<<p ,则由(*)式可得.21)12()12(2121lim lim 11=⎥⎦⎤⎢⎣⎡-+--=--∞→∞→n n n n n p c p p 10、甲乙两袋各将一只白球一只黑球,从两袋中各取出一球相交换放入另一袋中,这样进行了若干次。
以pn ,qn ,rn 分别记在第n 次交换后甲袋中将包含两只白球,一只白球一只黑球,两只黑球的概率。
试导出pn+1,qn+1,rn+1用pn ,qn ,rn 表出的关系式,利用它们求pn+1,qn+1,rn+1,并讨论当∞→n 时的情况。
解:令i i i C B A ,,分别表示第i 次交换后,甲袋中有两只白球,一白一黑,两黑球的事件,则由全概率公式得)|()()|()()|()()(11111n n n n n n n n n n n C A P C P B A P B P A A P A P A P p +++++++==n n n n q r q p 410410=⋅++⋅=, )|()()|()()|()()(11111n n n n n n n n n n n C B P C P B B P B P A B P A P B P q +++++++==,211211n n n n n n r q p r q p ++=⋅++⋅=, )|()()|()()|()()(11111n n n n n n n n n n n C C P C P B C P B P A C P A P C P r +++++++==n n n n q r q p 410410=⋅++⋅=. 这里有11++=n n r p ,又1111=+++++n n n r q p ,所以1121++-=n n p q ,同理有n n p q 21-=,再由n n q p 411=+得)21(411n n p p -=+。