第三代核电站的要求
核电站建设标准

核电站建设标准核电站是一种重要的能源设施,为了确保核电站的安全运营和环境保护,各国都制定了一系列的核电站建设标准。
本文将从设计规范、材料要求、安全标准、环境保护等方面,对核电站建设的标准进行论述。
一、设计规范核电站的设计规范是核电站建设的基础,它直接关系到核电站的安全性能和经济性。
设计规范主要包括以下几个方面:1. 设计负载:核电站需要能够满足电网的负载需求,设计负载需要根据当地的电力需求和电网的规模来确定。
2. 设计寿命:核电站的设计寿命一般为30-40年,设计时需要考虑设备的寿命周期。
3. 设计热效率:设计时要考虑如何提高核电站的热效率,减少能源的损耗。
4. 设计安全性:核电站的设计必须满足严格的安全要求,包括防核泄漏、防火灾、抗地震等。
5. 设计可靠性:核电站需要保证高可靠性,设计时要考虑设备和系统的冗余和备份。
二、材料要求核电站的材料要求是保证核电站长期安全运行的基础。
材料要求主要包括以下几个方面:1. 基础材料:核电站的地基、建筑结构和设备支撑结构等都需要使用优质的混凝土、钢结构和耐热材料等。
2. 燃料元件材料:核电站的燃料元件需要使用耐高温、耐腐蚀和耐辐照的材料,以确保燃料元件的可靠性和安全性。
3. 冷却剂管道材料:核电站的冷却剂管道需要使用耐腐蚀、耐高温和耐辐照的材料,以确保冷却剂的流动和传热效果。
4. 安全壳材料:核电站的安全壳需要使用具有一定抗冲击和防辐射能力的材料,以保证核事故发生时的安全性。
三、安全标准核电站的安全标准是核电站建设的核心,它直接关系到核电站在设计、施工和运营阶段的安全性。
安全标准主要包括以下几个方面:1. 核安全标准:核电站的设计、建设、运营和拆除必须符合国际核安全标准,保证核电站在任何情况下都不会对人类和环境造成威胁。
2. 辐射防护标准:核电站必须制定严格的辐射防护标准,确保工作人员和周围环境的辐射水平低于国际标准。
3. 事故应对标准:核电站必须制定完善的事故应对方案,确保在事故发生时能够及时、有效地进行应对,最大限度地减少事故对人员和环境的影响。
我国率先掌握第三代核电五大关键技术

展 , 常规 岛 结构 设 计对 新 技 术 的要 求 也不 断提 高 ,设计人 员应加 强有关技 术 的开发和应 用 。 ( 1 )半速 汽 机 发 电机 是 现 在 和 将 来 核 电站 的主 导 机 型 , 对 于 欧 洲 百 万 级 半 速 机 组 ,弹
簧 隔 振 的弹 性 基 础 是 最 佳 的 结 构 型 式 。采 用 S ARDYNE S 2 0 国 际通 用 的成 熟 软件 T 和 AP 0 0
S 2 0 成 熟 的专业 软 件 进行 优 化 设计 ,并配 AP 0 0
合物 模试验 使技术 经济指 标更优 。 ( 2 )抗 震 性 能 分 析 是 常 规 岛 结 构 设 计 的 重
点 , 由于2 0 年 8 前 国 内没 有 规 范 明确 常规 08 月
量 蕊
酗
我国率先掌握第三代核电五大关键技术
房 相 关设 备 震动 输 入 的重 要 依据 ,在 核 电站 动 力 分析 中是 一个 重 要 的部 分 。 目前三 代 核 电基 本 采用 半 地 下室 布 置 ,主 厂 房基 础采 用 筏基 ,
结 构计 算 模 型宜 计 入地 基 与 结构 的相 互 作用 ,
4 结语
在 中 国核 电全面 进 入 “ 二代 半 ”同 时大力
关于第三代核电站

关于第三代核电站关于第三代核电站前⾔能源危机与环境危机⽇益紧迫,使⽤新的清洁、安全、⾼效能源成为⼈类不争的共识。
除了煤炭、⽯油、天然⽓、⽔⼒资源外,如风能、太阳能、潮汐能、地热能等等新能源逐渐引起⼈们的重视,但是由于技术问题、开发成本及场地等因素,这些能源很难在近期内实现⼤规模的⼯业化⽣产和利⽤;⽽同各种化⽯能源相⽐起来,核能对环境和⼈类健康的危害更⼩,更是⼀种安全、可靠、清洁的能源,且在经济上具有竞争⼒的最为现实的替代能源。
第三代核反应堆是在汲取了第⼆代反应堆运⾏经验和事故教训后,于20世纪90年代后期发展出的安全性更⾼的先进反应堆技术,通常把满⾜《美国⽤户要求⽂件(URD)》或《欧洲⽤户要求⽂件(EUR)》价标准的核电⼚称为第三代核电站。
⽬前,世界上在建和规划待建的核电站,⼤部分将采⽤第三代核电技术。
近年来,我国核电产业发展取得了举世瞩⽬的成绩,核电技术研发和⼯程应⽤⾛在世界前列。
以“华龙⼀号”正式投产和“国和⼀号”成功研发(及其⽰范⼯程的开⼯建设)为标志,我国成为继美国、法国、俄罗斯等核电强国后⼜⼀个拥有独⽴⾃主三代核电技术和全产业链的国家。
核电站⼯作原理核电站是利⽤核分裂(核裂变)或核融合(核聚变)反应所释放的能量产⽣电能的发电⼚。
⽬前商业运转中的核能发电⼚都是利⽤核裂变反应⽽发电。
核电站常见的堆型有四种:压⽔堆、沸⽔堆、重⽔堆和快堆。
压⽔堆核电站发电原理图沸⽔堆核电站发电原理图现在⽐较普遍使⽤的核电站是压⽔反应堆核电站,我国在运、在建的第三代核电站采⽤的都是压⽔堆核电站,它的⼯作原理是:⽤铀制成的核燃料在“反应堆”的设备内发⽣裂变⽽产⽣⼤量热能,再⽤处于⾼压⼒下的⽔把热能带出,在蒸汽发⽣器内(进⾏热能交换,将热能传递给⼆回路供给的主给⽔)产⽣蒸汽,蒸汽推动汽轮机带着发电机⼀起旋转,电就源源不断地产⽣出来,并通过电⽹送到四⾯⼋⽅。
核电站由三个回路组成。
压⽔堆压⽔堆核电站由三个回路组成。
⼀回路:反应堆堆芯因核燃料裂变产⽣巨⼤的热能,由主泵泵⼊堆芯的⽔被加热成327度、155个⼤⽓压的⾼温⾼压⽔,⾼温⾼压⽔流经蒸汽发⽣器内的传热U型管,通过管壁将热能传递给U型管外的⼆回路主给⽔,释放热量后⼜被主泵送回堆芯重新加热再进⼊蒸汽发⽣器。
第三代核电技术及发展

我国第三代核电发展历史在CPR1000体系的形成和运用过程中,共经历了中国核电工业制度变迁的三个阶段,如表1。
1977年到1986年,是中国对核电行业深入探索的阶段。
中国政府并没有因为先前苏南核电的失败放弃发展核电的信心,促成了中国与法国的第一次技术和商业合作,我国引入了法国的核电技术路线M310,并与法国核电公司充分合作,建成了在中国核电历史上占据重要地位的大亚湾核电站。
1979年,中广核集团引进了法国核电技术路线M310型压水堆。
1987年开工的大亚湾核电站是中国与法国核电的首次接轨,由此也加深了中法两国的核电项目合作,使中国核电工作者有机会从近距离了解核电的管屈伟平第三代核电技术及发展理、建设及运做等流程。
进入中国核电工业整体低迷的阶段以后,中国广东核电集团仍然果断大胆地继续研究M310技术,从而使岭澳项目一举成为整个中国核电低迷阶段唯一的亮点,更开拓了关于整个CPR1000系列的前进方向,同时赢得了国际核电组织的认可,为集团在国际上的声望打下了坚实的基础。
1997年,中广核集团以大亚湾核电站为参考建成了岭澳核电站一期。
该电站对M3l0技术路线进行了52项重要技术改进。
按照国际标准,实现了项目管理自主化、建筑安装施工自主化、调试和生产准备自主化,实现了部分设计自主化和部分设备制造国产化,形成了拥有自主表1 我国CPR1000发展的三个阶段知识产权的核电技术路线CPR1000。
由于CPR1000通过了国际原子能机构的认证,在国际核电领域也得到了较高的认同,扩大了我国核电在国际核电领域的影响力,对我国未来的核电发展起到了积极的作用。
CPR1000模仿早期的M310,并根据中国的国情完善和修改了技术,形成了属于自己的技术路线,之后得到了国际原子能机构的认可。
CPR1000路线己逐渐成为我国自主核电工业的一面旗帜。
由于大亚湾项目的顺利投产和良好运营,该运营商中国广东核电集团发现了一条可行的发展方案,并迅速抓住契机,从1994年开始,就大力投入到对大亚湾核电项目所使用的M3l0技术路线的改进和创新当中去,逐渐形成了拥有自主产权的中国压水堆核电技术路线一一CPR1000,并首次应用在岭澳项目中。
核电发展可分为四代

世界核电站可划分为四代录入时间:2008-3-25 作者:snpec第一代核电站:自50年至60年代初苏联、美国等建造的第一批单机容量在300MWe左右的核电站,如美国的希平港核电站和英第安角1号核电站,法国的舒兹(Chooz)核电站,德国的奥珀利海母(Obrigheim)核电站,日本的美浜1号核电站等。
第一代核电厂属于原型堆核电厂,主要目的是为了通过试验示范形式来验证其核电在工程实施上的可行性。
第二代核电站:第二代核电厂主要是实现商业化、标准化、系列化、批量化,以提高经济性。
自60年代末至70年代世界上建造了大批单机容量在600-1400MWe的标准化和系列化核电站,以美国西屋公司为代表的Model 212(600MWe,两环路压水堆,堆芯有121合组件,采用12英尺燃料组件)、Model 312(1000MWe,3环路压水堆,堆芯有157盒组件,采用12英尺燃料组件,),Model 314 (1040MWe,3环路压水堆,堆芯有157盒组件,采用14英尺燃料组件),Model 412(1200MWe,4环路压水堆,堆芯有193盒组件,采用12英尺燃料组件,)、Model 414(1300MWe,4环路压水堆,堆芯有193盒组件,采用14英尺燃料组件)、System80(1050MWe,2环路压水堆)以及一大批沸水堆(BWR)均可划入第二代核电站范畴。
法国的CPY,P4,P4′´也属于Model 312,Model 414一类标准核电站。
日本、韩国也建造了一批Model 412、BWR、System80等标准核电站。
第二代核电站是目前世界正在运行的439座核电站(2007年9月统计数)主力机组,总装机容量为3.72亿千瓦。
还共有34台在建核电机组,总装机容量为0.278亿千瓦。
在三里岛核电站和切尔诺贝利核电站发生事故之后,各国对正在运行的核电站进行了不同程度的改进,在安全性和经济性都有了不同程度的提高。
我国第三代核电技术一览

我国第三代核电技术一览我国的核电技术路线是在上世纪80年代确定走引进、消化、研发、创新的道路的。
经过20余年的努力,通过对引进的二代法国压水堆技术的消化吸收,取得了巨大的技术进步,实现了60万千瓦压水堆机组设计国产化,基本掌握了百万千瓦压水堆核电厂的设计能力。
目前我国有五种第三代核电技术拟投入应用,他们分别是 AP1000、华龙一号、CAP1400、法国核电技术(EPR)以及俄罗斯核电技术(VVER)。
北极星电力网小编整理五种核电技术及特点供核电业界人士参考。
1、AP1000AP1000是美国西屋公司研发的一种先进的“非能动型压水堆核电技术”。
西屋公司在已开发的非能动先进压水堆AP600的基础上开发了AP1000。
该技术在理论上被称为国际上最先进的核电技术之一,由国家核电技术公司负责消化和吸收,且多次被核电决策层确认为日后中国主流的核电技术路线。
国家核电技术公司的AP1000和中广核集团与中核集团共推的华龙一号被默认为中国核电发展的两项主要推广技术,两者一主一辅,AP1000技术主要满足国内市场建设和需求,华龙一号则代表中国核电出口国外。
作为国内首个采用AP1000技术的依托项目三门核电一号机组原计划于2013年底并网发电,但由于负责AP1000主泵制造的美国EMD公司多次运抵中国的设备都不合格,致使三门一号核电机组如今已经延期2年。
目前,除在建的两个项目(三门、海阳)外,三门二期、海阳二期、广东陆丰、辽宁徐大堡、以及湖南桃花江等内陆核电项目均拟选用AP1000技术。
AP1000技术主要目标工程包括:海阳核电厂1-2号机组、三门核电厂1-2号机组、红沿河核电厂二期项目5-6号机组、三门核电厂二期项目、海阳核电厂二期项目、徐大堡核电厂一期项目以及陆丰核电厂一期项目等。
其中海阳核电厂1-2号机组和三门核电厂1-2号机组为正在建设的核电项目,其余五个为有望核准的核电项目。
【三门核电站】浙江三门核电站是我国首个采用三代核电技术的核电项目。
第三代核反应堆-EPR

第三代核反应堆-EPREPR是法马通和西门子联合开发的反应堆。
2001年1月,法马通公司与西门子核电部合并,组成法马通先进核能公司(Framatome ANP,AREV A集团的子公司)。
法国电力公司和德国各主要电力公司参加了项目的设计。
法德两国核安全当局协调了EPR的核安全标准,统一了技术规范。
新一代核反应堆EPR已经完成了技术开发层面的工作,现已进入建设阶段。
一、EPR实现了三大目标:1、满足了欧洲电力公司在“欧洲用户要求文件”中提出的全部要求。
2、达到了法国核安全局对未来压水堆核电站提出的核安全标准。
3、提高核电的经济竞争力,EPR的发电成本将比N4系列低10%。
二、EPR的主要特征1、EPR是目前国际上最新型反应堆(法国N4和德国近期建设的Konvoi 反应堆)的基础上开发的,吸取了核电站运行三十多年的经验。
2、EPR是渐进型、而不是革命型的产品,保持了技术的连续性,没有技术断代问题。
EPR采纳了法国原子能委员会和德国核能研发机构的技术创新成果。
3、EPR是新一代反应堆,具有更高的经济和技术性能:降低发电成本,充分利用核燃料(UO2或MOX),减少长寿废物的产量,运行更加灵活,检修更加便利,大量降低运行和检修人员的放射性剂量。
4、EPR属压水堆技术。
法国在运行的核电站都是压水堆。
目前,全球共有440台在运行的核电机组,其中209台是压水堆。
压水堆是上国际上使用最广泛的堆型。
5、EPR可使用各类压水堆燃料:低富集铀燃料(5%)、循环复用的燃料(源于后处理的再富集铀,或源于后处理的钚铀氧化物燃料MOX)。
EPR堆芯可全部使用MOX燃料装料。
这样,一方面可实现稳定乃至减少钚存量的目标,同时也可降低废物的产量;6、EPR的电功率约为1600兆瓦。
具有大规模电网的地区适于建设这种大容量机组。
另外,人口密度大、场址少的地区也适于采用大容量机组。
未来20年,半数以上的新核电站将建在这类地区。
7、EPR的技术寿期为60年,目前在运行的反应堆的技术寿期为40年。
我国第三代核电站掌握多项关键技术

6 面 临 的 问题
1 基 建 期 设 备 全 寿命 周 期 体 系 的 建 立 。企 )
业基建 期往往受工期 、 人员 、 供求关 系等 问题 困 扰 , 法有 效关 注设备 资产体 系 的建立 , 无 仅将设 备 视 为固定资 产处 理 , 理过 于粗。运 营 单 位 的 ) 设 备 资产管理 停 留在 陈 旧模 式 上 , 由于没 有 建 立
设备采购 、 运行维护等全寿命管理 , 管理过程更加 可 控 、 控 、 控 。企业设 备全 寿命周 期管 理 的实 在 能
施 是一 项 系统 的长 期工 程 , 及 的部 门 、 涉 环节 多 ,
不可 能一蹴 而 就 , 观念 转 变 、 程优化更 不是 短期 流
完善的设备资产管理体系, 设备资产账物不符 、 有 账 无物 、 有物无 账等情 况很 多 , 清查工 作量 大 。 3 资产管理人员。实 现设 备资产 的全寿命 ) 管理 和 闭环管 理 , 仅 要 求 管理 制 度 和 软件 系统 不
的 手 中从 图纸 变 成 现 实 。
去年 3月浙江三门核电站刚开工 , 而在短短一年多之后 , 电站厂房 已初具 规模 , 核 建设 速度之快 则得益 于创新 的施
工方法 。这种施工的方 式就像 “ 搭积木” 一样 , 以大大缩 短核 电站的建设 周期 , 可 而这也 正是第三代 核 电技术 的优点之
建成发 电; 按照 国产标准设计 的首批 内陆第三代核电机组也将于今年年底开工。而在此基础上 , 我国 自主研发 的大型先
进压水堆核 电站技术也 已经完成初步设计。
国家核电技术公司副总经理 孙汉 虹说 :完全具有 自主知识产 权的 中国人 自己的核 电技 术 , 在 2 1 “ 将 0 3年开 工建设 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三代核电站的要求
美国核电用户要求文件(URD)和欧洲核电用户要求文件(EUR)提出了下一代核电站(即第三代核电站)的安全和设计技术要求,它包括了改革型的能动(安全系统)核电站和先进型的非能动(安全系统)核电站,并完成了全部工程论证和试验工作以及核电站的初步设计。
第三代压水堆核电站有两种类型:改进型电厂(如EPR)和非能动型电厂(如
AP1000)。
URD对两种类型的核电厂又分别提出了专用要求,其要点如下:
改进型核电厂:更简化的专设安全系统;至少有两条隔离的和独立的交流电源与电网相连;至少三十分钟时间内,不考虑操纵员的干预;在丧失全部给水,至少在2小时内不应有燃料损坏;在丧失厂内外交流电源的8小时内,燃料没有损坏等。
非能动型核电厂:不要求安全相关的交流电源;至少72小时内,不需要操作员干预;严重事故条件下,安全壳有足够的设计裕量;不需要厂外应急计划等。
第三代主要先进堆型介绍:按照URD和和其他相关文件要求,近十年来世界主要核电国家开发了一系列第三代核电堆型,这些堆型按其设计特征可以分为改进型和革新型。
主要有三种核电堆型:AP1000、EPR、ABWR。
3.1 AP1000
AP1000是美国西屋公司开发的一种双环路,电功率为1117MW的第三代先进型PWR机组,他是1999年12月获得NRC设计许可证的AP600的设计,主要特征是高水平非动能安全系统的设计,并通过提高功率输出水平,降低发电成本。
AP1000主要有以下几个特点:a.采用了既先进又成熟的技术,如反应堆采用Model 314技术和IFBA燃料组件,反应堆冷却剂泵采用全密封泵(屏蔽泵)等;
b.采用非动能的安全系统,如非能动的堆芯冷却系统、非能动的安全壳冷却系统、主控室可滞留系统和安全壳隔离系统也通过非动能安全设计和实施实现其功能;
c.反应堆冷却系统进行了若干改进以使其更可靠和便于维修;
d.采用先进的全数字化仪控系统设计;
e.设计改进大大简化了AP1000核电厂。
使建造周期大大缩减。
3.2 欧洲先进压水堆EPR
1993年5月,法国和德国的核安全当局提出在未来压水堆设计中采用共同的安全方法,通过降低堆芯熔化和严重事故概率和提高安全壳能力来提高安全性,从放射性保护、废物处理、维修改进、减少人为失误等方面根本改善运行条件。
1998年,完成了EPR基本设计。
2000年3月,法国和德国的核安全当局的技术支持单位IPSN和GRS完成了EPR基本设计的评审工作,并于2000年11月颁发了一套适用于未来核电站设计建造的详细技术导则。
EPR是法马通和西门子联合开发的反应堆。
2001年1月,法马通公司与西门子核电部合并,组成法马通先进核能公司(Framatome ANP,AREVA集团的子公司)。
法国电力公司和德国各主要电力公司参加了项目的设计。
法德两国核安全当局协调了EPR的核安全标准,统一了技术规范。
新一代核反应堆EPR已经完成了技术开发层面的工作,现已进入建设阶段。
EPR是法马通公司和西门子公司于1991年共同开发的,属于第三代改进型PWR,它的性能设计目标基于或高于法、德现有大型PWR核电厂所达到的最高水平,遵循EUR的相关要求,因此既有成熟型,也具有先进性。
EPR具有以下几个设计特点:
1)EPR总体设计方案遵循法、德联合制定的“未来PWR核电厂通用安全方案的建议”,采用确定方法论与概率方法论相结合的双重策略;
2)EPR机组的设计热功率为4250MW,电功率为1500~1600MW,设计寿命60年,采用双层安全壳;
3)反应堆冷却系统主要部件体积大于现在运行的PWR机组,可以容纳较大的堆芯,以降低功率密度,增加热工安全裕量;
4)核电厂重要安全系统及其支持系统设计有四个冗余系列,并分别安装在四个独立的区域,每个系列与反应堆冷却系统地一个环路相连;
5)EPR设计考虑了严重事故预防和缓解的手段和措施;
6)采用先进的全数字化仪控设计和主控室设计,保护系统为四重冗余结构,采用“2/4”逻辑,具有较高的可靠性。
3.3 先进沸水堆(ABWR)
是目前唯一有运行电厂和经过运行考验的第三代先进型核电厂,除了具有BWR的特点和优点,如直接循环、大的负空泡反应性系数、采用流量+控制棒调节功率的方便、快捷外,还具有以下几个特征:
1)将原CE公司BWR安装在压力容器外侧的反应堆冷却剂再循环泵改为安装在压力容器内部的内置泵,实现了核蒸汽供应系统的一体化设计,大大降低了堆芯融化概率;
2)ABWR采用并改进了经验证的电动驱动和水力驱动相结合的电动-水力微动控制棒驱动系统(FM CRD),提高了正常运行反应性控制的精度和紧急停堆的快速、可靠性;
3)ABWR的应急堆芯冷却系统(ECCS)分三个区设置了3套独立的、冗余的、符合多样性要求的子系统,各区子系统配备独立的供电、控制保护以及其他支持系统,保证了事故条件下应急堆芯冷却系统抑制和缓解事故后果的可靠性和有效性;
4)ABWR带有弛压水池的抑压式安全壳设计,能保证在发生失水事故或严重事故时,通过弛压水池的非能动式设计有效抑制安全壳内压力上升,洗涤破口流量中夹带的破裂产物,并为ECCS系统提供重要的可靠水源。
ABWR安全壳设计为缓解严重事故及其减轻放射性释放后果提供了重要的重要的有效保障;
5)ABWR的仪表和控制系统采用全数字化技和容错结构,有助于ABWR电站安全、高效、可靠运行;
6)ABWR采用控制栅元堆芯设计和运行方案,即在ABWR运行期间,仅由少部分固定的控制棒组成一个控制棒组在堆芯内移动来补偿整个运行寿期内的反应性变化。
该设计简化了运行,提高了运行的可靠性和安全性;
7)ABWR可采用通过改变流量的谱移控制运行方式,从而增加燃料的利用率。
以上是对世界上3种第三代核电先进堆型特点及其先进性进行的介绍。
目前的第三代堆型电厂,在亚洲的电力市场上是可行的的,因为电力公司获得保证能够收回全部正当成本。