磁敏感加权成像(SWI)-原理及临床应用知识讲解
MR磁敏感成像(SWI)原理及其在脑部的应用

相位蒙掩(phase mask)及负相位加权处理
校正相位图用于创建相位掩模,进而抑制具有一定 相位值的体素。
相位值从0到π的加权值设置为1,相位值小于0的 加权值被线性的单位化到0至1区间,0对应相位值π,1对应相位值 0 。
相位蒙掩为:f(x)=(φ(x)+π)/π φ(x)为兴趣区x的相位。
从该公式可以看出,相位值为-π的体素将被 完全抑制,而相位值为-π至0之间的体素将被部分 抑制。相位掩模的相位加权值为0到1之间,称为负 相位蒙掩。
将幅度图像中的每个像素与对应的相位加 权值进行多次相乘,由静脉产生的信号将 被大幅度抑制,从而将静脉从原始图像分 离出来。实验发现相乘4次得到的结果最为 理想,对比噪声比最大。
SWI的基本成像技术
磁场不均匀会给图像中的相位引入低频扰动,使得 包含在相位图像中的有用信息难以得到充分利用。
为了去除这种影响,先在原始的K空间数据上施加 一个中心矩阵为64×64的低通滤波器,用原始图像 除以(复数除法)由滤波后的K空间数据产生的图 像,从而去除原始相位图像中由于磁场不均匀产生 的影响。
Radiology, 2003. Tong KA
Radiology, 2003. Tong KA
在脑肿瘤的应用
显示肿瘤出血及内部静脉血管 结构及小出血灶
Malignant astrocytoma
SWI
显 示 肿 瘤 内 血 管 及 出 血
脑部矿物质沉积及变性等病变的应用
Wilson disease Parkinson disease Alzheimer disease Tuberous Sclerosis
磁敏感加权成像SWI原理及临床应用

脑肿瘤
总结词
SWI有助于发现和鉴别脑肿瘤,尤其对于低度恶性脑肿瘤的诊断具有重要价值。
详细描述
磁敏感加权成像(SWI)能够检测到常规MRI难以发现的微小肿瘤病灶。通过SWI,医生可以更准确地判 断肿瘤的位置、大小和形态,有助于肿瘤的早期发现和诊断。此外,SWI还可以提供有关肿瘤性质的信息, 帮助医生制定更精确的治疗方案。
SWI能够提高脑肿瘤的检出率,有助 于肿瘤的鉴别诊断,为制定治疗方案 提供依据。
脑梗塞
SWI通过显示脑梗塞病灶的磁敏感效 应,有助于早期发现梗塞灶,为溶栓 治疗提供时间窗。
肿瘤检测与鉴别
肝脏肿瘤
SWI能够提高肝脏肿瘤的检出率, 有助于肝脏肿瘤的早期发现和鉴 别诊断。
乳腺肿瘤
SWI能够提高乳腺肿瘤的检出率, 有助于乳腺肿瘤的早期发现和鉴别 诊断。
SWI的局限性在于对磁场的要求较高, 需要高均匀度的磁场才能获得高质量 的图像。此外,由于SWI技术需要较 长的扫描时间,因此可能会增加患者 的疲劳感。
02 SWI在临床应用中的价值
脑部疾病诊断
脑出血
脑肿瘤
SWI对脑出血的检测具有高敏感性和 特异性,能够清晰显示出血部位和范 围,为临床诊断和治疗提供重要依据。
06 SWI技术的未来展望
SWI技术的进一步优化
算法改进
通过改进SWI的图像重建算法,提高图像质量和 分辨率,减少伪影和噪声。
动态成像
研究和发展SWI的动态成像技术,以捕捉和显示 更丰富的血流动力学信息。
多模态融合
将SWI与其他影像技术(如MRI、CT等)进行多 模态融合,以提供更全面、准确的诊断信息。
加强对临床医生和影像科医生的培训和教育,提高他们对SWI技术 的认识和应用能力。
磁敏感加权成像临床应用

与传统GRE-T2*WI比较SWI具有:薄层扫描、 三维成像、高分辨率、高信噪比等特点,脑内 细微结构显示更加清晰。
SWI在中枢神经系统的临床应用
根据不同的磁敏感性物质将疾病归类如下: 去氧血红蛋白:血管畸形,外伤出血,脑肿瘤 非血红素铁:神经退行性病变 钙化:病理性钙化,脑肿瘤
传统的增强T1WI肿瘤呈一片弥漫增强,而SWI则能显 示常规平扫和增强扫描Tl加权像所遗漏的出血和引流 静脉。
最近研究表明,SWI显示肿瘤内磁敏感信号与 肿瘤病理分级正相关。SWI有望成为一项无创 的术前脑肿瘤分级技术,指导临床治疗。
钙化
钙化在CT上常常表现为高密度,在普通T1WI 和T2WI表现并无特异性,在T1WI上可表现为 低、等、高信号,在T2WI上表现为低、等信 号。
要获得SWI图像,需要对原始幅值图和相位图进行以 下处理:首先利用高通量 hamming窗滤波器对原始相 位图像进行过滤,以减少由空气一 组织交界面和背景 磁场不均匀所引起的失真伪影,并生成一种新的校正 相位图。其次利用校正相位图创建相位蒙片,抑制具 有一定相位值的体素。再与幅值图叠加获得SWI图, 提高各组织间的对比度。最后应用最小密度投影,将 表现为低信号的血管连续化。
正常人脑内铁
正常人铁含量VS年龄
MS-年龄匹配的对照组
MS患者
脑肿瘤
肿瘤的定性,部分是依赖于对病灶的血管性行为,包 括血管增生和微出血两个方面。肿瘤由低级别向高级 别转变多伴随着肿瘤血管的增生。
静脉血和出血产物的磁敏感性与正常组织不同,而 SWI恰巧对发现该类物质的敏感性很高,所以能更好 地显示肿瘤边界,内部结构、发现肿瘤出血。
SWI静脉成像原理
静脉血的主要成分为顺磁性的去氧血红蛋白, 动脉血则是反磁性的氧合血红蛋白,它们之问 的磁敏感性差异导致两种血管信号强度的不同, 使静脉能独立于动脉清晰成像。
磁敏感加权成像技术原理及临床应用进展

三、展望
¥WI在显示小静脉及微量、早期出血方面具有传统影像学 不具备的优势。但SWI由于涉及到相位图像,磁敏感性和相位 值之间的关系比较复杂,尚待进一步深入研究。此外.高分辨 率的扫描方式使SWI的扫描时间仍然比较长,人们试图通过 EPI序列来显著缩短扫描时间。随着高场强磁共振设备的引 入,图象处理软件的进一步改进、应用领域的不断开拓,SWI将 做为MRI常规序列的重要补充更好地应用于临未诊断、鉴别诊 断及科学研究之中。 参考
of flight,
液的代谢产物,SWI显示肿瘤边界、内部结构、出血和静脉结构 的效果更好。对比增强前后SWI图像能显示常规平扫和增强 扫描T。加权像所遗漏的出血和静脉。SWl还可以提供类似 FLAIR的图像对比度,使脑脊液的信号得到抑制,有助于显示 高信号的水肿,SWI既包含T:效应又能显示病灶周围的水肿, 更有利于发现占位性病变。SWI的出现改善了图像的对比,可 以检测到常规成像方法无法显示的肿瘤内的静脉脉管系统和 微量出血““¨]。SWI可以作为颅内肿瘤显像的重要补充序 列。结合其他序列对肿瘤提供更全面、精确的信息¨“。 5.脑外伤 脑外伤是否合并颅内出血对评估病情、判断预后和选择治 疗方法都有重要意义,由于出血病灶在常规MRI图像上的表现 复杂多样,很容易漏诊小出血灶。SWI在显示出血病灶方面有 明显优势。弥漫性轴索损伤是脑外伤中的一种特殊类型,是由 剪切力引起脑白质的弥漫损伤,通常伴有多发小出血灶,常规 MRI图像显示病灶的效果欠佳,如果弥漫性轴索损伤伴有出 血,则预后更差。SWI能清晰显示病灶的数目、大小和部位。
coma
scale,GCS)的分值相关o
例AVM患者进行常规MRA与SWI的对比研究,结果SWI发 现3个常规MRA漏诊的病灶,显示引流静脉的效果明显优于 TOF—MRA,但是SWI仅发现半数主要供血动脉,显示位于颅底 和曾经有出血病灶的边界欠佳。 3.脑静脉(窦)血栓形成 SWI对脑静脉(窦)血栓形成的诊断具有重要价值,尤其在 显示皮质静脉血栓方面具有优势。ldbaih等一1对39例患者的 114次MR检查进行回顾性研究。结果SWI和常规自旋回波T。 加权像在发生血栓的第l一3天显示静脉窦和静脉内血栓的敏 感性分别为90%和7l%,显著高于T2+加权像、FLAIR及DWI, 并且SWI在发病第l周之内的显示敏感度比较稳定。SWI显 示皮质静脉血栓的敏感度明显高于常规MRI和MRV,而且可 以确定静脉性脑梗死伴发的出血。
SWI原理及临床应用

SWI原理及临床应用磁敏感加权技术SWI是一种较新的成像技术,自上世纪80年代问世以来,SWI在中枢神经系统疾病的诊断及鉴别诊断中得到了广泛的应用。
SWI的主要研发者E. MackHaacke是美国韦恩州立大学教授, 于1997年由其团队共同开发,2002申请专利,最初称作高分辨率血氧水平依赖静脉成像。
20多年的临床使用,磁共振相关软硬件的改进,发现磁敏感加权成像在发现颅脑静脉畸形,脑微小出血,钙化等都具有非常重要的应用。
所以大家可以发现GPS三家各不相同,不是想标新立异,而是存在版权的原因。
PHILIPS 静脉血氧水平依赖成像( Venous BOLD,Philips)和磁敏度加权相位增强成像(SWlp, Philips)SIEMENS 磁敏感加权成像( Susceptibility weighed imaging,SWI. Siemens)Dr. E Mark Haacke获得2002年专利GE T2血管加权成像(T2 - star weighted angiography, SWAN) SWI原理磁敏感加权成像( SusceptibilityWeighted Imaging,SWI)利用不同组织间磁化率的差异及BOLD效应产生图像对比,这种对比不同于质子加权、T1、T2及T2*对比,是一种新的MRI成像序列。
SWI 以T2* 加权梯度回波序列作为序列基础,与T2* 加权梯度回波序列不同的是,SWI采用高分辨率、3D梯度回波,三维完全流动补偿的序列进行扫描,经过一系列复杂的图像后处理将相位图与幅值图融合,可同时获得幅度图像(magnitude image)和相位图像(phase image)两组原始图像。
SWI 序列设计特点采用3D梯度回波扫描, 采集模式为cartesian,三个方向流动补偿,高分辨率,包括幅度和相位信息。
为什么往往使用3D序列进行扫描,其原因是3D扫描在相同的空间分辨率的情况下具有远远高于2D成像的图像信噪比,所以在保证一定信噪比的前提下缩短扫描时间;同时3D成像能够在容积内施加流动补偿以保证相位信息的准确性以及流动伪影的消除。
磁敏感加权成像(SWI) 原理及临床应用ppt课件

..
22
PRES
..
23
PRES
..
24
脑外伤
..
25
脑外伤
..
26
脑外伤
..
27
脑海绵状血管畸形
..
28
脑海绵状血管畸形
..
29
脑海绵状血管畸形
..
30
脑海绵状血管畸形
..
31
脑动静脉畸形
..
32
脑动静脉畸形
..
33
脑动静脉畸形
..
34
脑动静脉畸形
..
35
脑静脉发育畸形(静脉瘤)
NEX 2 矩阵 288×224 层厚 6.5 mm 层间隔 1.3 mm 扫描时间 3分20秒
TR/TE= 36/20ms FOV 24×24
NEX 0.8 矩阵 448×384 层厚 2 mm 层间隔 0 扫描时间 2分42秒
..
6
SWI与T2*WI比较的优势
SWI与T2*WI比较
T2*WI
二维 低分辨 厚层
磁敏感加权成像(SWI) 原理及临床应用
..
1
GRE与SE序列比较
SE
GRE
在SE序列(SE-T1WI,FSET2WI)中,于90°的射频脉 冲后,间隔一定时间又施加 一个180°的聚焦脉冲,可 消除由于磁场不均匀性所致 去相位效应,产生T2弛豫 信号。
在GRE( T2*WI)序列中,并不 使用180°翻转脉冲,而采用一 对极性相反的去相位梯度磁场 及相位重聚梯度磁场,由梯度 磁场产生的相散效应,不能消 除由磁场不均匀性所致的去相 位效应。
..
46
脑淀粉样变性
..
磁敏感加权成像SWI序列原理及应用(一)

磁敏感加权成像SWI序列原理及应⽤(⼀)磁敏感加权成像SWI(Susceptibility-Weighted Imaging)是⼀种不同于常规的T1W,T2W,PDW等成像,⽽是利⽤组织间固有的磁敏感差异来获得图像对⽐的成像⽅式。
磁敏感加权成像利⽤磁共振相位图像作为Mask来增强组织间对⽐,经过20多年的临床使⽤,发现磁敏感加权成像在发现颅脑静脉畸形,脑微⼩出⾎,钙化等都具有⾮常重要的应⽤。
那么磁敏感加权成像是如何从常规的GRE序列演变发展成为能够识别组织间不同磁化率信息的SWI序列的呢?在进⾏磁敏感序列参数设定时需要注意什么?如何在磁敏感加权成像中鉴别出⾎和钙化?以及磁敏感加权成像图像的伪影及处理⽅案有什么?本⽂将逐⼀进⾏介绍。
⼀、磁敏感成像基本原理磁化率是组织的固有属性,通常我们使⽤Xm进⾏表⽰,不同组织与材料的磁化率差别⾮常⼤,为了描述⽅便,可以将组织或材料划分为逆磁性、顺磁性以及铁磁性三种不同的类型,其中逆磁性的组织或材料的磁化率Xm<0,常见的有铜、银、⽔以及304不锈钢等等,⽽铁、钴、镍等⾦属则为铁磁性材料,磁化率⾮常⾼。
当把具有⼀定磁化率的组织或材料放置于均匀的磁化环境中时,组织被均匀磁化形成磁偶极⼦,产⽣感应磁场,这种感应磁场不仅影响组织的内部,同时也影响着组织周边的外加磁化的均匀性。
对外加磁场的扰动的程度取决于组织的磁化率,形状和体积。
就扰相GRE序列来说,假如认定磁场均匀性以及梯度线性⾮常好时,使⽤⼀定的翻转⾓在TE 时刻采集获得的信号为:但是如果存在导致局部磁场不均匀的影响因素时,在TE时刻由于磁场不均匀导致横向磁矩的相位并没有聚相,⽽是存在⼀定的相位差,导致接收信号的降低。
这种信号的降低主要由两个参数决定,ΔB为磁场不均匀的参数,TE则为回波时间,磁场不均匀越厉害,相位差越明显,回波时间TE越长,相位差越明显,导致的信号降低越明显。
这两个参数都在磁敏感成像参数设定中有⾮常重要的意义。
磁敏感加权成像SWI技术及其应用情况

磁敏感加权成像SWI技术及其应用情况磁敏感加权成像(susceptibility weighted imaging,SWI)是近年来新开发的磁共振对比增强成像技术,最初称作“高分辨率血氧水平依赖静脉成像” (high resolution blood oxygenation level dependent venographic imaging) [1-2]。
对于脑内小静脉显示应用甚广,尤其对于微出血灶的显示,极大提高诊断价值,在此基础,科学家经过不断改进,使得SWI技术更加成熟,应用范围扩大,更为一些棘手的科研开辟新的思路。
与常规序列相比,SWI能更敏感地显示出血,尤其对于微出血灶显示相对敏感,因此在外伤、肿瘤性病变、血管畸形及脑血管病变诊断进一步提供可靠标准,对于神经性病变性疾病,例如AD、PD[3]的研究有较高的诊断及临床价值。
一、SWI技术原理SWI主要依据不同组织间的磁敏感性差异提供图像对比增强,它可以应用于所有对不同组织间或亚体素间磁化效应敏感的序列[4],但是为了凸显其在表现细小静脉及小出血方面的能力,SWI以T2*加权梯度回波序列作为序列基础[5-7]。
与T2*加权梯度回波序列不同的是,SWI采用高分辨率、三维完全流动补偿的梯度回波序列进行扫描,磁敏感加权成像序列成像过程中会产生相位图、幅值图和相位掩模图。
相位图像包含背景磁场和组织化学位移的直接信息,使用相位图像时,得去除背景噪声及由于部分容积效应产生的不同的化学位移。
SWI图的后期处理一般分为 4 个步骤[8] (使用高通滤波器去除背景磁场中低空间频率干扰部分,校正图像;2) 消除相位图中由磁场不均匀产生的伪影,创建相位掩模;3) 相位掩模与原始幅值图多次相乘,产生新的幅值图对比,其中所乘数字应尽量小并得到合适的 CNR;4) 通过最小密度投影,使各个层面的静脉连续化,得到最终的磁敏感加权图所对应的解剖位置完全一致[9]。
常规MRI仅利用了单一的磁距图信息, SWI则利用了一直被忽略的相位信息,并经过一系列复杂的图像后处理将相位图与磁距图融合,形成独特的图像对比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
右侧横窦急性期血栓
脑静脉(窦)血栓形成
脑静脉(窦)血ห้องสมุดไป่ตู้形成
脑微出血(CMB)-亚临床形态学改变
PRES
PRES
脑外伤
脑外伤
脑外伤
脑海绵状血管畸形
脑海绵状血管畸形
脑海绵状血管畸形
脑海绵状血管畸形
脑动静脉畸形
脑动静脉畸形
脑动静脉畸形
脑动静脉畸形
脑静脉发育畸形(静脉瘤)
TR/TE= 36/20ms FOV 24×24
NEX 0.8 矩阵 448×384 层厚 2 mm 层间隔 0 扫描时间 2分42秒
SWI与T2*WI比较的优势
SWI与T2*WI比较
T2*WI
二维 低分辨 厚层
SWI
三维 高分辨 薄层
SWI图像采集及后处理: 方法1
Corrected Phase
磁敏感加权成像(SWI) 原理及临床应用
GRE与SE序列比较
SE
GRE
在SE序列(SE-T1WI,FSET2WI)中,于90°的射频脉 冲后,间隔一定时间又施加 一个180°的聚焦脉冲,可 消除由于磁场不均匀性所致 去相位效应,产生T2弛豫 信号。
在GRE( T2*WI)序列中,并不 使用180°翻转脉冲,而采用一 对极性相反的去相位梯度磁场 及相位重聚梯度磁场,由梯度 磁场产生的相散效应,不能消 除由磁场不均匀性所致的去相 位效应。
引起磁场变化的原因
血液代谢产物
小静脉
铁沉积
SWI显示小静脉结构的原理
小静脉内含有脱氧血红 蛋白容易引起磁场的不 均匀性导致T2*WI时间 缩短和血管与周围组织 的相位差加大两种效应。
SWI与T2*WI扫描参数比较
T2*WI
SWI
TR/TE= 340/6.7ms FOV24×24,
NEX 2 矩阵 288×224 层厚 6.5 mm 层间隔 1.3 mm 扫描时间 3分20秒
SWI – Negative Mask
SWI图像采集及后处理: 方法2
磁敏感加权成像(SWI) 临床应用
1
脑血管病
2
脑外伤
3
脑血管畸形
4
脑肿瘤
5
变性病
急性期脑梗死
脑梗死后出血性转化
急性期脑出血
急性期脑出血
正常静脉窦
急性期(≤5天)静脉窦血栓
亚急性期(6~15天)静脉窦血栓
慢性期(≥16天)静脉窦血栓
▪ SWI显示小静脉能力强,对静脉畸形,静 脉(窦)血栓的诊断有重要参考价值
▪ 缺点:3.0T磁共振有夸大病灶的效果,但对 不遗留任何微小病灶却具有重要意义
脑静脉发育畸形(静脉瘤)
静脉异常
静脉异常
脑肿瘤并微量出血及病理血管
脑肿瘤并微量出血及病理血管
脑变性病:帕金森氏病
PD-黑质致密带和苍白球;MSA-壳核
脑变性病:肝豆状核变性
脑淀粉样变性伴皮层出血
脑淀粉样变性伴皮层出血
脑淀粉样变性
脑淀粉样变性
脑淀粉样变性
总结
▪ SWI比传统T2*WI诊断出血,淀粉样变性等 病变更敏感