数列的通项公式练习题(通项式考试专题)

数列的通项公式练习题(通项式考试专题)
数列的通项公式练习题(通项式考试专题)

2010届高考数学快速提升成绩题型训练

——数列求通项公式

在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。

已知数列{}n a 中,3

1

1=

a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,试求通项公式n a 。

已知数}{n a 的递推关系为43

2

1+=

+n n a a ,且11=a 求通项n a 。

在数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。

已知数列{n a }中11=a 且1

1+=+n n

n a a a (N n ∈),,求数列的通项公式。

已知数列{}a n 的前n 项和S n b n n =+()1,其中{}b n 是首项为1,公差为2的等差数列.

(1)求数列{}a n 的通项公式;

已知等差数列{a n }的首项a 1 = 1,公差d > 0,且第二项、第五项、第十四项分别是等比数列{b n }的第二项、第三项、第四项.

(Ⅰ)求数列{a n }与{b n }的通项公式;

已知数列}{n a 的前n 项和为n S ,且满足

322-=+n a S n n )(*N n ∈.

(Ⅰ)求数列}{n a 的通项公式;

设数列{}n a 满足2

1

123333

3

n n n a a a a -++++=

…,n ∈*

N . (Ⅰ)求数列{}n a 的通项;

数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N . (Ⅰ)求数列{}n a 的通项n a ;

已知数列{}n a 和{}n b 满足:11a =,22a =,0n a >,1

n n n b a a +=(*n ∈N ),且{}n b 是以q 为公比的等比数列. (I )证明:22n n a a q +=;

(II )若2122n n n c a a -=+,证明数列{}n c 是等比数列;

1. 设数列{a n }的前项的和S n =

3

1(a n -1) (n *

∈N ). (Ⅰ)求a 1;a 2; (Ⅱ)求证数列{a n }为等比数列.

3. 已知二次函数()y f x =的图像经过坐标原点,其导函数为

'()62f x x =-,数列{}n a 的

前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图像上. (Ⅰ)求数列{}n a 的通项公式;

7. 已知数列{}n a 的前n 项和S n 满足2(1),1n n n S a n =+-≥. (Ⅰ)写出数列{}n a 的前3项;,,321a a a

(Ⅱ)求数列{}n a 的通项公式.

8. 已知数列}a {n 满足n n 1n 23a 2a ?+=+,2a 1=,求数列}a {n 的通项公式。

9. 已知数列}a {n 满足1a 1

n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。

10. 已知数列}a {n 满足3a 132a a 1n n 1n =+?+=+,,求数列}a {n 的通项公式。

11. 已知数列}a {n 满足3a 132a 3a 1n n 1n =+?+=+,,求数列}a {n 的通项公式。

12. 已知数列}a {n 满足3a a 5)1n (2a 1n n 1n =?+=+,,求数列}a {n 的通项公式。

14. 已知数列}a {n 满足6a 53a 2a 1n

n 1n =?+=+,,求数列}a {n 的通项公式。

17. 已知数列}a {n 满足4

13n n a a +=,7a 1=,求数列}a {n 的通项公式。

答案:

1. 解: (Ⅰ)由)1(3111-=

a S ,得)1(3111-=a a ∴=1a 2

1- 又)1(3122-=a S ,即)1(31221-=+a a a ,得4

12=a .

(Ⅱ)当n >1时,),1(3

1

)1(3111---=-=--n n n n n a a S S a 得,2

1

1-=-n n a a 所以{}n a 是首项21-,公比为21-的等比数列.

2. 解:⑴当n =1时,有:S 1=a 1=2a 1+(-1)? a 1=1;

当n =2时,有:S 2=a 1+a 2=2a 2+(-1)2?a 2=0; 当n =3时,有:S 3=a 1+a 2+a 3=2a 3+(-1)3?a 3=2;

综上可知a 1=1,a 2=0,a 3=2; ⑵

1112(1)2(1)n n n n n n n a S S a a ---=-=+----

化简得:1122(1)n n n a a --=+-

上式可化为:1122

(1)2[(1)]33n n n n a a --+

-=+- 故数列{2(1)3n n a +-}是以1

12(1)3

a +-为首项, 公比为2

的等比数列.

故121(1)233

n n n a -+-=

12122

2(1)[2(1)]333

n n n n n a --=--=--

数列{n a }的通项公式为:22[2(1)]3

n n

n a -=--.

3. 解:(Ⅰ)设这二次函数f(x)=ax 2+bx (a ≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x -2,得

a=3 , b=-2, 所以 f(x)=3x 2-2x.

又因为点(,)()n n S n N *∈均在函数()y f x =的图像上,所以

n S =3n 2-2n.

当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[

]

)

1(2)132

---n n (=6n -5.

当n =1时,a 1=S 1=3×12-2=6×1-5,所以,a n =6n -5

(n N *∈).

6. 方法(1):构造公比为—2的等比数列{}

n n a 3?+λ,用待定系数法可知5

1

-

=λ. 方法(2):构造差型数列?

?

?

???-n n a )2(,即两边同时除以n )2(- 得:n

n n n n a a )23(31)

2()2(1

1-?+-=---,从而可以用累加的方法处理. 方法(3):直接用迭代的方法处理:

2221221133)2()2(3)32(232--------+-+-=++--=+-=n n n n n n n n n a a a a 12233233)2()32()2(----+-++--=n n n n a

=+-+-+-=----12323333)2(3)2()2(n n n n a

23223120103)2(3)2(3)2(3)2(3)2()2(-----+

-+-+-+-+-+-=n n n n n n a 5

2)1(3)2(10n

n n n

a ?-++-=-.

7. 分析:.1,)1(2≥-+=n a S n n n -① 由,12111-==a S a 得.11=a

-②

由2=n 得,12221+=+a a a ,得02=a -③ 由3=n 得,123321-=++a a a a ,得23=a -④ 用1-n 代n 得 111)1(2----+=n n n a S -⑤

①—⑤:n n n n n n a a S S a )1(22211-+-=-=--

即n

n n a a )1(221--=-

--⑥

[]

n n n n n n n n a a a a )1(22)1(2)1(222)1(221222121---=----=--=-----n

n n n a )1(2)1(2)1(2222111------==---

[]

12

)1(23

2---+=

n n

8. 解:n n 1n 23a 2a ?+=+两边除以1n 2+,得

2

3

2a 2a n

n 1

n 1n +

=

++,则2

32

a 2

a n

n 1

n 1n =

-

++, 故数列}2a {

n n 是以1222a 1

1==为首,以2

3

为公差的等差数列,由等差数列的通项公式,得

2

3

)

1n (12a n

n -+=,所以数列}a {n 的通项公式为n n 2)2

1n 23

(a -=。 9.

解:由

1n 2a a n 1n ++=+得

1

n 2a a n 1n +=-+则

112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---

1

)1n (2

n )1n (21

)1n (]12)2n ()1n [(21

)112()122(]1)2n (2[]1)1n (2[+-+-?=+-++++-+-=++?++?+++-++-= 所以数列}a {n 的通项公式为2

n n a =

10. 解:由132a a n n 1n +?+=+得132a a n n 1n +?=-+则

112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---

3)1n ()3333(23)132()132()132()132(122n 1n 122n 1n +-+++++=++?++?+++?++?=----

所以1n 32n 3

1332a n n

n -+=++--?

= 11. 解:132a 3a n n 1n +?+=+两边除以1n 3+,得

1n n

n 1

n 1n 3

1

323a 3a +++++

=

, 则

1n n

n 1

n 1n 3

1323a 3a ++++=

-

,故

3a )3

a 3a ()3a 3a ()3a a a ()a a 3

a (

3

a 1

112

23n 3n 2n 2n 2n 2n 1n 1n 1n 1n n

n n

n +-++-+-+-

=----------

33)3132()3132()3132()3132(22n 1n n +++++++++=-- 1)3

1

31313131(3)1n (222n 1n n n +++++++-=

-- 因此n 1

n n n n 321213n 2131)

31(313)1n (23

a ?-

+=+--?+-=-, 则2

13213n 32a n n n -?+??=

12. 解:因为3a a 5)1n (2a 1n n 1n =?+=+,,所以0a n ≠,则

n

n 1n 5)1n (2a a +=+,则11

2232n 1n 1n n n a a a a a a a a a a ?????=--- 3]5)11(2[]5)12(2[]5

)12n (2[]5

)11n (2[1

2

2

n 1

n ??+???+?+-?+-=--

35]23)1n (n [212)2n ()1n (1n ?????-??=+++-+--

所以数列}a {n 的通项公式为

!n 523a 2

)

1n (n 1

n n

???=--

13. 解:因为)2n (a )1n (a 3a 2a a 1n 321n ≥-++++=-

所以n 1n 3211n na a )1n (a 3a 2a a +-++++=-+

所以②式-①式得n n 1n na a a =-+

则)2n (a )1n (a n 1n ≥+=+

)2n (1n a a n

1

n ≥+=+ 所以22

32n 1

n 1n n n a a a a a a a a ????=

--- 22a 2

!

n a ]34)1n (n [?=

????-= ③

由)2n (a )1n (a 3a 2a a 1n 321n ≥-++++=- ,取n=2得

212a 2a a +=,则12a a =,又知1a 1=,则1a 2=,代入③得

2

!n n 5431a n =

?????= 。 14. 解:设)5x a (25x a n n 1n 1n ?+=?+++

n

n 1n 53a 2a ?+=+代入④式,得

n n 1n n n 5x 2a 25x 53a 2?+=?+?++,等式两边消去n a 2,得

n 1n n 5x 25x 53?=?+?+,两边除以n 5,得x 25x 3=?+,则x=-

1,代入④式,

得)5a (25a n n 1n 1n -=-++

由1565a 11=-=-≠0及⑤式,得05a n n ≠-,则

25

a 5a n

n 1n 1n =--++,则数列}5a {n n -是以15a 11=-为首项,以2为

公比的等比数列,则1n n n 215a -?=-,故n 1n n 52a +=-。

求数列通项公式的常用方法(有答案)

求数列通项公式的常用方法 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之 一。 2.解题步骤:若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-= 两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++ +?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2 n a n =。 练习. 已知数列 } {n a 满足31=a , ) 2()1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式. 答案:裂项求和 n a n 1 2- = 评注:已知a a =1,) (1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函

数、指数函数、分式函数,求通项 n a . ①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和; ③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。 二、累乘法 1. 适用于: 1()n n a f n a += ----------这是广义的等比数列,累乘法是最基本的二个方法之 二。 2.解题步骤:若 1()n n a f n a +=,则31212(1)(2)()n n a a a f f f n a a a +===,,, 两边分别相乘得,1 11 1()n n k a a f k a +==?∏ 例2 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 解:因为112(1)53n n n a n a a +=+?=,,所以0n a ≠,则 1 2(1)5n n n a n a +=+,故1 32 112 21 12211(1)(2)21 (1)1 2 [2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53 32 5 ! n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--= ??? ??=-+-+??+?+??=-?????=??? 所以数列{}n a 的通项公式为(1)1 2 325 !.n n n n a n --=??? 练习. 已知 1 ,111->-+=+a n na a n n ,求数列{an}的通项公式 答案: =n a ) 1()!1(1+?-a n -1.

数列通项公式方法大全很经典精品

【关键字】方法、关键、关系、满足 1,数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222 n n n n a a ++-= ,故数列{}2n n a 是以122 2 a 1 1==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31 ()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法 例3已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 解:因为112(1)53n n n a n a a +=+?=,,所以0n a ≠,则 1 2(1)5n n n a n a +=+,故

高中数学复习——数列通项公式的十种求法及相应题目

高中数学复习——数列通项公式的十种求法及 相应题目 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则11 3 222 n n n n a a ++-=,故数列{}2n n a 是以1 2 22a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出 3 1(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++ +?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为 121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+, 即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

数列通项公式方法大全很经典

1,数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222 n n n n a a ++-= ,故数列{}2n n a 是以1 2 22a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31 ()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出 11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法 例3已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。

数列通项的求解方法归纳与练习题

数列的通项求解方法归纳总结与练习題 【知识要点】 1、通项公式:数列的通项公式是数列的一个重要内容之一,它把数列各项的性质集于一身.常用的求通项的方法有观察法、公式法、叠加法、叠乘法、前n 项和作差法、辅助数列法 2、常见方法和基本结构形式: (1)、观察法:根据给定数列的几项观察规律,直接猜测结论; (2)、叠加法:数列的基本形式为))((*1N n n f a a n n ∈=-+的解析式,而)()2()1(n f f f +++Λ的和可求出. (3)、叠乘法:数列的基本形式为))((*1N n n f a a n n ∈=+的解析关系,而)()2()1(n f f f ???Λ的积可求出. (4)、前n 项和作差法:利用???≥-==-)2()1(11n S S n S a n n n , ,,能合则合. (5)、待定系数法:数列有形如)1(1≠+=+k b ka a n n 的关系,可用待定系数法求得}{t a n +为等比数列,再求得n a . 【典例精析】 例1、根据数列的前4项,写出它的一个通项公式: (1)-1,3,-5,7 (2)2,6,12,20 (3)17 81,1027,59,23 例2、已知}{n a 的首项11=a ,)(2*1N n n a a n n ∈+=+, ,求}{n a 的通项公式. 例3、已知}{n a 中,n n a n n a 2 1+= +,且21=a ,求数列}{n a 的通项公式. 例4、已知下列各数列}{n a 的前n 项和n S 的公式为)(23S 2*∈-N n n n n =,求}{n a 的通项公式。

求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和 112342421 {},1(1,2,3,)3 (1),,{}.(2)n n n n n n a n S a a S n a a a a a a a +===+++L L 数列的前项为且,求的值及数列的通项公式求 1112 {},1(1,2,).:(1){ };(2)4n n n n n n n n a n S a a S n n S n S a +++== ==L 数列的前项和记为已知,证明数列是等比数列 *121 {}(1)()3 (1),; (2):{}. n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列 11211 {},,.2n n n n a a a a a n n +==++ 已知数列满足求 练习1 练习2 练习3 练习4

112{},,,.31n n n n n a a a a a n += =+ 已知数列满足求 1 11511{},,().632n n n n n a a a a a ++==+ 已知数列中,求 1 11{}:1,{}. 31n n n n n a a a a a a --==?+ 已知数列满足,求数列的通项公式 练习8 等比数列 {}n a 的前n 项和S n =2n -1,则 2 232221n a a a a ++++Λ 练习9 求和:5,55,555,5555,…,5(101)9n -,…; 练习5 练习6 练习7

练习10 求和: 111 1447(32)(31) n n +++ ??-?+ L 练习11 求和: 111 1 12123123n ++++= +++++++ L L 练习12 设{} n a 是等差数列, {} n b 是各项都为正数的等比数列,且11 1 a b == ,35 21 a b += , 5313 a b += (Ⅰ)求{} n a , {} n b 的通项公式;(Ⅱ)求数列 n n a b ?? ?? ??的前n项和n S.

数列通项公式的求法(较全)

常见数列通项公式的求法 公式: 1、 定义法 若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或 11-=n n q a a 中即可. 例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式. 练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何* n N ∈都有 1234127 ,0,,,,6954 n n n c a b c c c c =-====分别求出此三个数列的通项公式.

2、 累加法 形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,() 11n n a a f n --=-, () 122n n a a f n ---=-, ()322a a f -=, () 211a a f -=, 以上()1n -个等式累加得 ()()()()11+221n a a f n f n f f -=--+ ++ 1n a a ∴=+()()()()1+221f n f n f f --+ ++ (3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项. ①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和; ③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.

数列通项公式方法大全

数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是 以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法

数列练习题——求数列的通项公式(学生版)

数列练习题 一.填空题 1.在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于___________ 2.数列{}n a 的前n 项和为n S ,若1(1) n a n n =+,则5S 等于_____________________ 3.设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =____________ 4.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是_____________ 5.一个等比数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为_____________ 6.等比数列{}n a 的各项为正数,且5647313231018,log log log a a a a a a a +=++ +=则_ 7.已知a b c d ,,,成等比数列, 且曲线223y x x =-+的顶点是()b c ,,则ad 等于______ 8.已知等比数列}{n a 的前n 项和21n n S =-,则22212n a a a +++等于_______________ 9.设n S 是等差数列{}n a 的前n 项和,若5359a a =,则95 S S =______________ 10.在等比数列{}n a 中,公比q 是整数, 142318,12,a a a a +=+=则此数列的前8项和为_____ 11.111(1)(2)()242 n n ++++ ++= . 12.设4710310()22222()n f n n N +=+++++∈,则()f n = . 13.若数列{}n a 的前n 项和210(123)n S n n n =-=, ,,,则此数列的通项公式为 ;数列{}n na 中数值最小的项是第 项. 14.在等差数列}{n a 中,10a <,912S S =,该数列前_______项的和最小. 三、解答题 15.设{}n a 是一个公差为(0)d d ≠的等差数列,它的前10项和10110S =,且124,,a a a 成等比数列. (Ⅰ)证明:1a d =; (Ⅱ)求公差d 的值和数列{}n a 的通项公式.

(完整版)数列通项公式的习题

数列通项公式的练习 1、已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. (累加法) 2、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。(累加法) 3、设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2, 3,…),则它 的通项公式是n a =________.(累乘法) 4、n n n a a a a 求已知,2,211n ==+(累乘法) 5、已知数列{}n a 满足112,12n n n a a a a += =+,求数列{}n a 的通项公式。(倒数法) 6、n n n n a a a a a 求已知,1,1 311=+=+(倒数法) 7、已知数列}{n a 中, ,2121,211+==+n n a a a 求通项n a 。(构造法) 8、已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。(构造法) 9、n n n a a n a a 求已知,1,211 =+=+ 10、n n a a n a a 求已知,1,12211 n =-+=+ 11、已知数列{}n a 满足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式。 12、练习.数列{}n a 中,若2,821==a a ,且满足03412=+-++n n n a a a ,求n a . 13、n n n n a a a a 求已知,1,2211=+=+(用求指数幂的方法) 14、n n n n a a a a 求已知,1,33111=+=++(用求指数幂的方法)

求数列通项公式方法大全

求数列通项公式的常用方法 类型1、()n n S f a = 解法:利用???≥???????-=????????????????=-)2() 1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去 n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例 1 已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项公式? 1n n S a =-,∴ 111n n n n n a S S a a +++=-=-,∴ 112n n a a +=,又112a =,12n n a ??= ??? . 变式 1. 已知数列{}n a 中,3 1 1= a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,求n a 变式2. 已知数列}{n a 的前n 项和为n S ,且满足322-=+n a S n n )(*N n ∈. 求数列}{n a 的通项公式 变式3. 已知数列{}a n 的前n 项和S n b n n =+()1,其中{}b n 是首项为1,公差为2的等差数列. 求数列{}a n 的通项公式; 变式4. 数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N .求数列{}n a 的通项n a 变式5. 已知数列}{n a 的前n 项和为n S ,且满足322-=+n a S n n )(*N n ∈. 求数列}{n a 的通项公式; 变式6. 已知在正整数数列}{n a 中,前n 项和n S 满足2 )2(81+=n n a S (1)求证:}{n a 是等差数列 (2)若n b 3021 -=n a ,求}{n b 的前n 项 和的最小值

数列通项公式练习题word版本

数列通项公式练习题

求数列通项公式练习题 1、 已知数列}{n a 满足211=a ,n n a a n n ++=+211,求}{n a 的通项公式。 2、 已知数列}{n a 满足11=a ,)2(311 ≥+=--n a a n n n ,求}{n a 的通项公式。 3、 已知数列}{n a 满足1321+?+=+n n n a a ,31=a ,求}{n a 的通项公式。 4、 已知数列}{n a 满足32 1=a ,n n a n n a 11+=+,求}{n a 的通项公式。 5、 已知31=a ,n n a n n a 231 31+-=+,求}{n a 的通项公式。 6、 已知数列}{n a 满足11=a ,)2()1(321321≥-++++=-n a n a a a a n n Λ, 求 (1)该数列的递推关系式,(2求}{n a 的通项公式。

7、 已知数列}{n a 中11=a ,321+=+n n a a ,,(1)证明数列}3{+n a 是等比数列,(2)求}{n a 的通项公式。 8、 已知数列}{n a 满足n n n a a 2321?+=+,21=a ,(1)证明数列}2{n n a 是等差数列,(2)求}{n a 的通项公式。 9、 已知数列}{n a 中,81=a ,42=a 且满足n n n a a a -=++122,(1)求1+n a 与n a 的关系式,(2)求数列}{n a 的通项公式。 10、 已知数列}{n a 满足11=a ,32=a ,n n n a a a 2312-=++,(1) 求1+n a 与n a 的关系式,(2)求}{n a 的通项公式。 11、 已知数列}{n a 中,025312=+-++n n n a a a ,a a =1,b a =2,(1)求1+n a 与n a 的关系式,(2)求}{n a 的通项公式。

求数列通项公式常用的八种方法

求数列通项公式常用八种方法 一、 公式法: 已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解. 二、前n 项和法: 已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步) 三、n s 与n a 的关系式法: 已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步) 四、累加法: 当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 就可以用这种方法. 五、累乘法:它与累加法类似 ,当数列{}n a 中有()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 六、构造法: ㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面 形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的 方法:------+常数P

㈡、取倒数法:这种方法适用于1 1c --=+n n n Aa a Ba ()2,n n N * ≥∈(,,k m p 均为常数 0m ≠) ,两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子. ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a 分析:由()2113,2n n a a a n -==≥知0n a > ∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a a a --== 即1 lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列 故1 12lg 2lg3lg3n n n a --== ∴123n n a -= 七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。 八、形如21a n n n pa qa ++=+型,可化为211a ()()n n n n q xa p x a a p x ++++=+++ ,令x=q p x + ,求x 的值来解决。 除了以上八种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这8种方法是经常用的,将其总结到一块,以便于学生记忆和掌握。

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和 1 练习1数列佝}的前n项为S n,且a =1, a ni=-S n(n =1,2,3,) 3 (1) 求a2,a3, a4B值及数列{a n}的通项公式. (2) 求a2a4一-玄 n ■ 2 练习2 数列{a n}的前n项和记为S n,已知a^1, 3n1 6(n = 1,2,…)?证明: n (1) 数列{§L}是等比数列; n (2) S n 1 = 4a n 1 * 练习3 已知数列{a n}的前n项为S n,S n = —@n -1)(门,N ) 3 (1)求耳忌 ⑵求证:数列{a n}是等比数列.

1 1 已知数列{a n }满足 @ = — ,a n1 =a n ? - ,求a n . 2 n +n 练习5 已知数列 {an } 满足?岭…&an,求歸 5 1 1 n * 练习6已知数列?}中,印 ,a n 1 a n - H),求a n . 6 3 2 练习7已知数列{a n }满足:a n 色^ , a , =1,求数列{a n }的通项公式 3色」+1 { } 2 十2十2+…十2 等比数列 {a n } 的前n 项和S n = 2n - 1,则a1 a 2 a 3 a n 5 (10n -1) 练习 9 求和:5, 55, 555, 5555,…,9 练习4 练习

练习10 求和: + +… + 1 4 4 7 (3n - 2) (3n 1) ’ 1 1 1 1 练习11 求和: 1 2 12 3 12 3 n 练习12 设 {a n } 是等差数列, {b n } 是各项都为正数的等比数列,且 = b^=1 , fa 1 a 5 b 3 =13 (I)求 {a n } , { b n } 的通项公式;(H)求数列? 的前门项和S n . Sb = 21

常见数列通项公式的求法

常见数列通项公式的求法-中学数学论文 常见数列通项公式的求法 邹后林 (会昌中学,江西赣州342600) 摘要:数列的通项求法灵活多样,需要充分利用化归与转化思想。非等比、等差数列的通项公式的求法,题型繁杂,方法琐碎,笔者结合近几年的高考情况,对数列求通项公式的方法给以归纳总结。现举数例。 关键词:数列;通项公式;求法 中图分类号:G633文献标识码:A文章编号:1005-6351(2013)-12-0031-01 例1:已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1 (n∈N*),等差数列{bn}中,bn0 (n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列。 (1)求数列{an}、{bn}的通项公式; (2)求数列{an·bn}的前n项和Tn。 解:(1)∵a1=1,an+1=2Sn+1 (n∈N*), ∴an=2Sn-1+1 (n∈N*,n1), ∴an+1-an=2(Sn-Sn-1), 即an+1-an=2an,∴an+1=3an (n∈N*,n1)。 而a2=2a1+1=3,∴a2=3a1。 ∴数列{an}是以1为首项,3为公比的等比数列,∴an=3n-1 (n∈N*)。∴a1=1,a2=3,a3=9,

在等差数列{bn}中,∵b1+b2+b3=15, ∴b2=5。 又∵a1+b1、a2+b2、a3+b3成等比数列,设等差数列{bn}的公差为d,则有(a1+b1)(a3+b3)=(a2+b2)2。 ∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,∵bn0 (n∈N*),∴舍去d =-10,取d=2,∴b1=3,∴bn=2n+1 (n∈N*)。 (2)由(1)知Tn=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①∴3Tn=3×3+5×32+7×33+…+(2n-1)·3n-1+(2n+1)3n,② ∴①-②得-2Tn=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)3n=3+2(3+32+33+…+3n-1)-(2n+1)3n

数列通项公式求法大全(配练习及答案)

数列通项公式的几种求法 注:一道题中往往会同时用到几种方法求解,要学会灵活运用。 一、公式法 二、累加法 三、累乘法 四、构造法 五、倒数法 六、递推公式为n S 与n a 的关系式(或()n n S f a = (七)、对数变换法 (当通项公式中含幂指数时适用) (八)、迭代法 (九)、数学归纳法 已知数列的类型 一、公式法 *11(1)()n a a n d dn a d n N =+-=+-∈ 1 *11()n n n a a a q q n N q -== ?∈ 已知递推公式 二、累加法 )(1n f a a n n +=+ (1)()f n d = (2)()f n n = (3)()2n f n =

例 1 已知数列{} n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 2n a n = 例 2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。(3 1.n n a n =+-) 三、累乘法 n n a n f a )(1=+ (1)()f n d = (2)()f n n =, 1 n n +,2n 例3 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 ((1)1 2 32 5 !.n n n n a n --=???) 评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+?转化为 1 2(1)5n n n a n a +=+,进而求出 13211221 n n n n a a a a a a a a a ---?????L ,即得数列{}n a 的通项公式。 例4 (20XX 年全国I 第15题,原题是填空题) 已知数列{}n a 满足112311 23(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式。(! .2 n n a = ) 评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为 1 1(2)n n a n n a +=+≥,进而求出 132122 n n n n a a a a a a a ---????L ,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式。

求数列通项公式练习题(有答案)

数列的通项公式 112342421 {},1(1,2,3,)3 (1),,{}.(2)n n n n n n a n S a a S n a a a a a a a +===+++ 数列的前项为且,求的值及数列的通项公式求 1112 {},1(1,2,).:(1){ };(2)4n n n n n n n n a n S a a S n n S n S a +++== == 数列的前项和记为已知,证明数列是等比数列 *121 {}(1)()3 (1),; (2):{}. n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列 11211 {},,.2n n n n a a a a a n n +==++ 已知数列满足求 练习1 练习2 练习3 练习4

112{},,,.31n n n n n a a a a a n += =+ 已知数列满足求 1 11511{},,().632n n n n n a a a a a ++==+ 已知数列中,求 1 11{}:1,{}. 31n n n n n a a a a a a --==?+ 已知数列满足,求数列的通项公式 练习8 设 {}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=, 5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式; . 练习5 练习6 练习7

答案 练习1答案: 练习2 证明: (1) 注意到: a(n+1)=S(n+1)-S(n) 代入已知第二条式子得: S(n+1)-S(n)=S(n)*(n+2)/n nS(n+1)-nS(n)=S(n)*(n+2) nS(n+1)=S(n)*(2n+2) S(n+1)/(n+1)=S(n)/n*2 又S(1)/1=a(1)/1=1不等于0 所以{S(n)/n}是等比数列 (2) 由(1)知, {S(n)/n}是以1为首项,2为公比的等比数列。 所以S(n)/n=1*2^(n-1)=2^(n-1) 即S(n)=n*2^(n-1) (*) 代入a(n+1)=S(n)*(n+2)/n 得 a(n+1)=(n+2)*2^(n-1) (n 属于N) 即a(n)=(n+1)*2^(n-2) (n 属于N 且n>1) 又当n=1时上式也成立 所以a(n)=(n+1)*2^(n-2) (n 属于N) 由(*)式得: 234 2 1416,,3927 11 14()233n n a a a n a n -====?? =?≥?? 234[()1]73 n -

相关文档
最新文档