数列通项的求解方法归纳与练习题
常见递推数列通项的求解方法练习题

常见递推数列通项的求解方法练习题类型一专项练习题:1、已知11a =,1n n a a n -=+(2≥n ),求n a 。
(12n n n a +=)2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。
(31)2n n n a +=3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。
21n a n =+4、已知}{n a 中,n n n a a a 2,311+==+,求n a 。
21n n a =+5、已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式. 13122n n a -⎛⎫=- ⎪⎝⎭6、 已知数列{}n a 满足11,a =()1132,n n n a a n --=+≥求通项公式n a ?(312n n a -=)7、若数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,则求这个数列的通项公式 1123n n a +=- 8、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。
31n n a n =+-9、已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
312n a n =- 10、数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列.(I )求c 的值; c=2(II )求{}n a 的通项公式. 22n a n n =-+11、设平面内有n 条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用()f n 表示这n 条直线交点的个数,则(4)f = 5 ;当4n >时,()f n = 222n n -+ (用n 表示).类型二专项练习题:1、已知11a =,111n n n a a n --=+(2n ≥),求n a 。
数列通项公式与求和讲解与习题(含答案)

数列通项与求和一.求数列通项公式1.定义法(①等差数列通项公式;②等比数列通项公式。
)例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.2项和为S ,满足3如,1对所有的4。
例.521a a ⋅⋅⋅(例.已知数列{}n a 满足31=a ,n n a n a 11+=+,求n a 。
答案:23n a n=6.已知递推关系求n a ,用构造法(构造等差.等比数列)。
(1)形如()n f pa a n n +=+1只需构造数列{}n b ,消去()n f 带来的差异.其中()n f 有多种不同形式①()n f 为常数,即递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
解法:转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。
例.已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 答案:123n n a +=-②()n f 为一次多项式,即递推公式为s rn pa a n n ++=+1 例③(n f (2)n rq ,其中p q1+ 例(3型(2)的方法求解。
例.已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。
答案:1731(443n n a -=--7.形如11n n n a a ka b--=+或11n n n n a ba ka a ---=的递推数列都可以用倒数法求通项。
例.1,13111=+⋅=--a a a a n n n答案:132n a n =- 8.利用平方法、开平方法构造等差数列例1.数列{}n a的各项均为正数,且满足11n n a a +=+,12a =,求n a 。
答案:2(1)n a n = 例2.已知()f x x =<,求:(1)9.n a +设n b =例.1.已知2.已知13a =且132n n n a a +=+,求n a 答案:1532n n n a -=⋅- 3.已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是n n a n n S )12(-=,试求通项公式n a 。
(完整版)求数列的通项公式方法总结

题型四:求数列的通项公式一.公式法:当题中已知数列是等差数列或等比数列,在求其通项公式时我们就可以直接利用等差或等比数列的公式来求通项,只需求得首项及公差公比。
二.当题中告诉了数列任何前一项和后一项的递推关系即:n a 和a n-1的关系时我们可以根据具体情况采用下列方法1、叠加法:一般地,对于型如)(1n f a a n n +=+类的通项公式,且)()2()1(n f f f +++Λ的和比较好求,我们可以采用此方法来求n a 。
即:11221()()()n n n n n a a a a a a a ---=-+-++-L 1a +(2)n ≥;【例1】已知数列{}n a 满足11211,2n n a a a n n +==++,求数列{}n a 的通项公式。
解:(1)由题知:121111(1)1n n a a n n n n n n +-===-+++ 112211()())n n n n n a a a a a +(a -a a ---∴=-+-++……1111111()()()121122n n n n =-+-++-+---…… 312n=- 2、叠乘法:一般地对于形如“已知a 1,且n1n a a +=f (n )(f (n )为可求积的数列)”的形式可通过叠乘法求数列的通项公式。
即:121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅L (2)n ≥; 【例2】在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。
解:由(n+1)·1+n a =n ·n a 得11+=+n n a a n n , 1a a n =12a a ·23a a ·34a a …1-n n a a =n n n 11433221=-⋅⋅Λ 所以n a n 1= 3、构造法:当数列前一项和后一项即n a 和a n-1的递推关系较为复杂时,我们往往对原数列的递推关系进行变形,重新构造数列,使其变为我们学过的熟悉的数列(等比数列或等差数列)。
数列史上最全求通项公式10种方法并配大量习题及答案

数列通项公式的求法10种求数列的通项公式方法非常众多,而且这个问题基本上都是高考试卷中第一问,也就是说这一问题做不出来或没有思路,那么即使后面的问题比如求前N 项和的问题,会做也是无济于事的。
我们逐个讲解一下这些重要的方法。
递推公式法:递推公式法是指利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,这样的问题有两种类型,(1)题目中给出的是()n S f n =的形式,也就是n S 的表达式是一个关于n 的函数,要将n 改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。
这种情况是比较简单的,但是也有值得我们注意的地方,那就是求出的通项公式一定要检验是否需要写成分段的形式,即验证一下1a 和1S 是否相等,若不相等,则需要写成分段的形式,只要题中涉及到角标n 不能从n=1开始取值的,都需要检验。
(2)第二种情况是非常常见的,即11(,)n n n a a a -+与n S (1n S -,1n S +)同时存在于一个等式中,我们的思路是将n 改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。
累加法(迭、叠加法):累加法是在教材上推导等差数列通项公式和前n 项和公式的时候使用的一种方法,其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的,我们可以总结为,只要适合:1()n n a a f n -=+的形式,都是可以使用累加法的,基本的书写步骤是:21324312,(2)3,(3)4,(4)......,()n n n a a f n a a f n a a f n n a a f n -=-==-==-==-=将上述展开后的式子左边累加后总是得到1(2)(3)(4)......()n a a f f f f n -=++++所以重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。
数列通项公式和前n项和求解方法(有针对训练)

专题一:数列通项公式的求法 一.观察法(关键是找出各项与项数n 的关系.)例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) ,52,21,32,1一、 公式法公式法1:特殊数列公式法2: 知n s 利用公式 ⎩⎨⎧≥-==-2,1,11n S S n s a n n n例2:已知数列}{n a 的前n 项和n S 的公式12-+=n n S n ,求}{n a 的通项公式.例3:已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *). (1)求a 1,a 2;(2)求证:数列{a n }是等比数列.三、 累加法 【型如)(1n f a a n n +=+的递推关系】简析:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ② 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n 的二次函数,累加后可分组求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和各式相加得。
例: 若在数列{}n a 中,31=a ,n n n a a 21+=+,求通项n a例4:已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.四、累乘法 【 形如1+n a =f (n)·n a 型】(1)当f(n)为常数,即:q a a nn =+1(其中q 是不为0的常数),此时数列为等比数列,n a =11-⋅n q a . (2)当f(n)为n 的函数时,用累乘法.例5:在数列{n a }中,1a =1, n n a n a n ⋅=⋅++1)1( ,求n a 的表达式.五、构造特殊数列法 【形如0(,1≠+=+c d ca a n n ,其中a a =1)型】(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法如下:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得)0(,1≠-=c c d λ, 所以:)1(11-+=-+-c d a c c d a n n ,即⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列. 例6:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a .六、迭代法【一般是递推关系含有的项数较多】例7:(1)数列{n a }满足01=a ,且)1(2121-=++++-n a a a a n n ,求数列{a n }的通项公式.解析:由题得 )1(2121-=++++-n a a a a n n ①2≥n 时, )2(2121-=+++-n a a a n ②由①-②得⎩⎨⎧≥==2,21,0n n a n .(2)数列{n a }满足11=a ,且2121n a a a a n n =⋅⋅- ,求数列{n a }的通项公式。
数列求通项公式常用方法与典型题目(附答案)

数列求通项公式常用方法与典型题目(附答案)(一)题型一累加法1.数列{}n a 中,11a =,()12,nn n a a n n n N --=≥∈,则na=___________.2.已知数列{}n a 满足112a =,121n n a a n n+=++,则n a =__________.3.如果数列{}n a 满足:()1111,22n n n a a a n --=-=≥,则n a =()A .121n +-B .1(1)21n n --⋅+C .21n -D .12n -4.在数列{}n a 中,10a =,11ln 1n n a a n +⎛⎫=++ ⎪⎝⎭,则{}n a 的通项公式为().A .ln n a n =B .()()1ln 1n a n n =-+C .ln n a n n=D .ln 2n a n n =+-5.设数列{}n a 中,112,1+==++n n a a a n ,则通项n a =___________.6.已知数列{}n a 满足10a =,12n n a a n +=+,则2018a =()A .20182019⨯B .20172018⨯C .20162017⨯D .20182018⨯(二)题型二累乘法1.已知数列{}n a 满足11a =,()12311111231n n a a a a a n n -=+++⋅⋅⋅+>-.数列{}n a 的通项公式是______.2.已知11a =,()()1n n n a n a a n N ++=-∈,则数列{}n a 的通项公式是()A .21n -B .11n n n -+⎛⎫ ⎪⎝⎭C .2n D .n3.已知12a =,12nn n a a +=,则数列{}n a 的通项公式n a 等于()A .2122n n -+B .2122n n ++C .2222n n -+D .2222n n --4.在数列{}n a 中,11a =,()32122223n n a a a a a n n*++++=∈N ,则n a =______.(三)题型三公式法1.数列{a n }的前n 项和为S n ,若()11,1,31n n a a S n +=≥=则n a =____________.2.数列{}n a 满足,123231111212222n n a a a a n ++++=+ ,写出数列{}n a 的通项公式__________.3.已知数列{a n }的前n 项和S n =n 2+n ,则a n =_____.4.若数列的前n 项和2133n n S a =+,则的通项公式是n a =________5.数列{}n a 的前n 项和23nn S =+,则其通项公式n a =________.6.数列{}n a 的前n 项和210n S n n =-,则该数列的通项公式为__________.7.若数列{a n }的前n 项和为S n =23a n +13,则数列{a n }的通项公式是a n =______.8.已知n S 为数列{}n a 的前n 项和,若111,23n n a a S +==+,则数列{}n a 的通项公式为___________.9.已知数列{}n a 满足23123222241nnn a a a a ++++=- ,则{}n a 的通项公式___________________.10.数列{a n }满足()21*1232222n n na a a a n N -+++⋯+=∈,则a 1a 2a 3…a 10=()A .551(2B .1011()2-C .911()2-D .601()211.如果数列{}n a 的前n 项和为332n n S a =-,则这个数列的通项公式是()A .()221n a n n =++B .23nn a =⋅C .32nn a =⋅D .31n a n =+(四)题型四构造法1.数列{}n a 中,若11a =,()1231n n a a n +=+≥,则该数列的通项n a =()A .123n +-B .23n -C .23n +D .123n --2.已知数列{}n a 中,112,21n n a a a +==+则n a =___________.3.已知数列{}n a 满足11a =132n n a a +=+,则{}n a 的通项公式为__________________.(五)题型五倒数法1.在数列{n a }中,已知12a =,1122n n n a a a --=+,(2)n ≥,则n a 等于()A .21n +B .2n C .3nD .31n +2.若数列{}n a 满足11n n n a a a +=+,且123a =,则10a =___________.3.设数列{}n a 的前n 项和n S 满足11n n n n S S S S ++=⋅-()n N *∈,且11a=,则n a =_____.4.已知数列{}n a 满足12,a =11n n n n a a a a ++-=,那么31a 等于()A .130-B .261-C .358-D .259-5.已知数列{}n a 满足递推关系111,12n n n a a a a +==+,则2017a =()A .12016B .12018C .12017D .120196.若数列{}n a 满足1121n n n a a a --=+(2n ≥,*n N ∈),且112a =,则n a =()A .12nB .2n C .1122n +-D .222n +7.已知数列{}n a 满足11a =,()*11nn n a a n N a +=∈+,则2020a =()A .12018B .12019C .12020D .12021(六)题型六周期数列1.在数列{}n a 中,112a =,111n n a a -=-(2n ≥,n ∈+N ),则2020a =()A .12B .1C .1-D .22.已知数列{}n a 中,13=4a ,111n n a a -=-(,2n N n +∈≥),那么2020a 等于()A .13-B .34C .2D .43.已知数列{}n a 中,12213,6,n n n a a a a a ++===-,则2016a =()A .6B .6-C .3D .3-参考解析(一)题型一累加法1.()12n n +【解析】()112,1,nn n a a n n n Na -=≥=-∈ ,()()()112211n n n n n a a a a a a a a ---∴=-+-++-+ ()()()()112122n n n n n n +=+-+-++=≥ ,验证1n =时成立.()12n n n a +∴=.故答案为:()12n n +2.31,1,2n n N n*-≥∈【解析】因为121n n a a n n +=++,所以121111n n a a n n n n +-==-++,则当2,n n N *≥∈时,213211121123...111n n a a a a a a n n -⎧-=-⎪⎪⎪-=-⎪⎨⎪⎪⎪-=-⎪-⎩,将1n -个式子相加可得11111111...12231n a a n n n -=-+-++-=--,因为112a =,则1131122n a n n=-+=-,当1n =时,1311212a =-=符合题意,所以31,1,2n a n n N n *=-≥∈.故答案为:31,1,2n n N n*-≥∈.3.C 【解析】由题意可得,112n n n a a ---=,212a a ∴-=,2322a a -=,…112n n n a a ---=,以上1n -个式子相加可得,21122 (2)n n a a --=+++()12122212n n --==--,21n n a ∴=-,故选B .4.A 【解析】由已知得()11ln ln 1ln n n n a a n n n ++⎛⎫-==+- ⎪⎝⎭,所以()1ln ln 1n n a a n n --=--()()12ln 1ln 2n n a a n n ---=---32ln 3ln 2a a -=-21ln 2ln1a a -=-将上述1n -个式子相加,整理的1ln ln1ln n a a n n -=-=又因为10a =,所以ln n a n =.故选A .5.()112++n n 【解析】∵112,1+==++n n a a a n ∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,⋯,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n ⎡⎤=-+-+-+++++⎣⎦ ()()()()11111111222n n n nn n n n ⎡⎤--+-+⎣⎦=++=++=+故应填()112++n n ;6.B 【解析】 数列{}n a 满足10a =,12n n a a n +=+,∴12n n a a n +-=,∴()121n n a a n --=-,()1222n n a a n ---=-,()2323n n a a n ---=-,……212a a -=,累加得:()()()112123 (1212)n n n a a n n n --=++++-=⋅=-⎡⎤⎣⎦,又 10a =,∴()1n a n n =-,∴201820182017a =⋅.故选B .(二)题型二累乘法1.1,1,22n n a n n =⎧⎪=⎨≥⎪⎩【解析】1231111(1)231n n a a a a a n n -=++++>- ,11a =当2n =时,211a a ==当2n >时,112311111231n n n a a a a a a n n+-∴=+++++- ,两式相减得:11n n n a a a n +-=,即11n n n a a n++=,∴11n n a n a n++=,11n n a n a n -=-,1212n n a n a n ---=-,⋯3232a a =,累乘得:22n a n a =,所以2n na =,()2n >1,1,22n n a n n =⎧⎪∴=⎨≥⎪⎩,故答案为:1,1,22n n a nn =⎧⎪=⎨≥⎪⎩2.D 【解析】由()()1n n n a n a a n N ++=-∈得:()()11n n n a na n N +++=∈,即()11n n a n n N a n+++=∈,则11n n a n a n -=-,1212n n a n a n ---=-,2323n n a n a n ---=-,……..,2121a a =,由累乘法可得1na n a =,又因为11a =,所以n a n =.故选:D .3.C 【解析】1122nn n n n n a a a a ++=∴= 当n ≥2时,2212122112122222nn n n n n n n n a a a a a a a a -+-----=⋅⋅⋅⋅=⋅⋅⋅⋅= ,经检验,1a 也符合上述通项公式.本题选择C 选项.4.21n n +【解析】由题意得:当2n ≥时,()31211222231n n a a a a a n --++++=- ,所以12n n n a a a n-=-,即()2211n n na n a --=,也即是11+1n n n n n a a n --=,所以121+1221211n n n n n a n n n a a a n ---===-=-= ,所以21n n a n =+,故答案为:21nn +.(三)题型三公式法1.21,134,2n n n a n -=⎧=⎨⋅≥⎩.【解析】()13,1n n a S n N n ++=∈∴= 时,23,2a n =≥时,13n n a S -=,可得13n n n a a a +-=,即14,n n a a +=∴数列{}n a 从第二项起为等比数列,2n ≥时,=n a 234n -⋅,故答案为21,134,2n n n a n -=⎧=⎨⋅≥⎩.2.16,12,2n n n a n +=⎧=⎨≥⎩【解析】因为123231111212222n n a a a a n ++++=+ ,所以()12312311111121122222n n n n a a a a a n +++++++=++ ,两式相减得11122n n a ++=,即12,2n n a n +=≥,又1132a =,所以16a =,因此16,12,2n n n a n +=⎧=⎨≥⎩3.2n 【解析】由题,当1n =时,21112a =+=,当2n ≥时,()()1112nn n a S S n n n n n -=-=+--=.当1n =时也满足.故2n a n =.故答案为:2n4.()12n --【解析】当n =1时,1112133a S a ==+,解得11a =,当n ≥2时,1n n n a S S -=-121213333n n a a -⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭12233n n a a -=+,整理可得12313n n a a -=-,即12n n a a -=-,故数列{}n a 以1为首项,2-为公比的等比数列,所以()12n n a -=-,故答案为:()12n --.5.15,12,2n n n -=⎧⎨≥⎩【解析】当1n =时,11235a =S =+=;当2n ≥时,11123232n n n n n n a S S ---=-=+--=;故15,12,2n n n a n -=⎧=⎨≥⎩故答案为:15,12,2n n n -=⎧⎨≥⎩6.211n a n =-【解析】221110,11019,n S n n a S =-∴==-⨯=- 当2n ≥时()()221101101211,n n n a S S n n n n n -⎡⎤=-=-----=-⎣⎦当1n =时也适合,故211n a n =-.即答案为211n a n =-.7.1(2)n n a -=-;【解析】当n=1时,a 1=S 1=23a 1+13,解得a 1=1,当n≥2时,a n =S n -S n-1=(2133n a +)-(12133n a -+)=23n a -123n a -整理可得13a n =−23a n−1,即1n n a a -=-2,故数列{a n }是以1为首项,-2为公比的等比数列,故a n =1×(-2)n-1=(-2)n-1故答案为(-2)n-1.8.21,153,2n n n a n -=⎧=⎨⋅≥⎩【解析】n S Q 为数列{}n a 的前n 项和,111,23n n a a S +==+——①2n ≥时,123n n a S -=+——②①-②,得:12n n n a a a +=-,13n na a +∴=13n na a +∴=,21235a a =+= ,∴数列{}n a 的通项公式为21,153,2n n n a n -=⎧=⎨⋅≥⎩.故答案为:21,153,2n n n a n -=⎧=⎨⋅≥⎩.9.a n =3•2n ﹣2【解析】∵数列{a n }满足2a 1+22a 2+23a 3+…+2n a n =4n ﹣1,∴当n ≥2时,2n a n =(4n ﹣1)﹣(4n ﹣1﹣1),化为a n =3•2n ﹣2.当n =1时,2a 1=4﹣1,解得132a =,上式也成立.∴a n =3•2n ﹣2.故答案为a n =3•2n ﹣2.10.A 【解析】n =1时,a 1=12,∵211232222n n n a a a a -+++⋯+=,∴2n ≥时,22123112222n n n a a a a ---+++⋯+=,两式相减可得2n -1a n =12,∴12n n a =,n =1时,也满足∴12310a a a a = 55231012310111111222222++++⎛⎫⨯⨯⨯⨯== ⎪⎝⎭,故选A11.B 【解析】由332n n S a =-,当2n ≥时,1113333332222n n n n n n n a S S a a a a ---⎛⎫⎛⎫=-=---=- ⎪ ⎪⎝⎭⎝⎭,所以13nn a a -=,当1n =时,111332S a a ==-,此时16a =,所以,数列{}n a 是以6为首项,3为公比的等比数列,即16323n n n a -=⋅=⋅.故选:B .(四)题型四构造法1.A 【解析】因为()1231n n a a n +=+≥,所以132(3)n n a a ++=+,即数列{3}n a +是以4为首项,2为公比的等比数列,所以1342n n a -+=⋅,故1142323n n n a -+=⋅-=-,故选:A2.1321n -⋅-【解析】因为121n n a a +=+,所以()112221n n n a a a ++=+=+且1130a +=≠,所以1121n n a a ++=+,所以{}1n a +是以3为首项,2为公比的等比数列,所以1132n n a -+=⋅,所以1321n n a -=⋅-,故答案为:1321n -⋅-.3.1231n -⨯-【解析】因为132n n a a +=+,11a =,所以()113331n n n a a a ++=+=+,即1131n n a a ++=+所以{}1n a +以2为首项,3为公比的等比数列,所以1123n n a -+=⨯所以1231n n a -=⨯-故答案为:1231n -⨯-(五)题型五倒数法1.B 【解析】将等式1122n n n a a a --=+两边取倒数得到11112n n a a -=+,11111=,2n n n a a a -⎧⎫-⎨⎬⎩⎭是公差为12的等差数列,11a =12,根据等差数列的通项公式的求法得到()1111222n nn a =+-⨯=,故n a =2n.故答案为:B .2.219【解析】11n n n a a a +=+ 11111n n n n a a a a ++∴==+,即1111n na a +-=∴数列1n a ⎧⎫⎨⎬⎩⎭是以1132a =为首项,1为公差的等差数列()131211222n n n n a -∴=+-=-=221n a n ∴=-10219a ∴=故答案为:2193.1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩【解析】由11n n n n S S S S ++=⋅-,得1111n nS S +-=()n N *∈1n S ⎧⎫∴⎨⎬⎩⎭是以11111S a ==为首相,1为公差的等差数列,11(1)1nn n S ∴=+-⨯=,1n S n ∴=,当2n ≥时,11111(1)n n n a S S n n n n -=-=-=---,1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩故答案为:1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩4.D 【解析】11n n n n a a a a ++-= ,1111n n a a +∴-=,即1111n n a a +-=-,又12,a =所以数列1n a ⎧⎫⎨⎬⎩⎭是首项为12,公差为1-的等差数列,132n n a ∴=-+,3113593122a ∴=-+=-,故31259a =-,故选:D .5.B 【解析】由11n n n a a a +=+,所以11111n n n n a a a a ++==+则1111n n a a +-=,又112a =,所以112a =所以数列1n a ⎧⎫⎨⎬⎩⎭是以2为首项,1为公比的等差数列所以11n n a =+,则11n a n =+所以201712018a =故选:B6.A 【解析】当2n ≥且n *∈N ,在等式1121n n n a a a --=+两边取倒数得11121112n n n n a a a a ---+==+,1112n n a a -∴-=,且112a =,所以,数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,且首项为2,公差为2,因此,()12212n n n a =+-=.12n a n∴=故选:A .7.C 【解析】11n n n a a a +=+ ,∴两边同时取倒数得11111n n n n a a a a ++==+,即1111n n a a +-=,即数列1n a ⎧⎫⎨⎬⎩⎭是公差1d =的等差数列,首项为111a =.则11(1)1n n n a =+-⨯=,得1n a n =,则202012020a =,故选:C (六)题型六周期数列1.A 【解析】2111121a a =-=-=-,3211112a a =-=+=,431111122a a =-=-=,可得数列{}n a 是以3为周期的周期数列,202036731112a a a ⨯+∴===.故选:A .2.B 【解析】因为13=4a ,111n n a a -=-,所以211113a a =-=-,32114a a =-=,431314a a =-=,…所以数列{}n a 是以3为周期的数列,所以202067331134a a a ⨯+===,故选:B 3.B 【解析】因为21n n n a a a ++=-,①则321n n n a a a +++=-,②①+②有:3n n a a +=-,即63n n a a ++=-,则6n n a a +=,即数列{}n a 的周期为6,又123,6a a ==,得3453,3,6a a a ==-=-,63a =-,则2016a =633663a a ⨯==-,故选:D .。
【智博教育原创专题】高中数学数列通项求解方法大全(题型超全)

高中数学数列通项求解方法大全1.观察归纳法【例1】根据数列的前几项写出下列各数列的一个通项公式: ⑴14916,,,,251017 ;⑵11111,,,,,371531-- ;⑶315171,,,,,,23456【解析】⑴221n n a n =+;⑵1(1)21n n n a +-=+;⑶11(1)2nn a n +-=+2.二阶等差或等比数列求法【例2】根据数列的前几项写出下列各数列的一个通项公式: ⑴1,3,7,15,31 ;⑵3,7,13,21,31, ;⑶1,2,4,7,11,16,【解析】⑴21nn a =-;⑵21n a n n =++;⑶222n n n a -+=3.辅助数列法【题型1】1(,)n n a ka b p q R +=+∈⑴1k =时,{}1n n n a a b a +-=⇒是等差数列,1()n a bn a b =+-;⑵1k ≠时,(构造法):设1()n n a x k a x ++=+,即(1)x k b -=得1bx k =-,数列{}n a x +是以1a x +为首项、k 为公比的等比数列,则1111n n b b a a k k k -⎛⎫+=+ ⎪--⎝⎭,即1111n n b b a a k k k -⎛⎫=++ ⎪--⎝⎭。
【例3】已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。
【解析】设12()n n a x a x ++=+,即3x =,∴数列{}3n a +是以134a +=为首项、2为公比的等比数列,则113422n n n a -++=⋅=,即123n n a +=-。
【题型2】1()n n a ka f n +=+【类型1】1k =时,1()n n a a f n +-=,若()f n 可求和,则可用累加消项的方法。
【思路】(叠加法):1(1)n n a a f n --=-,依次类推有:1223(2),(3),n n n n a a f n a a f n -----=--=-21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑。
(完整版)数列求通项专题(总复习专题-方法全面-有答案)全

求数列通项专题题型一:定义法(也叫公式法)直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目例:等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项。
解:设数列}a {n 公差为)0d (d > ∵931a ,a ,a 成等比数列,∴9123a a a =,即)d 8a (a )d 2a (1121+=+,得d a d 12= ∵0d ≠,∴d a 1=………①∵255S a = ∴211)d 4a (d 245a 5+=⋅⨯+…………②由①②得:53a 1=,53d = ∴n 5353)1n (53a n =⨯-+=题型二:已知的关系求通项公式(或)n n S a 与()n n S f a =这种类型一般利用与消去⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n )()(11---=-=n n n n n a f a f S S a n S )2(≥n 或与消去进行求解。
)(1--=n n n S S f S )2(≥n n a 例:(1)已知数列的前项和,求数列的通项公式}{n a n 22+=n S n }{n a 解:当时,;1=n 311==S a 当时,; 2≥n 122)1(2221-=---+=-=-n n n S S a n n n ⎩⎨⎧≥-==∴)2(12)1(3n n n a n (2)已知数列的前项和满足,求数列的通项公式}{n a n n S 1)1(log 2+=+n S n }{n a 解:由,得,1)1(log 2+=+n S n 121-=+n n S ⎩⎨⎧≥==∴)2(2)1(3n n a nn 练习:1、已知数列{}的前n 项和为, 求.n a 32nn S =-n a 2、数列的前n 项和为,,,求的通项公式{}n a n S 11=a )(1121≥+=+n S a n n {}n a题型三:形如用累加法(也叫逐差求和法):)(1n f a a n n +=+(1)若f(n)为常数,即:,此时数列为等差数列,则=.d a a n n =-+1n a d n a )1(1-+(2)若f(n)为n 的函数时,用累加法. 方法如下: 由 得:)(1n f a a n n =-+时,,2≥n )1(1-=--n f a a n n ,)2(21-=---n f a a n n )2(23f a a =-以上各式相加得)1(12f a a =- 即:.)1()2()2()1(1f f n f n f a a n +++-+-=- ∑-=+=111)(n k n k f a a 为了书写方便,也可用横式来写:时,,2≥n )1(1-=--n f a a n n ∴112211)()()(a a a a a a a a n n n n n +-++-+-=--- =.1)1()2()2()1(a f f n f n f ++++-+- 例1:已知数列{a n }中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a .解:由已知得11(1)n n a a n n --=+,121(1)n n a a n n ---=-,……,32134a a -=⨯,21123a a -=⨯,以上式子累加,利用111(1)1n n n n =-++得 n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+=1121n -+, 3121n a n ∴=-+例2:已知数列满足,求数列的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列的通项求解方法归纳总结与练习題
【知识要点】
1、通项公式:数列的通项公式是数列的一个重要内容之一,它把数列各项的性质集于一身.常用的求通项的方法有观察法、公式法、叠加法、叠乘法、前n 项和作差法、辅助数列法
2、常见方法和基本结构形式:
(1)、观察法:根据给定数列的几项观察规律,直接猜测结论;
(2)、叠加法:数列的基本形式为))((*1N n n f a a n n ∈=-+的解析式,而)()2()1(n f f f +++Λ的和可求出.
(3)、叠乘法:数列的基本形式为))((*1N n n f a a n
n ∈=+的解析关系,而)()2()1(n f f f ⋅⋅⋅Λ的积可求出. (4)、前n 项和作差法:利用⎩⎨⎧≥-==-)2()1(11n S S n S a n n n ,
,,能合则合.
(5)、待定系数法:数列有形如)1(1≠+=+k b ka a n n 的关系,可用待定系数法求得}{t a n +为等比数列,再求得n a .
【典例精析】
例1、根据数列的前4项,写出它的一个通项公式:
(1)-1,3,-5,7
(2)2,6,12,20 (3)17
81,1027,59,23
例2、已知}{n a 的首项11=a ,)(2*1N n n a a n n ∈+=+,
,求}{n a 的通项公式.
例3、已知}{n a 中,n n a n n a 2
1+=
+,且21=a ,求数列}{n a 的通项公式.
例4、已知下列各数列}{n a 的前n 项和n S 的公式为)(23S 2*∈-N n n n n =,求}{n a 的通项公式。
例5、已知数}{n a 的递推关系为231+=+n n a a ,且11=a ,求通项n a .
例6、设数列}{n a 满足21=a ,)N (3*1∈+=+n a a a n n n ,求n a
【巩固提高】
一、填空题:
1. 数列
的通项n a = .
2.数列1111,,,12233445
--⨯⨯⨯⨯L 的通项n a = . 3.数列222213571,1,1,12468
+-+-L 的通项n a = 4. 已知数列{}n a 的前n 项和21()2n S n n =+,则n a = .
5. 已知数列{}n a 的前n 项和32n n S =+,则n a = .
6. 已知数列{}n a 的首项11a =,且13(2)n n a a n -=+≥,则n a = .
7.已知数列{}n a 的首项11a =,且123(2)n n a a n -=+≥,则n a = .
8. 已知数列{}n a 的11a =,22a =且212n n n a a a ++=-,则n a = .
二、解答题:
1、已知等差数列{}n a 中,,51,28610==S a 求数列{}n a 的通项公式。
2、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式
3、数列{a n }的前n 项和 S n =3·2n -3,求数列的通项公式
4、已知数列{a n }的前n 项和S n =10n +1,求通项公式a n
5、数列{}n a 中,111,n n a a a n +==+,求{}n a 的通项公式 .
6、数列{}n a 中,1111,3n n n a a a -+==+,求{}n a 的通项公式 .
7、已知数列{}n a 满足11=a ,1111=-+n n a a ,求n a .
8、数列{}n a 中,1121,2n n n a a a a +==+,求{}n a 的通项公式 .
9、已知数列{}n a 满足112356n n n a a a +=+⨯=,,求数列{}n a 的通项公式。