苏教版九年级下册数学[相似三角形的性质--知识点整理及重点题型梳理](提高)
苏教版九年级下册数学[用相似三角形解决问题—知识点整理及重点题型梳理](提高)
](https://img.taocdn.com/s3/m/1a14fee5b04e852458fb770bf78a6529647d35a9.png)
苏教版九年级下册数学[用相似三角形解决问题—知识点整理及重点题型梳理](提高)本文介绍了相似三角形解决问题的知识点,包括平行投影和中心投影。
要点一是平行投影,介绍了物体在平行光线下产生的影子,以及物高与影长的关系。
要点二是中心投影,介绍了点光源下物体产生的影子,以及离点光源远近对影子长度的影响。
通过这些知识点,可以解决一些实际问题。
需要注意的是,在利用影长计算物高时,要注意测量两物体在同一时刻的影长。
在中心投影下,一个重要的结论是,点光源、物体边缘上的点以及它们在影子上的对应点在同一条直线上。
可以根据其中两个点来求出第三个点的位置。
要点诠释:物体的中心投影受到光源和物体位置及方向的影响。
改变光源或物体的方向会导致影子方向的变化。
但不论如何改变,光源、物体和它们的影子始终分离在物体的两侧。
要点三、中心投影与平行投影的区别与联系1.联系:中心投影和平行投影都是研究物体投影的一种方法。
平行投影是在平行光线下形成的投影,例如太阳光线和月光。
中心投影是从一点发出的光线所形成的投影,例如灯泡和手电筒的光线。
在平行投影中,改变物体的方向和位置会导致投影方向和位置的变化。
在中心投影中,同一灯光下,改变物体的位置和方向也会导致投影的变化。
固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也会发生变化。
2.区别:太阳光线是平行的,因此太阳光下的影子长度与物体高度成比例。
灯光是发散的,灯光下的影子与物体高度不一定成比例。
在同一时刻,太阳光下的影子方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向。
要点诠释:在解决有关投影的问题时,必须先判断是平行投影还是中心投影,然后根据它们的特点进一步解决问题。
要点四、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决。
要点诠释:测量旗杆高度的方法包括平面镜测量法、影子测量法、手臂测量法和标杆测量法。
苏教版九年级相似知识点

苏教版九年级相似知识点相似是数学中一个重要的概念,也是学习几何的基础之一。
在几何中,相似指的是两个图形在形状上相似,但是大小不一样。
通过相似性,我们可以利用已知的信息来推导出未知的信息,解决实际问题。
本文将介绍苏教版九年级中与相似相关的知识点。
1. 相似三角形相似三角形是指两个三角形在形状上相似,对应的角度相等,对应的边成比例。
在求解相似三角形的问题时,我们可以利用一些特定的相似性质,如AAA判定相似、SAS判定相似和SSS判定相似等。
这些性质可以帮助我们简化计算过程,得出准确的结果。
2. 相似比在相似三角形中,对应的边成比例。
我们可以利用相似比来表示这种比例关系。
相似比是指已知相似三角形的两个对应边的比值。
例如,如果两个三角形ABC和DEF相似,与角A对应的边和与角D对应的边的比值为a:b,与角B对应的边和与角E对应的边的比值为c:d,那么相似比为a:b=c:d。
通过相似比,我们可以计算出未知边的长度,解决各种实际问题。
3. 相似多边形除了三角形,多边形也可以相似。
相似多边形是指两个多边形在形状上相似,对应的角度相等,对应的边成比例。
在求解相似多边形的问题时,我们可以利用相似比来简化计算过程,得出准确的结果。
4. 比例尺比例尺是指图形在实际尺寸与其缩小或放大后的尺寸之间的比例关系。
在实际问题中,我们经常需要根据图纸上的比例尺来计算实际尺寸,或者根据实际尺寸来绘制图纸。
5. 三角形的应用相似三角形在实际问题中有广泛的应用。
例如,我们可以利用相似三角形的性质来计算高楼大厦的高度、电线杆的高度、塔的高度等。
通过相似三角形的计算,我们可以在不进行实际测量的情况下,得出准确的结果。
6. 相似几何体除了平面图形,立体图形也可以相似。
相似几何体是指两个立体图形在形状上相似,对应的面相似,对应的棱和对应的面的比例成比。
通过相似几何体的性质,我们可以计算出未知的长度、面积和体积,解决实际问题。
总结起来,苏教版九年级中的相似知识点包括相似三角形、相似比、相似多边形、比例尺、三角形的应用和相似几何体等。
初三《相似三角形》知识点总结

相似三角形知识点总结知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。
如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C /。
相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。
注意:(1)相似比是有顺序的。
(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。
(3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /,相似比为k ,则△A /B /C /与△ABC 的相似比是1k知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。
(2)两个等边三角形一定相似,两个等腰三角形不一定相似。
(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。
知识点3、平行线分线段成比例定理1. 比例线段的有关概念:在比例式::中,、叫外项,、叫内项,、叫前项,a bc da b c d a d b c a c ()b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质:①基本性质:a bc dadbc ②合比性质:±±a b c d a b b c d d③等比性质:……≠……a bc dm nb dn a c m bdna b()03. 平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知l1∥l2∥l3,A D l1B E l2CF l3可得EF BC DEAB DFEF ACBC DFEF ABBC DFDE ACAB EFDE BCAB或或或或等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EBC由DE ∥BC 可得:AC AEABAD EAEC ADBD ECAE DBAD 或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. 知识点4:相似三角形的性质①相似三角形的对应角相等②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方知识点5:相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。
相似三角形知识点归纳(全)

《相似三角形》—中考考点归纳与典型例题知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念、比例的性质(1)定义:在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. ②()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 核心内容:bc ad = (2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即12AC BC AB AC ==简记为:长短=全长 注:①黄金三角形:顶角是360的等腰三角形②黄金矩形:宽与长的比等于黄金数的矩形 (3)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a ccd a a b d c b a 等等.(4)等比性质:如果)0(≠++++====n f d b nmf e d c b a那么ban f d b m e c a =++++++++ .知识点3 比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE =====或或或或等. 特别在三角形中: 由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或知识点4 相似三角形的概念(1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注:①对应性:即把表示对应顶点的字母写在对应位置上 ②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样. ④全等三角形是相似比为1的相似三角形.(2)三角形相似的判定方法1、平行法:(图上)平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、判定定理1:简述为:两角对应相等,两三角形相似.AA3、判定定理2:简述为:两边对应成比例且夹角相等,两三角形相似.SAS4、判定定理3:简述为:三边对应成比例,两三角形相似.SSS5、判定定理4:直角三角形中,“HL ” 全等与相似的比较:三角形全等三角形相似两角夹一边对应相等(ASA) 两角一对边对应相等(AAS) 两边及夹角对应相等(SAS) 三边对应相等(SSS)、(HL )两角对应相等两边对应成比例,且夹角相等三边对应成比例“HL ”如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则∽==>AD 2=BD ·DC ,∽==>AB 2=BD ·BC ,∽==>AC 2=CD ·BC .知识点5 相似三角形的性质(1)相似三角形对应角相等,对应边成比例.(2)相似三角形周长的比等于相似比.E BD DB C(3)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (4)相似三角形面积的比等于相似比的平方.知识点6 相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。
初三数学《相似三角形》知识点归纳

初三数学《相似三角形》知识提纲(孟老师归纳)一:比例的性质及平行线分线段成比例定理(一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比 在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段 的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项 2:比例尺= 图上距离/实际距离3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作:cda b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。
③ 比例中项:若c a b c a b cbb a ,,2是则即⋅==的比例中项. (二)比例式的性质 1.比例的基本性质:bc ad dcb a =⇔= 2. 合比:若,则或a b c d a b b c d d a b a c d c =±=±±=±3.等比:若……(若……)a b c d e f mn k b d f n =====++++≠0则…………a c e m b d f n a b mn k++++++++===4、黄金分割:把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=215-AB ≈0.618AB , (三)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图:当AD∥BE∥CF 时,都可得到=.=,= ,语言描述如下:=, =,=.(4)上述结论也适合下列情况的图形:nm b a =图(2) 图(3) 图(4) 图(5)2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.l 3l 2l 1ABCD E E D CBA D EBCA l 1l 2l 3AB CD EA 型 X 型由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或. 3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.如上图:若 = . = ,=,则AD ∥BE ∥CF此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形....三边..对应成比例. 二:相似三角形: (一):定义:1:对应角相等,对应边成比例的三角形,叫做相似三角形。
九年级数学下册 相似三角形知识点总结

九年级数学下册相似三角形知识点总结第17讲相似三角形一、知识清单梳理知识点一:比例线段关键点拨与对应举例比例线段是四条线段中的两组成比例的线段,常用的比例等式是ac=bd。
在列比例等式时,需要注意四条线段的大小顺序,防止出现比例混乱。
已知比例式的值,可以通过基本性质ad=bc(b、d≠0)来求相关字母代数式的值。
常用引入参数法,将所有的量都统一用含同一参数的式子表示,再求代数式的值。
另外,合比性质和等比性质也是比例线段的重要性质。
知识点二:相似三角形的性质与判定两角对应相等的两个三角形相似(AAA)。
如果两个三角形的对应边成比例,那么这两个三角形也相似(SAS)。
如果一个三角形的一个角和另一个三角形的两个角分别相等,那么这两个三角形也相似(AAS)。
如果一个三角形的三条边分别与另一个三角形的三条边成比例,那么这两个三角形也相似(SSS)。
在相似三角形中,对应角相等,对应边成比例,相似三角形的比值是一个定值。
知识点三:黄金分割黄金分割是指将一条线段分割成两部分,使其中一部分与全长之比等于另一部分与这部分之比。
这个比例值约等于1:0.618,即黄金比。
在数学、艺术等领域中都有广泛的应用。
知识点四:平行线段成比例如果两条直线被一组平行线所截,所得的对应线段成比例。
如果一条直线平行于三角形的一边,与另外两边相交,所构成的三角形和原三角形相似。
在利用平行线所截线段成比例求线段长或线段比时,需要注意根据图形列出比例等式,灵活运用比例基本性质求解。
二、例题解析例1:如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于多少?解析:根据题意,可以列出比例等式XXX因为DE∥AB,所以有BD/DC=BE/EA=5/2.代入比例等式中,得到BC/CD=5/3.例2:把长为10cm的线段进行黄金分割,那么较长线段长为多少?解析:根据黄金分割的定义,设较长线段为x,较短线段为y,则有x/y=y/(x-y)=0.618.解得x=5.18cm,所以较长线段长为5(5.18-1)cm。
相似三角形知识点整理精选全文完整版

可编辑修改精选全文完整版相似三角形知识点整理重点、难点分析:1、相似三角形的判定性质是本节的重点也是难点.2、利用相似三角形性质判定解决实际应用的问题是难点。
☆内容提要☆ 一、本章的两套定理第一套(比例的有关性质):涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
第二套:二、有关知识点: 1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三反比性质:cda b = 更比性质:dbc a a c bd ==或 合比性质:ddc b b a ±=± ⇒=⇔=bc ad d c b a (比例基本定理) ban d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 相似基本定理 推论(骨干定理)平行线分线段成比例定理(基本定理)应用于△中 相似三角形定理1定理2 定理3 Rt △ 推论推论的逆定理推论角形相似。
5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形直角三角形全等三角形的判定SAS SSS AAS(ASA)HL相似三角形的判定两边对应成比例夹角相等三边对应成比例两角对应相等一条直角边与斜边对应成比例从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
6.5 相似三角形的性质-苏科版数学九年级下册精品讲义

第6章 图形的相似6.5相似三角形的性质知识点01 相似三角形的性质1. 相似三角形周长的比等于相似比(1) ∽,则由比例性质可得:。
(2)相似多边形周长的比等于相似比.【即学即练1】在一张缩印出来的纸上,一个三角形的一条边由原图中的6cm 变成了2cm ,则缩印出的三角形的周长是原图中三角形周长的( )A .B .C .D .【答案】A【分析】根据相似三角形的周长比等于相似比计算,得到答案.【详解】解:∵三角形的一条边由原图中的6cm 变成了2cm ,∴原三角形与缩印出的三角形是相似比为3:1,∴原三角形与缩印出的三角形的周长比为3:1,∴缩印出的三角形的周长是原图中三角形周长的,故选:A.2. 相似三角形面积的比等于相似比的平方∽,则,分别作出与的高和,则【微点拨】相似多边形面积的比等于相似比的平方.【即学即练2】在中,AD平分交边BC于点D,点E在线段AD上,若,则与的面积比为( )A.16:45B.1:9C.2:9D.1:3【答案】C【分析】根据等高三角形的面积比等于底边的长度比,得到,再根据相似三角形的面积比等于相似比的平方,得到的面积比,即可得到答案;【详解】解:∵AD平分∠BAC,∴∠BAE=∠CAD,∵∠ABE=∠C,∴,∵,∴,,,∴.故选C ;知识点02 相似三角形中对应线段的比1.相似三角形的对应角相等,对应边的比相等.2. 相似三角形中的对应线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比.【微点拨】要特别注意“对应”两个字,在应用时,要注意找准对应线段.【即学即练3】如下图所示,在△ABC 中,点D 在线段AC 上,且△ABC ∽△ADB ,则下列结论一定正确的是( )A .B .C .D .【答案】A 【分析】根据相似三角形对应边成比例列式整理即可得解.【详解】解:∵△ABC ∽△ADB ,∴,∴AB 2=AC •AD .故选:A .考法01利用三角形性质求解能力拓展【典例1】如图所示,D为AB边上一点,AD:DB=3:4,交BC于点E,则S△BDE:S△AEC等于()A.16:21B.3:7C.4:7D.4:3【答案】A【分析】根据相似三角形的面积比等于相似比的平方及平行线分线段成比例,不难求得.【详解】解:∵,∴,且,∴,,∴,∵,与的高相等,∴,∴.故选:A.考法02 证明三角形的对应线段成比例【典例2】如图,在中,点D、E分别在AB、AC边上,,BE与CD相交于点F,下列结论正确的是()A.B.C.D.【答案】C【分析】利用平行线的性质可得内错角相等,即可得出和,在根据相似三角形的性质及等量代换即可得出答案.【详解】解:,,,,,,由,,,,,故选:C .题组A 基础过关练1.如图,在中,是斜边上的高,若,,则的长为( )A .8B .10C .9D .12【答案】C【分析】在与中,利用两角对应相等的两个三角形相似,对应边对应成比例,即可求解.【详解】解:如图所示,∵,,分层提分∴,,∴,,∴,∴,即,且,,∴,故选:.2.在△ABC中,点D、E分别在边AB、AC上,下列比例式中不能得到DE BC的是( )A.B.C.D.【答案】B【分析】根据两边成比例且夹角相等的两个三角形相似逐项进行判断即可得到结论.【详解】解:如图,解:A.∵,∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,∴DE BC;故选项不符合题意;B.当时,△ADE与△ABC不一定相似,∴∠ADE不一定等于∠B,∴不能得到DE BC,故选项符合题意;C.∵,∴,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,∴DE BC;故选项不符合题意;D.∵,∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,∴DE BC;故选项不符合题意;故选:B.3.如图,已知△ABE∽△CDE,AD、BC相交于点E,△ABE与△CDE的周长之比是,若AE=2、BE=1,则BC的长为( )A.3B.4C.5D.6【答案】D【分析】根据相似三角形的性质可得AE:CE=2:5,从而得到CE=5,即可求解.【详解】解:∵△ABE∽△CDE,△ABE与△CDE的周长之比是,∴AE:CE=2:5,∵AE=2,∴CE=5,∵BE=1,∴BC=BE+EC=1+5=6,故选:D.4.如图,在△ABC中,点D,E分别在AB,AC上,且,AD=1,BD=2,DE=2那么BC的值为()A.2B.4C.6D.8【答案】C【分析】证明利用对应边对应成比例即可求出.【详解】解:∵∴∴∴∴故选C.5.如果两个相似三角形对应边的比是3∶4,那么它们的对应周长的比是()A.3∶4B.C.9∶16D.3∶7【答案】A【分析】直接利用相似三角形的性质得出答案.【详解】解:∵两个相似三角形对应边的比为3:4,∴它们的周长比是:3:4.故选:A.6.已知,,,则的周长之比为____.【答案】4∶3【分析】根据相似三角形的周长之比等于相似比即可得解.【详解】解:∵,,,∴;故答案为:4∶3.7.如图,光源P在水平横杆AB的上方,照射横杆AB得到它在平地上的影子为CD(点P、A、C在一条直线上,点P、B、D在一条直线上),不难发现AB//CD.已知AB=1.5m,CD=4.5m,点P到横杆AB的距离是1m,则点P到地面的距离等于______m.【答案】3【分析】作PF⊥CD于点F ,利用AB∥CD,推导△PAB∽△PCD,再利用相似三角形对应高之比是相似比求解即可.【详解】解:如图,过点P作PF⊥CD于点F,交AB于点E,∵AB∥CD,∴△PAB∽△PCD,PE⊥AB,∵△PAB∽△PCD,∴,(相似三角形对应高之比是相似比)即:,解得PF=3.故答案为:3.8.如图,△ABC∽△CAD,∠ACB=∠D=90°,_____.【答案】AB•DC【分析】根据相似三角形的性质解答即可.【详解】解:∵∠ACB=∠D=90°,且△ABC∽△CAD,∴,即=AB•DC,故答案为:AB•DC.9.如图,在矩形ABCD中,AB=2,BC=3,点E是AD的中点,CF⊥BE于点F,求FC的长.【答案】2.4【分析】根据已知可证明△ABE~∆FCB,然后利用相似三角形的性质进行计算即可解答.【详解】解:∵AD∥BC,∴∠AEB=∠CBF,∵∠A=90°,∠CFB=90°,∴△ABE∽△FCB∴,∵BC=3,E是AD的中点,∴AE=1.5 ,∴BE=2.5,∴,∴FC=2.4.10.如图,在△ABC中,D,E分别是AB,AC边上的点,且AD:AB=AE:AC=2:3.(1)求证:△ADE∽△ABC;(2)若DE=4,求BC的长.【答案】(1)见解析;(2)BC=6.【分析】(1)直接根据相似三角形的判定方法判定即可;(2)利用相似三角形的性质即可求解.【详解】(1)证明:∵∠A=∠A,AD:AB=AE:EC=2:3,即,∴△ADE∽△ABC;(2)解:∵△ADE∽△ABC,∴,,∴BC=6.题组B 能力提升练1.下列命题中,是真命题的是( )A.有一组邻边相等的平行四边形是菱形B.小明爬山时发现上山比下山的盲区小C.若点P是线段AB的黄金分割点,则D.相似三角形的周长比等于相似比的平方【答案】A【分析】根据菱形的判定方法、黄金分割的定义、相似三角形的性质进行判断即可.【详解】解:A、有一组邻边相等的平行四边形是菱形,是真命题,故A正确;B、爬山时上山比下山的盲区大,原命题是假命题,故B错误;C、若点P是线段AB的黄金分割点,AP>BP时,则,原命题错误,故C错误;D、相似三角形的周长比等于相似比,原命题错误,故D错误.故选:A.2.如图,O是△ABC的重心,AN,CM相交于点O,那么△MON与△BMN的面积的比是()A.1:2B.2:3C.1:3D.1:4【答案】C【分析】利用三角形重心的性质得到MO:MC=1:3和点N是BC的中点,从而得到△MON和△MNC的面积比、△BMN和△CMN的面积比,然后综合两个面积比求得结果.【详解】解:∵点O是△ABC的重心,∴MO:MC=1:3,点N是BC的中点,∴,∴,故选:C.3.若,且与的面积比是,则与对应角平分线之比为()A.B.C.D.【答案】B【分析】根据相似三角形的面积之比等于相似比的平方求出相似比,再根据相似三角形的性质即可得到答案.【详解】解:∵,且与的面积比是,∴与的相似比是,∴与对应角平分线之比为,故选:B.4.如图,在ABC中,D,E分别是边AB,AC的中点.若ADE的面积为,则四边形DBCE的面积为( )A.B.1C.D.2【答案】C【分析】先根据三角形的中位线定理证明,则△ADE∽△ABC,再根据相似三角形面积的比等于相似比的平方求出△ABC的面积,即可由求出四边形DBCE的面积.【详解】解:∵D、E分别为AB、AC的中点,∴,AE=CE=AB,∴,∴△ADE∽△ABC,∴,∴,∴,故选:C.5.如图,在Rt ABC中,∠C=90°,AC=3,BC=4.以BC上点O为圆心作⊙O分别与AB、AC相切E、C 两点,与BC的另一交点为D,则线段BD的长为________【答案】1【分析】连接OE,OE⊥AB,OE=OC,AC⊥OC,△BEO∽△BCA,故,故可得OC的长,即可得出BD的长.【详解】解:如图,连接OE,∵AB是⊙O的切线,∴OE⊥AB,OE=OC,∵AC⊥OC,∴BEO∽BCA,∴,∵∠C=90°,AC=3,BC=4,∴AB=5,∴,∴,∴OE=,∴OC=,∴BD=BC-2×OC=4-2×.故答案为:1.6.如图,点G是的中线上一点,且,作,垂足为点E,若,则点A到的距离为______________.【答案】【分析】过点作,则的长即为到的距离,证明,根据相似三角形的性质即可求解.【详解】解:如图,过点作,则的长即为到的距离,∵,,∴,∴,∴,∵,∴,∵,∴,,故答案为:.7.如图,已知AB CD,AD与BC相交于点P,,若AP=6,则PD的长是_____.【答案】10【分析】证明,再根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:∵AB CD,∴,∴,即,解得:PD=10,故答案为:10.8.如图,在中,,,点从点出发,沿着边向点以的速度运动,点从点出发,沿着边向点以的速度运动.如果与同时出发,那么经过______秒和相似.【答案】4或【分析】分两种情况讨论,由相似三角形对应边成比例列方程求解即可.【详解】解:设经过x秒,△PQC和△ABC相似,∴CP=8-x(cm),CQ=2x(cm),当△PCQ∽△ACB,则,∴,∴x=4,当△PCQ∽△BCA,则,∴,∴x=,综上所述:经过4或秒,△PQC和△ABC相似.故答案为:4或.9.如图,四边形中,,且,E、F分别是、的中点,与交于点M.(1)求证:;(2)若,求BM.【答案】(1)见解析;(2)【分析】(1)根据已知条件可得四边形是平行四边形,从而得到,即可求证;(2)根据相似三角形的对应边成比例求出相似比,即可求得线段的长.【详解】(1)证明:,E是的中点,,,四边形是平行四边形,,,,;(2)解:,F是的中点,,,,,又,.10.如图,在△ABC中,∠C=90°,AC=3,CB=5,D是BC边上一点,且DB=1,点E是AC边上的一个点,且AE,过点E作交AD于点F.(1)求EF的长.(2)求证:△DEF∽△ABD.【答案】(1);(2)证明见解析【分析】(1)利用,证明△AEF∽△ACD,根据对应边对应成比例进行计算即可;(2)利用勾股定理求出AD,利用,求出AF,利用求出DF,从而得出,在利用外角的性质,得到,即可得证.【详解】(1)解:∵CB=5,DB=1,∴,∵,∴,∵,∴△AEF∽△ACD,∴,即:,∴;(2)证明:∵∠C=90°,AC=3,CD=4,∴,∵∴△AEF∽△ACD,∴,即:,∴,∴,∵,∴,∵,又∵,∴,∴△DEF∽△ABD题组C 培优拔尖练1.如图,在梯形中,,,对角线与相交于点O,把、、、的面积分别记作,那么下列结论中,不正确()A.B.C.D.【答案】C【分析】由,推出,推出,利用等高模型以及相似三角形的性质解决问题即可.【详解】解:∵,∴,∴,∴,,∴选项A,B,D正确,选项C错误,故选:C.2.如图,中,,,为边上一动点,将绕点逆时针旋转得到,使得点的对应点与,在同一直线上,若,则的长为()A.3B.4C.6D.9【答案】B【分析】由旋转和平行线的性质易证,从而易证,即得出,代入数据即可求出BD的长.【详解】∵,∴.由旋转的性质可知,∴.又∵,∴,∴,即,∴.故选B.3.如图,在△ABC中,AH⊥BC于H,BC=12,AH=8,D、E分别为AB、AC上的点,G、F是BC上的两点,四边形DEFG是正方形,正方形的边长DE为( )A.4.8B.4C.6.4D.6【答案】A【分析】利用相似三角形对应高的比也等于相似比,可以求出x,注意所画图形是正方形,用同一未知数表示未知边,即可求出.【详解】解:设△ABC的高AH交DE于点M,正方形的边长为x.由正方形DEFG得,DE∥FG,即DE∥BC,∵AH⊥BC,∴AM⊥DE.由DE∥BC得△ADE∽△ABC,∴,把BC=12,AH=8,DE=x,AM=8-x代入上式得:,解得:x=4.8.答:正方形的边长是4.8.故选:A.4.如图,在中,D,C,E三点在一条直线上,,,,则的长为()A.1.5B.1.6C.1.7D.1.8【答案】B【分析】设对角线AC与BD交于点O,过点O作于M,利用平行四边形性质得BO=DO,得MC=MD,然后利用相似三角形的判定与性质得出CF的长.【详解】解:设对角线AC与BD交于点O,在中,,,过点O作于M(如图),,,,,.故选B.5.如图Rt AOB∽DOC,∠AOB=∠COD=90°,M为OA的中点,OA=6,OB=8,直线AD,CB交于P 点,连接MP,AOB保持不动,将COD绕O点旋转,则MP的最大值是_____.【答案】9【分析】根据相似三角形的判定定理证明COB∽DOA,得到∠OBC=∠OAD,得到O、B、P、A共圆,求出MS和PS,根据三角形三边关系解答即可.【详解】解:取AB的中点S,连接MS、PS,则PM≤MS+PS,∵∠AOB=90°,OA=6,OB=8,∴AB=10,∵∠AOB=∠COD=90°,∴∠COB=∠DOA,∵AOB∽DOC,∴,∴COB∽DOA,∴∠OBC=∠OAD,∴O、B、P、A共圆,∴∠APB=∠AOB=90°,又S是AB的中点,∴PS=AB=5,∵M为OA的中点,S是AB的中点,∴MS=OB=4,∴MP的最大值是4+5=9,故答案为:9.6.如图,为等边边上的高,,为高上任意一点,则的最小值为_____.【答案】【分析】连接,交于点,此时最小,过点作于点,证明,然后求得,在中,勾股定理即可求解.【详解】解:如图所示:连接,交于点,此时最小,过点作于点,∵为等边边上的高,∴点与点关于对称,又∵,∴,∴,∵,∴,∴,∴,∴,解得:,∴,∴,∴在中,∴的最小值为:.故答案为:.7.如图,在矩形纸片中,,,点在上,将沿折叠,点恰落在边上的点处;点在上,将沿折叠,点恰落在线段上的点处,有下列结论:①;②;③;④;其中正确的是______.(填写正确结论的序号)【答案】①③④【分析】利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=∠ABC,于是可对①进行判断;在Rt ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到,解得x=3,所以AG=3,GF=5,于是可对④进行判断;接着证明ABF∽DFE,利用相似比得到,而=2,所以,所以DEF与ABG不相似,于是可对②进行判断;分别计算和可对③进行判断.【详解】解:∵BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=∠CBF+∠ABF=∠ABC=45°,所以①正确;在Rt ABF中,AF==8,∴DF=AD-AF=10-8=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=10-6=4,在Rt GFH中,∵,∴,解得x=3,∴GF=5,∴AG+DF=FG=5,所以④正确;∵BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠BFE=∠C=90°,∴∠EFD+∠AFB=90°,而∠AFB+∠ABF=90°,∴∠ABF=∠EFD,∴ABF∽DFE,∴,∴,而,∴,∴DEF与ABG不相似;所以②错误.∵=×6×3=9,=×3×4=6,∴.所以③正确.故答案为:①③④.8.如图,在平行四边形ABCD中,点E在DC上,DE:EC=3:2,连接AE交BD于点F,则=________.【答案】9:25【分析】先由DE:EC=3:2,得DE:DC=3:5,再根据平行四边形ABCD,得AB CD,AB=CD,所以,△DEF∽△BAF,然后根据相似三角形的性质,面积比等于相似比的平方求解.【详解】解:∵DE:EC=3:2,∴DE:DC=3:5,∵平行四边形ABCD,∴AB CD,AB=CD,∴,△DEF∽△BAF,∴,故答案为:9∶25.9.如图,在△ABC中,过点A作,交∠ACB的平分线于点D,点E是BC上,连接DE,交AB于点F,.(1)求证:四边形ACED是菱形;(2)当,时,直接写出的值.【答案】(1)见解析;(2)【分析】(1)根据可得,即可证明四边形是平行四边形,然后根据平行线的性质以及角平分线得出,则可根据邻边相等的平行四边形为菱形;(2)根据菱形的性质可得,从而求出的长,然后根据可得,根据相似三角形对应边成比例可得结论.【详解】(1)证明:,,即,,四边形是平行四边形,,,平分,,,,四边形是菱形;(2)四边形是菱形;,,,,,.10.如图,在中,点D、E分别在边AB、AC上,BE、CD交于点O,.(1)如果,求AC的长;(2)如果△ADE的面积为1,求的面积.【答案】(1)18;(2)2【分析】(1)首先证明,利用相似三角形的性质解决问题即可.(2)证明,利用等高模型即可解决问题.【详解】(1)解:∵,∴=,∵,∴,∴,∴,∴=,,∴=,∵,∴.(2)∵=,∴,∴.11.如图,在正方形中,点M是边上的一点(不与B、C重合),点N在边的延长线上.且满足连接、,与边交于点E.(1)求证:;(2)求证:.【答案】(1)证明见解析;(2)证明见解析【分析】(1)根据正方形的性质、全等三角形的判定定理证明,根据全等三角形的性质即可证明;(2)证明,根据相似三角形的性质即可证明.【详解】(1)证明:∵四边形ABCD是正方形,∴,,又∵,∴,∴,在和中,,∴,∴;(2)证明:∵四边形ABCD是正方形,∴,∵,,∴,∴,又∵,∴,∴,∴.12.如图,在Rt ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.(1)求证:BC是⊙O的切线;(2)若CD=6,AC=8,求AE.【答案】(1)见解析;(2)12.5【分析】(1)连接OD,根据平行线判定推出OD AC,推出OD⊥BC,根据切线的判定推出即可;(2)求出AD,连接DE,证DCA∽EDA,得出比例式,代入数值求解即可.【详解】(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)解:在Rt ADC中,AC=8,CD=6,由勾股定理得:AD=10.连接DE,∵AE为直径,∴∠EDA=∠C=90°,∵∠CAD=∠EAD,∴DCA∽EDA,∴,∴,AE=12.5.13.矩形中,,将绕点A逆时针旋转得到,使点落在延长线上(图1)(1)若,求的度数与的长度;(2)如图2将向右平移得,两直角边与拒形相交于点E、F;当平移的距离是多少时,能使与相似,(先填空,再完成解答)解:设平移的距离为x,则______________________(用含x的代数式表示)【答案】(1)37°,4(2),,或x=3.4【分析】(1)根据矩形的性质得出AD=BC=6,BC AD,∠B=90°,求出∠CAD=∠BCA=53°,则37°即可解答;由勾股定理求出=AC=10,进而求得;(2)设平移的距离为x,则,然后再解直角三角形表示出,进而表示出,同理表示出,然后根据相似三角形的性质列方程求解即可;【详解】(1)解:∵四边形ABCD是矩形,∴BC=AD=6,BC AD,∠B=90°,∴∠CAD=∠BCA=53°,∴∠BAC=90°-∠BCA=90°-53°=37°,∵将绕点A逆时针旋转得到∴37°在Rt△CBA中,AB=8,BC=6,由勾股定理得:=AC=10∴.(2)解:设平移的距离为x,则,∵∴,解得:∴同理:∵与相似∴或∴或,解得或x=3.4∴当或x=3.4时,与相似.14.【问题呈现】(1)如图1,和都是等边三角形,连接BD、CE.求证:BD=CE.【类比探究】(2)如图2,和都是等腰直角三角形,∠ABC=∠ADE=90°,连接BD、CE,则___________.【拓展提升】(3)如图3,和都是直角三角形,∠ABC=∠ADE=90°,∠DAE=∠BAC=30°,连接BD、CE.①求的值;②延长交于点G.交于点F.求.【答案】(1)见解析;(2);(3)①;②30°【分析】(1)证明BAD CAE,从而得出结论;(2)证明BAD∽CAE,进而得出结果;(3)①利用含30度的直角三角形的性质以及勾股定理得到,再证明BAD∽CAE,进而得出结果;②由BAD∽CAE,得出∠ACE=∠ABD,进而得出∠BGC=∠BAC.【详解】(1)证明:∵ABC和ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAE∠BAE=∠BAC∠BAE,∴∠BAD=∠CAE,∴BAD CAE(SAS),∴BD=CE;(2)解:∵ABC和ADE都是等腰直角三角形,∴,∠DAE=∠BAC=45°,∴∠DAE∠BAE=∠BAC∠BAE,∴∠BAD=∠CAE,∴BAD∽CAE,∴;故答案为:;(3)解:①∵∠ABC=∠ADE=90°,∠DAE=∠BAC=30°,∴AE=2DE,AC=2BC,由勾股定理得AD=DE,AB=BC,∴,同理BAD∽CAE,∴;②∵BAD∽CAE,∴∠ACE=∠ABD,∵∠AFC=∠BFG,∴∠BGC=∠BAC=30°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版九年级下册数学
重难点突破
知识点梳理及重点题型巩固练习
相似三角形的性质--知识讲解(提高)
【学习目标】
探索相似三角形的性质,能运用性质解决有关的计算或证明问题.
【要点梳理】
要点一、相似三角形的性质
1. 相似三角形周长的比等于相似比 ∽,则
由比例性质可得:
B
类似地,我们还可以得到:
相似多边形周长的比等于相似比.
2. 相似三角形面积的比等于相似比的平方
∽,则分别作出与的高和,则21122=1122
ABC
A B C BC AD k B C k A D S k S B C A D B C A D '''''''⋅⋅⋅⋅=='''''''''⋅⋅△△
B A'
D'
要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.
如果把两个相似多边形分成若干个相似的三角形,我们还可以得到:
相似多边形面积的比等于相似比的平方.
要点二、相似三角形中对应线段的比
【课程名称:相似三角形的性质及应用394500
:相似形的性质】
1.相似三角形的对应角相等,对应边的比相等.
2. 相似三角形中的对应线段的比等于相似比.
相似三角形对应高,对应中线,对应角平分线的比都等于相似比.
要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.
【典型例题】
类型一、相似三角形的性质
1.(2015•合肥校级四模)如图,己知:Rt△ABC中,∠BAC=9O°,AD⊥BC于D,E 是AC的中点,ED交AB延长线于F,求证:
①△ABD∽△CAD;
②AB:AC=DF:AF.
【思路点拨】(1)由Rt△ABC中,∠BAC=9O°,AD⊥BC,易得∠BAD=∠ACD,又由
∠ADB=∠ADC,即可证得△ABD∽△CAD;
(2)由△ABD∽△CAD,即可得,易证得△AFD∽△DFB,可得,继而证
得结论.
【答案与解析】证明:(1)∵AD⊥BC,
∴∠ADB=∠ADC=90°,
∴∠BAD+∠DAC=90°,∠DAC+∠ACD=90°,
∴∠BAD=∠ACD,
∵∠ADB=∠ADC,
∴△ABD∽△CAD;
(2)∵△ABD∽△CAD,
∴,
∵E是AC中点,∠ADC=90°,
∴ED=EC,
∴∠ACD=∠EDC,
∵∠EDC=∠BDF,∠ACD=∠BAD,
∴∠BAD=∠BDF,
∵∠AFD=∠DFB,
∴△AFD∽△DFB,
∴
, ∴.
【总结升华】此题考查了相似三角形的判定与性质以及直角三角形的性质.此外,注意掌握数形结合思想的应用.
举一反三:
【变式】在锐角△ABC 中,AD,CE 分别为BC,AB 边上的高,△ABC 和△BDE 的面积分别等于18和2,DE=2,求AC 边上的高.
【答案】过点B 做BF ⊥AC,垂足为点F ,
∵AD,CE 分别为BC,AB 边上的高,
∴∠ADB=∠CEB=90°,
又∵∠B=∠B ,
∴Rt △ADB ∽Rt △CEB, ∴,BD AB BD BE BE CB AB CB
==即, 且∠B=∠B ,
∴△EBD ∽△CBA, ∴2
21189BED
BCA DE AC S S ⎛⎫=== ⎪⎝⎭△△, ∴13
DE AC =, 又∵DE=2,
∴AC=6, ∴11862
ABC AC BF S =⋅=∴△,BF=.
2.已知:如图,在△ABC与△CAD中,DA∥BC,CD与AB相交于E点,且AE︰EB=1︰2,EF∥BC交AC于F点,△ADE的面积为1,求△BCE和△AEF的面积.
B
【答案与解析】
解:∵DA∥BC,
∴△ADE∽△BCE.
∴S△ADE:S△BCE=AE2:BE2.
∵AE︰BE=1:2,
∴S△ADE:S△BCE=1:4.
∵S△ADE=1,
∴S△BCE=4.
∵S△ABC:S△BCE=AB:BE=3:2,
∴S△ABC=6.
∵EF∥BC,
∴△AEF∽△ABC.
∵AE:AB=1:3,
∴S△AEF:S△ABC=AE2:AB2=1:9.
∴S△AEF==.
【总结升华】注意,同底(或等底)三角形的面积比等于该底上的高的比;同高(或等高)三角形的面积比等于对应底边的比.当两个三角形相似时,它们的面积比等于对应线段比的平方,即相似比的平方.
举一反三:
【变式】已知如图,梯形ABCD中,AB∥CD,△COD与△AOB的周长比为1:2,则CD:AB=,S△COB:S△COD=
.
【答案】1:2;2:1
【课程名称:相似三角形的性质及应用
394500
:例题分析2】
3.(2015•柳州)如图,矩形EFGH内接于△ABC,且边FG
落在BC上.若BC=3,
AD=2,EF=EH,求EH的长?
【思路点拨】设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.
【答案与解析】
解:∵四边形EFGH是矩形,
∴EH∥BC,
∴△AEH∽△ABC,
∵AM⊥EH,AD⊥BC,
∴=,
设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,
∴=,
解得:x=,
则EH=.
故答案为:.
【总结升华】此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.
类型二、相似三角形中对应线段的比
4.△ABC∽△A′B′C′,
''
1 2 =
AB
A B
,AB边上的中线CD=4cm,△ABC的周长为20cm,△A′B′C′的面积是64cm2,求:
(1)A′B′边上的中线C′D′的长;
(2)△A′B′C′的周长;
(3)△ABC的面积.
【答案与解析】
(1)∵△ABC∽△A′B′C′,
''
1 2 =
AB
A B
,AB边上的中线CD=4cm,
∴
''
1 2 =
CD
C D
,
∴C′D′=4cm×2=8cm,
∴A′B′边上的中线C′D′的长为8cm;
(2)∵△ABC∽△A′B′C′,
''
1 2 =
AB
A B
,△ABC的周长为20cm,∴=,
∴C△A′B′C′=20cm×2=40cm,
∴△A′B′C′的周长为40cm;
(3)∵△ABC∽△A′B′C′,
''
1 2 =
AB
A B
,△A′B′C′的面积是64cm2,
∴==,
∴S△ABC=64cm2÷4=16cm2,
∴△ABC的面积是16cm2.
【总结升华】本题主要考查了相似三角形的性质,掌握相似三角形的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;相似三角形的面积的比等于相似比的平方.。