1.1.1分式的概念
分式方程的解是正数典型例题

分式方程的解是正数典型例题引言概述:分式方程是数学中的一个重要概念,它涉及到分数的运算和方程的解。
本文将以典型例题为例,介绍分式方程的解为正数的情况。
通过详细阐述六个大点,我们将深入探讨分式方程解为正数的特点和解题方法。
正文内容:1. 分式方程的定义和特点1.1 分式方程的定义分式方程是指含有分式的方程,其中包含有未知数和分数的运算。
它的一般形式为:分子是一个多项式,分母是一个多项式。
例如:$\frac{2}{x+3} = \frac{1}{x-1}$。
1.2 分式方程的特点分式方程的特点是含有未知数的分式,其解可以是有理数或无理数。
解为正数的情况是其中一种特殊情况。
2. 分式方程解为正数的条件2.1 分式方程的分母不能为零在分式方程中,分母不能为零,否则方程无意义。
因此,解为正数的条件是分母不等于零。
2.2 分式方程的分子和分母同号为了使分式的值为正数,分子和分母必须具有相同的符号。
如果分子和分母异号,那么分式的值将为负数。
3. 解题方法3.1 消去分母为了解分式方程,我们可以通过消去分母的方法来简化方程。
通过将方程两边乘以分母的乘法逆元,可以消去分母,得到一个简化的方程。
3.2 整理方程在消去分母后,我们需要整理方程,将未知数移到一边,将已知数移到另一边,使方程变为一元方程。
3.3 求解一元方程通过对一元方程进行变形和运算,我们可以得到未知数的解。
在解为正数的情况下,我们需要注意符号的变化,以确保解为正数。
4. 解的验证4.1 将解代入原方程在求解分式方程后,我们需要将解代入原方程进行验证。
通过将解代入方程,我们可以确认解是否符合原方程的要求。
4.2 检查解的合理性除了代入原方程进行验证外,我们还需要检查解的合理性。
在解为正数的情况下,我们需要确保解满足方程的限制条件。
5. 典型例题分析5.1 例题1:$\frac{x+2}{x-3} = \frac{3}{2}$5.2 例题2:$\frac{2x-1}{x+4} = 3$5.3 例题3:$\frac{3}{x-1} + \frac{2}{x+2} = 1$总结:通过本文的介绍,我们了解了分式方程的定义和特点,以及解为正数的条件。
2021年中考复习数与式-第04讲 分式(教师版)A4

分式一.分式的概念及性质1.分式分概念:一般地,用A,B表示两个整式A B÷就可以表示成AB的形式.如果B中含有字母,式子AB就叫做分式.(1)分式有意义的条件:分式的分母不为零.(2)分式的值为零的条件:分式的分子为零且分母不为零.(3)分式值为正的条件分式的分子分母符号相同(两种情况).(4)分式值为负的条件:分式的分子分母符号不同(两种情况).2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.二.分式的综合运算1.分式的乘除法(1)分式的乘除法:b d bda c ac⋅=,b d bc bca c a d ad÷=⋅=.(a、b、c、d既可以表示数,也可以表示单项式/多项式等)(2)分式的约分和通分:关键是先分解因式.分式的约分:利用分式的基本性质,约去分式的分子与分母的公因式,分式的值不变.最简分式:分子与分母没有公因式.分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,把几个异分母的分式化成同分母的分式,不改变分式的值.最简公分母:“各个分母”和“所有因式”的最高次幂的积.(3)分式的乘方法则:分式乘方要把分子、分母分别乘方.2.分式的加减法:(1)同分母的分式相加减,分母不变,分子相加减,a b a bc c c±±=.(2)异分母的分式相加减,先通分,变为同分母分式,再加减,b d bc ad bc ada c ac ac ac±±=±=.3.分式的综合运算法则:先乘方,再乘除,最后加减,遇到括号先算括号里面的.知识精讲三.分式的化简与求值分式的化简求值分为有条件和无条件两类.有条件化简求值指导思想:瞄准目标,抓住条件,依据条件推导目标,根据目标变换条件.方法点拨1.分式的化简与求值常用方法和技巧:(1)分步或者分组通分;(2)拆项相消或拆分变形;(3)整体代入;(4)取倒数或者利用倒数关系;(5)换元;(6)先约分后通分2.通分技巧:分步通分,分组通分,先约分后再通分,换元后通分等.一.考点:分式的性质、分式的混合运算及化简求值二.重难点:分式的混合运算及化简求值三.易错点:1.分式的分母中含有根号时,根号下的代数式一定是负的.题模一:分式的基本知识例1.1.1要使3x -+121x -有意义,则x 应满足( )A .12≤x ≤3B .x ≤3且x ≠12C .12<x <3D .12<x ≤3 【答案】D 【解析】根据题意得:30210x x -≥⎧⎨->⎩,解得:12<x≤3.故选D .例1.1.2若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【答案】1a >【解析】分式值为正的条件:分式的分子分母符号相同,因分子为1,所以分母2-2x x a +也一定为正时满足条件,将式子2-2x x a +变形为2-21-1x x a ++()(),因2210x x -+≥,即当10a ->时,分式的值恒为正例1.1.3当x ____时,分式1412x x 有意义;当x ____时,分式1111x 无意义;当x ____时,分式2224x x x x 的值为0【答案】2x ≠且6x ≠;2x =或1x =;0x =或1x =【解析】该题考查的是分式的性质. 分式有意义要求分母不为0,无意义要求分母为0,分式值为0要求分母不为0且分子为0,三点剖析题模精讲分式1412xx 有意义,则410220x x ⎧-≠⎪-⎨⎪-≠⎩,即4122x x ⎧≠⎪-⎨⎪≠⎩,即242x x -≠⎧⎨≠⎩,解得62x x ≠⎧⎨≠⎩; 分式1111x 无意义,则1101x -=-或10x -=,即111x =-或1x =,解得2x =或1x =; 分式()()()()()()22+22114222x x x x x x x x x x x x -+--==--+-的值为0,则()1020x x x ⎧-=⎪⎨-≠⎪⎩,解得0x =或1x =. 例1.1.4x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【答案】(1)6x =-(2)1x =-或6x =【解析】(1)分式值为0则60x -=且2560x x --≠,得6x =-;(2)要使分式无意义,则分母2560x x --=,得1x =-或6x =题模二:分式的运算及化简求值例1.2.1化简2244xy yx x --+的结果是( )A .2x x +B .2x x -C .2y x + D .2y x - 【答案】D 【解析】2244xy y x x --+=2?(2)(2)y x x --=2yx -,故选D .例1.2.2解答下列各题: (1)解方程:;(2)先化简,再求值:,其中a 满足a 2+2a ﹣7=0【解答】解:(1)∵,∴(x ﹣2)2=(x +2)2+16,∴x 2﹣4x +4=x 2+4x +4+16,∴﹣4x =4x +16,∴x =﹣2, 经检验,x =﹣2是方程的增根,故原分式方程无解. (2)原式=[﹣]•=•=,∵a 2+2a ﹣7=0,∴a 2+2a =7,∴原式= 例1.2.3先化简,再求值:(),其中x=2.【答案】【解析】原式=[+]÷[﹣]=÷=÷=•=,当x=2时,原式==.例1.2.4已知实数a 满足a 2+2a-15=0,求11a +-221a a +-÷2(1)(2)21a a a a ++-+的值. 【答案】18【解析】11a +-221a a +-÷2(1)(2)21a a a a ++-+=11a +-2(1)(1)a a a ++-•2(1)(1)(2)a a a -++=11a +-21(1)a a -+=22(1)a +, ∵a 2+2a -15=0,∵(a+1)2=16,∵原式=216=18. 例1.2.5化简计算(式中a ,b ,c 两两不相等)222222a b c b c a c a ba ab ac bc b ab bc ac c ac bc ab ------++--+--+--+.【答案】0【解析】()()()()()()()()()()()()1111110a b a c b c b a c a c b a b a c b c b a c a c b a c a b b a b c c b c a-+--+--+-++=+++++=------------随练1.1使代数式213x x--有意义的x 的取值范围是____. 【答案】x≥12且x≠3 【解析】根据题意得,2x -1≥0且3-x≠0,解得x≥12且x≠3. 故答案为:x≥12且x≠3.随练1.2如果分式2127a a +-的值是正数,那么a 的取值范围是________.【答案】72a >【解析】该题考察的是分式的性质.∵因为21a +恒0>,又∵分式2127a a +-的值是正随堂练习数,∴270a ->,解得:72a > ,故答案是72a >. 随练1.3先化简,再求值:÷(﹣),其中a=.【答案】6﹣4【解析】原式=÷[﹣]=÷=•=(a ﹣2)2,∵a=,∵原式=(﹣2)2=6﹣4随练 1.4x 取 值时,112122x +++有意义;当x 的值为 ,分式223-1244x x x ++的值为0.【答案】592,,;24x x x ≠-≠-≠-2【解析】分式有意义则分母不为零,所以20x +≠且1202x +≠+,且120122x +≠++,所以592,,;24x x x ≠-≠-≠-分式值为零,则分子为零,且分母不为零,即()22312340x x -=-=且()224420x x x ++=+≠,故2x =.随练1.5当x 取何值时,分式2256x x x --+有意义?【答案】2x ≠±且3x ≠±【解析】间接考虑2560x x -+=,然后排除2560x x -+=的情形即可.()()256230x x x x -+=--=得20x -=或30x -=,2x =±或3x =±故要是分式有意义2x ≠±且3x ≠±即可. 随练1.6若1abc =,求111a b cab a bc b ca c ++++++++的值. 【答案】1 【解析】原式=11111111a ab abc a ab a ab ab a abc ab a abca abc ab ab a ab a a ab ab a ++++=++==++++++++++++++随练1.7已知a ,b ,c 为实数,16ab a b =+,18bc b c =+,110ca c a =+,求分式abcab bc ca++的值. 【答案】112【解析】由16ab a b =+,18bc b c =+,110ca c a =+知a ,b ,c 均不为零,故116a b +=,118b c+=,1110c a +=,解得14a =,12b =,16c =,故原式=1111112a b c=++随练1.8若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【答案】2,4【解析】若使分式1-1m 为整数,只需满足1m -为1的因数即可,即11m -=±,结果为0m =或2m =;分式11m m +-为整数,需要将式子整理为-12-1-1m m m +,即只要2-1m 为整数,11,2m -=±±,因此0,2,1,3m =-.随练1.9已知:y=22699x x x ++-÷233x x x+--x+3,试说明不论x 为任何有意义的值,y 值均不变. 【答案】见解析【解析】本题主要考查了分式的混合运算能力. 先把分子分母分解因式再化简约分即可.证明:y=22699x x x ++-÷233x x x+--x+3=2(3)(3)(3)x x x ++-×(3)3x x x -+-x+3=x -x+3=3. 故不论x 为任何有意义的值,y 值均不变.随练1.10已知0abc ≠,0a b c ++=,则代数式222a b c bc ca ab++的值为__________.【答案】3【解析】由0a b c ++=得()a b c =-+,()b a c =-+,()c a b =-+代入原代数式可得原式()()()22263b c a c a b b c a c b abccaabc b c a a b+++=++=++++++= 作业1若a 使分式241312a a a-++没有意义,那么a 的值是( )A .0B .13-或0 C .2±或0 D .15-或0【答案】D【解析】要使分式无意义,则分母为零即可,故13102a a ++=或20a =,所以15a =-或0a =,故答案为D 选项. 作业2要使分式11x x-有意义,则x 的取值范围是_________. 【答案】0x ≠且1x ≠±【解析】对于多重分式,必须要满足每一重的分母都不为0,首先0x ≠,得0x ≠;其次10x x-≠,课后作业得1x ≠±;故x 的取值范围是0x ≠且1x ≠±作业3化简:()()()222222x yz y zx z xyx y z x yz y z x y zx z x y z xy +-++++--+++---.【答案】0【解析】因为()()()2x y z x yz x y x z +--=+-,()()()2y z x y zy x y y z +++=++()()()2z x y z xy y z z x ---=+-,所以原式=()()()()()()()()()2220x yz y z y zx z x z xy x y x y y z z x -+++--+++=++-.作业4化简:÷﹣的结果为( )A .B .C .D .a【答案】C 【解析】原式=×﹣=﹣=,作业5已知()22221111x x A B Cx x x x x +-=++--,其中A 、B 、C 为常数,求A B C ++的值.【答案】13【解析】原式右边=()()()()()()()22222211211111Ax x B x Cx A C x B A x B x x x x x x x x -+-+++--+-==---,得2A C +=,1B A -=,11B -=-,解得10A =,11B =,8C =-,从而13A B C ++=作业6先化简,再求值:222x x x+-2212x x x -++÷211x x -+,其中x 为0<x 的整数.【答案】14【解析】原式=2(2)x x x +-2(1)2x x -+•1(1)(1)x x x ++-=2(2)x x x +-12x x -+=(2)x x x +=12x +,∵x 为0<x 的整数,∵x=1(舍去)或x=2,则x=2时,原式=14. 作业7阅读下面材料,并解答问题.材料:将分式42231x x x 拆分成一个整式与一个分式(分子为整数)的和的形式.由分母为-x 2+1,可设-x 4-x 2+3=(-x 2+1)(x 2+a )+b则-x 4-x 2+3=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a-1)x 2+(a+b )∵对应任意x ,上述等式均成立,∴113a a b ,∴a=2,b=1∴42231x x x =222(1)(2)11x x x =222(1)(2)1x x x +211x =x 2+2+211x这样,分式42231x x x 被拆分成了一个整式x 2+2与一个分式211x 的和.解答:(1)将分式422681x x x 拆分成一个整式与一个分式(分子为整数)的和的形式. (2)当x ∈(-1,1),试说明422681x x x 的最小值为8.【答案】(1)x 2+7+211x (2)见解析【解析】(1)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a )+b则-x 4-6x 2+8=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a -1)x 2+(a+b )∵对应任意x ,上述等式均成立,∵168a ab ,∵a=7,b=1,∵422681x x x =222(1)(7)11x x x =222(1)(7)1x x x +211x =x 2+7+211x这样,分式422681x x x 被拆分成了一个整式x 2+7与一个分式211x 的和.(2)由422681x x x =x 2+7+211x 知, 对于x 2+7+211x ,当x=0时,这两个式子的和有最小值,最小值为8,即422681x x x 的最小值为8.作业8设x ,y ,z 为互不相等的三个非零实数,且111x y z y z x+=+=+,求xyz 的值. 【答案】1± 【解析】由已知111x y z y z x +=+=+,11x y y z +=+,11y zx y z y zy--=-=得y z zy x y -=-,同理可得,z x zx y z -=-,x y xy z x-=-,所以1y z z x x y zy zx xy x y y z z x ---⋅⋅=⋅⋅=---,即()21xyz =,故1xyz =±。
1.1.1分式 课件(人教版八年级下)

【方法一点通】 判别分式的“两关键” 关键一:
A 关键二:B B中必须含有字母.
的形式(A,B都是整式);
知识点二
分式有、无意义,值为零的条件
【示范题2】(2012·黔南州中考)若分式 | x | -1 的值为0, 则x的值为________. 【教你解题】
1 2 xy 1 ① ;② ;③ ;④ ; a at 2 哪些属于分式,哪些属于整式?
【思路点拨】
解题 关键点 看分母
特点
结论
含字母
不含字母
分式
整式
【自主解答】 属于分式的是: 1
2 y2 ① ;② ;⑤ ; at x-6 属于整式的是: a xy 1 2 2 2 ③ ;④ ;⑥ (a b ) . 2 3
12 3 所以当x取任意实数时,分式
m-2n 2m n
(x- ) + >0, 均有意义. 2 4 答案:(1)≠〒1 (2)≠〒1 2x- (3)2 3 m≠-n (4)取任意实数 x 2-x 1
【方法一点通】 分式值为零的条件及求法
1.条件:分子为0,分母不为0.
2.求法: (1)利用分子等于0,构建方程. (2)解方程,求出所含字母的值. (3)代入验证:将所求的值代入分母,验证是否使分母为0,若 分母不为0,所求的值使分式值为0,否则,应舍去.
(2)当x_____时,分式
x 2-1
【解析】(1)由x2-1=0,得x=〒1.所以当x≠〒1时, 分式 2x 有意义.
2 x -1 (2)由│x│- 1=0,得x=〒1.所以当x≠〒1时,分式
2 ( |3பைடு நூலகம்x )当 | -1 2m+n≠0即2m≠-n时,分式
1.1 认识分式(第1课时)一等奖创新教案

1.1 认识分式(第1课时)一等奖创新教案第五章分式与分式方程1 认识分式(第1课时)●教学目标1.能用分式表示现实情境中的数量关系,体会分式的模型思想,进一步发展符号感.2.了解分式的概念,明确分式与整式的区别.●过程与方法1.经历用字母表示现实情境中数量关系的过程,了解分式的概念,体会分式的模型思想,进一步发展符号感.2.使学生经历分析、类比、归纳等活动,培养学生的自学能力,获得学习代数知识的常用方法.●情感、态度与价值观1.通过教材土地沙化问题的情境,体会保护人类生存环境的重要性.2.培养学生类比联想的思维习惯.●重点与难点【重点】分式的概念.【难点】理解和掌握分式有意义的条件.●教学准备【教师准备】多媒体课件.【学生准备】回忆小学学过的分数的有关知识及七年级学过的整式的有关知识.●新课导入【问题】下列式子中哪些是整式哪些是单项式哪些是多项式a,-3x2y3,5x-1,x2+xy+y2,.解:a,-3x2y3,5x-1,x2+xy+y2,是整式;a,-3x2y3,是单项式;5x-1,x2+xy+y2是多项式.一、认识分式1.分式初探解决下列问题:(1)一箱苹果售价a元,箱子与苹果的总质量为m kg,箱子的质量为n kg,则每千克苹果的售价是多少元(2)一块土地分为两块棉田,第一块x公顷,收棉花m千克,第二块y公顷,收棉花n千克,这块土地平均每公顷的棉产量是多少(3)文林书店库存一批图书,其中一种图书的原价是每册a元,现每册降价x元销售,当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,文林书店这种图书的库存量是多少根据学生交流、讨论,可得出结果.解:(1). (2) kg. (3)册.2.认识分式问题1刚才这些代数式有什么共同特征它们与整式有什么不同学生分组交流讨论,展示讨论结果,教师及时补充.它们的共同特征:(1)它们是由分子、分母与分数线构成的;(2)分母中都含有字母.它们与整式的不同点:它们的分母中都含有字母,而整式的分母中不含有字母,例如,,它们都含有分母,但分母中都不含有字母,所以它们是整式.一般地,用A,B表示两个整式,A÷B可以表示成的形式.如果B中含有字母,那么称为分式,其中A称为分式的分子,B称为分式的分母.问题2分式中,字母可以取任意实数吗学生领会分式的概念并思考得出:不可以.因为分式中分母含有字母,而分母是除式,不能为零,因此字母的取值就受到制约,即字母的取值不能使分母为零,否则分式就会失去意义.问题3在什么情况下分式的值为0学生通过类比分数的性质得出:分式的分子为0的时候,分式的值为0.讨论目的:以小组的形式对前面出现的式子进行讨论,进而得出分式的概念,体会分式的意义.讨论内容:(针对前面列出的三个代数式)这些代数式有什么共同特征它们与整式有什么不同老师提出思考问题:(1)整式中的分母有没有字母(2)前面的三个代数式中,分母中有没有字母(3)前面的三个代数式是不是分数呢(4)前面的三个代数式中,字母能取任意值吗(5)前面的三个代数式的值在什么情况下为零问题预设:学生会比较容易发现这几个式子的分母中都含有字母,但容易与整式中有数字分母的情况混淆,把字母等同于数字看待,这就无法顺利总结出分式的概念.2.认识分式根据学生的观察、讨论,老师进行总结:这三个代数式的共同特征是分母中都含有字母,而整式中虽然也有分母,但分母中不含字母.这样的代数式我们称为分式.一般地,用A,B表示两个整式,A÷B可以表示为的形式,如果B中含有字母,那么称为分式.其中A称为分式的分子,B称为分式的分母.对于任意一个分式,分母都不能为零.●课堂小结1.分式的概念.一般地,用A,B表示两个整式,A÷B可以表示成的形式,如果B中含有字母,那么称为分式.其中A称为分式的分子,B称为分式的分母.2.分式有意义的条件.分式有意义的条件是分母不为0.分式的值为0的条件是分子等于0,且分母不等于0.●布置作业【必做题】教材第109页随堂练习的1,2题.【选做题】教材第109页习题5.1的1,2,3题.●教学后记:。
湘教版数学八年级上册1.1《分式的基本性质》教学设计

湘教版数学八年级上册1.1《分式的基本性质》教学设计一. 教材分析湘教版数学八年级上册1.1《分式的基本性质》是本册教材的第一课时,主要介绍了分式的概念和分式的基本性质。
本节课的内容是学生学习分式的基础,对于学生理解分式的本质和后续学习分式的运算具有重要意义。
教材通过例题和练习题引导学生理解和掌握分式的基本性质,为后续的学习打下基础。
二. 学情分析八年级的学生已经学习了实数、代数式等基础知识,具备一定的逻辑思维能力和运算能力。
但是,对于分式的概念和性质可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
此外,学生在学习过程中可能存在对分式概念理解不深、对分式性质记忆不牢的问题,需要在教学过程中加以引导和纠正。
三. 教学目标1.理解分式的概念,掌握分式的基本性质。
2.能够运用分式的基本性质进行简单的分式运算。
3.培养学生的逻辑思维能力和运算能力。
四. 教学重难点1.分式的概念和基本性质的理解。
2.分式基本性质的运用和分式运算的技巧。
五. 教学方法采用问题驱动法、案例教学法和练习法进行教学。
通过设置问题引导学生思考和探索,通过案例教学使学生理解和掌握分式的基本性质,通过练习巩固所学知识,提高学生的运算能力。
六. 教学准备1.教材和教学参考书。
2.课件和教学素材。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过提问实数、代数式的相关知识,引导学生进入新的学习内容,引出分式的概念。
2.呈现(15分钟)讲解分式的定义,通过实例使学生理解分式的概念。
接着呈现分式的基本性质,引导学生思考和探索,通过讲解和示范使学生理解和掌握分式的基本性质。
3.操练(10分钟)根据分式的基本性质,让学生进行一些简单的分式运算,引导学生运用所学的知识,巩固对分式基本性质的理解。
4.巩固(10分钟)让学生解答一些有关分式的练习题,检验学生对分式基本性质的理解和掌握程度,对学生的错误进行纠正和指导。
5.拓展(10分钟)引导学生思考分式的基本性质在实际问题中的应用,通过实例使学生认识到分式基本性质的重要性,培养学生的应用能力。
初中数学分式知识点归纳

初中数学分式知识点归纳分式是初中数学中的一个重要内容,分式的概念和运算在解决实际问题中有着广泛的应用。
在这篇文章中,我将对初中数学中常见的分式知识点进行归纳,帮助学生更好地理解和掌握分式。
一、分式的定义和基本性质分式可以表示为a/b的形式,其中a称为分子,b称为分母。
分式的值可以为整数、小数或无理数。
在分式中,分子和分母都可以是整数、代数式或其他形式。
1.1 分式的定义分式是用一个数的算式表示另一个数。
1.2 分式的基本性质(1)两个分数相等的充要条件是分子与分母分别相等。
(2)分子分母的积是一个确定的数,即a/b * b/a = 1。
(3)一个分数乘以或除以一个非零数,其值不变,即a/b * c = ac/b,a/b ÷ c = a/b * 1/c。
(4)分子分母同时乘(或除)以同一个非零数,不改变分数的值,即a/b = a * c /b * c,a/b = a ÷ c /b ÷ c。
二、分式的基本运算分式的运算包括加法、减法、乘法和除法四种基本运算,下面将逐一介绍这些运算的具体方法。
2.1 分式的加法和减法(1)同分母的分式相加(减):保持分母不变,分子相加(减),结果的分子写在分数线上,分母不变。
(2)异分母的分式相加(减):找到它们的公倍数作为新的分母,然后将分子按照原来的分母和新分母的比例相加(减),得到的结果即为最简分数,如果需要化简,在得到的结果上进行约分。
2.2 分式的乘法分式的乘法中,将两个分式的分子相乘作为新的分子,分母相乘作为新的分母,并将结果化简为最简分数。
2.3 分式的除法分式的除法可以转化为分式的乘法,即将除号转化为乘号,同时将除数的分子与被除数的分母相乘作为新的分子,将除数的分母与被除数的分子相乘作为新的分母,并将结果化简为最简分数。
三、分式的化简和分式方程的解法化简分式的目的是将分式转化为最简分数的形式,使得分子和分母互质。
化简分式的方法包括约分和转换为连分数等。
八年级数学上册第1章分式1.1分式分式的定义
2018秋季(qiūjì)
数学 八年级 上册•X
第1章 分式(fēnshì)
1.1 分式 第1课时(kèshí) 分式的定义
第一页,共十二页。
分式的基本概念
如果 f、g 分别表示两个整式,并且 g 是 含有(hán yǒu)字的母非零整式,那么代数
式gf叫作分式,其中 f 是分式的 分子(fē,nzǐg) 是分式的 分母(fē,nmgǔ)≠0.
A.分式的值为零
B.分式的值不存在
C.当 a=-13时,分式的值为零
D.当 a≠-13时,分式的值为零
第八页,共十二页。
14.轮船在静水中每小时航行 a km,水流速度为每小时 b km,该轮船顺水
5 航行 5 km,需要 a+b 小时.
15.使分式|x|-x 1的值存在,x 的取值是 x≠±1
.
2+b=0 解:根据题意,得- -33- +ab=0
,解得ab= =- -32
x+3 ,∴原分式为x-2,∴当
1+3 x=1 时,原式=1-2=-4.
第十一页,共十二页。
内容(nèiróng)总结
第1章 分式(fēnshì)。数学 八年级 上册•X。解:(1)x≠-1。(2)x≠±2.。(2)x=2.。 x≠±1
A.2 或-1
B.0
C.2
D.-1
4.分式|xx|+-33的值为零,则 x 的值为( A )
A.3 C.±3
B.-3 D.任意实数
5.代数式|x|-3 4的值存在时,x 应满足的条件为 x≠±4 .
24 6.已知三角形一边长为 a,面积为 12,则这边上的高为 a .
第五页,共十二页。
7.代数式:①x+2 y;②x-1 y;③a-π2b;④x-12y;⑤32;⑥-2+3y;⑦35x中 整式有 ①③⑤⑥ ,分式有 ②④⑦ (填序号). 8.当 x 取何值时,下列分式有意义?
湘教版七年级数学上册教案
湘教版七年级数学上册教案课程简介本教案是针对湘教版七年级数学上册而编写的,主要涉及整式与分式、一次方程、图形的认识与绘制以及坐标系等内容。
本教案旨在帮助学生掌握基本的数学概念与方法,提高数学思维和创造力。
教学目标1.理解整式与分式的概念,学会整式和分式的加法和减法运算;2.掌握解一元一次方程的方法,能够用代数方法解决实际问题;3.学会使用直尺和量角器绘制几何图形,理解坐标系的概念和使用方法;4.培养学生的数学思维和创造力,提高认识各种数学概念的能力。
教学内容Unit1 整式与分式1.1 整式1.1.1 整式的概念1.1.2 整式的加法和减法1.1.3 整式的化简1.2 分式1.2.1 分式的概念1.2.2 分式的加法和减法1.2.3 分式的化简Unit2 一次方程2.1 解一元一次方程2.1.1 一元一次方程的概念2.1.2 解一元一次方程的方法2.1.3 实际问题中的一元一次方程Unit3 图形的认识和绘制3.1 直线和角度3.1.1 直线的概念3.1.2 角度的概念3.2 几何图形的绘制3.2.1 直线、线段和射线的绘制3.2.2 角的绘制Unit4 坐标系4.1 坐标系和直角坐标系4.1.1 坐标系的概念4.1.2 直角坐标系的概念4.2 点的坐标4.2.1 点的坐标的概念4.2.2 点在坐标系中的位置4.2.3 标明点的坐标教学方法本课程采用课堂讲解与实践相结合的教学方法。
讲解中,老师将依次介绍课程的重要知识点,讲解实际例题,让学生能够理解并掌握知识点。
在实践中,老师将引导学生进行小组讨论,通过考虑问题、分析问题、解决问题,培养学生的数学思维和创造力。
教学评估1.课堂练习:老师将在每个课堂结束时自由安排练习,让学生总结知识点,巩固课堂内容;2.期中考试:在上半学期结束时,将安排期中考试,检查学生对本课程的掌握程度;3.实际操作:在过程中引导学生进行实际操作,检查学生能否正确地使用知识点;4.期末考试:在本学期结束时进行期末考试,全面检查学生对本科目的掌握情况。
《整式与因式分解》、《分式》章节-概述说明以及解释
《整式与因式分解》、《分式》章节-概述说明以及解释1.引言1.1 概述概述部分是整篇文章的开头,应该在简单介绍整式与因式分解、分式等概念的基础上,概括地介绍本章节的内容安排和目的。
以下是对概述部分的内容编写建议:在《整式与因式分解》、《分式》章节中,我们将深入探讨与代数相关的两个重要概念:整式与因式分解、分式。
这些概念不仅在数学上具有重要意义,而且在实际问题中具有广泛的应用。
在第一部分,我们首先回顾了整式的定义和特点。
整式是由常数、变量和运算符号(如加减乘除和乘方)组成的代数表达式。
我们将深入理解整式的基本性质,探讨如何进行整式的简化、展开和因式分解,从而帮助我们更好地理解和解决实际问题。
接下来,我们将进入第二部分,即因式分解的概念和方法。
因式分解是将一个多或高次整式拆分成可以约简的乘积形式的过程。
我们将学习并探索常见的因式分解方法,如提公因式法、配方法、分组分解法等,以及它们在实际问题中的应用。
通过因式分解,我们可以更有效地处理复杂的代数表达式,简化计算过程,精确地得出结果。
然后,我们将进一步深入研究分式的定义和性质。
分式是由整式构成的比值,形如a/b,其中a和b分别为整式。
我们将学习如何简化和等价分式,并研究分式的基本运算法则,包括加减乘除、约分等操作。
此外,我们还将探索分式在实际问题中的应用,如分数方程、比例问题等,以培养我们在解决实际问题时的分析思维和解决能力。
最后,我们将在结论部分总结整式与因式分解以及分式的重要性。
整式与因式分解是代数学习的重要基础,对于我们理解高阶代数概念和解决实际问题具有重要意义。
分式,作为整式的扩展,为我们处理更加复杂和抽象的代数问题提供了更灵活的工具和方法。
通过本章的学习,我们将具备扎实的整式与因式分解、分式的理论基础,并能够熟练运用相关概念和方法解决实际问题。
希望读者能够通过阅读本章的内容,深入理解整式与因式分解以及分式的本质,为进一步的数学学习打下坚实的基础。
1.1.1分式概念
s
ab a-b
说一说
分式的值等于0的条件是什么?
结论
分式
f g
=0的条件为
f g
0 0
小知识
当x=
时,分式 x 1 值为0. x 1
分析:f g
f 0 = 0的条件 g 0
答: x=-1
例1当x取什么数时,分式
2 x1 3 x5
的值
(1)不存在? (2)等于0?
5 解(1)当3x-5=0时,即 x= 3 ,分式的值不存在.
探究
分式中的分母应满足什么条件?为什么?
分式中的分母应不等于零,
即
f g
中
g≠0
,否则分式 f
g
的值不存在.
分式
1.1
分式的值
返回
分式 1.1
分式的简单应用
返回
做一做
轮船在静水中每小时走a千米,水流速
度为每小时b千米,轮船在逆流中航行s千
米,然后又返回出发地,那么轮船需要的
时间是
小时。
s
每公顷产稻谷
kg.
依次填: s , s , a b 8 x xy
分式的定义:
代数式 a , s , a b 有什么共同点?
x x xy
一个多项式f 除以一个非零整式g(g 中含有字
母), 所得的商记作 f ,把代数式 f 叫作分式,
g
g
其中f是分式的分子,g是分式的分母,g≠0.
例如: a , s , a b …是分式 x x xy
am bn
混合后,平均每千克价格 m n 元。
中考 试题
小李要打一份12000字的文件,第一天她打 字2小时,打字速度为w字/分,第二天她打字 速度比第一天快了10字/分,两天打完全部文 件,第二天她打字用的时间为 12000120w 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2-2x+1
,
c
3(a-b)
(4).
1
a
(2). (5).
x-1
(3). (6).
2m 2
2a+b
3m+2 x2-1
x-y
3a-b
x +3 4x -5
4. 当x取什么值时,分式
(1)有意义;
(2) 不存在;
(3)值等于0?
当堂检测
x2 4 1、已知分式 x2
(1) 当x为何值时,分式的值不存在?
由于技术改革,实际每天多加工b个,则 成任务。实际少用
m a
-
m 天。 a+b
m 天可以完 a+b
1
2、下列式子哪些是分式,哪些是整式?
x
x , 3 , 3b2+5 3 x2-y2 m+n x2+2x+1 3、下列分式中的字母满足什么条件时分式有意义?
(1). 2
4
,
2a-5
,
x x+1
,
m-n
,
当分母2x-1=0,
即
x=1 2 时,分式的值不存在.
合作探究三 求分式的值
(1)x=3;
x5 求分式 x 6
的值: (2)x=-0.4.
2a -1 a +3
50 m _公顷; (1)某村有m个人,耕地50公顷,人均耕地面积为___ 2s ; (2)△ABC的面积为S,BC边长为a,高AD为________ a
A ).
2 x -1有意义,分母不能为0,所以x-1≠0,x≠1,故选A.
B.x>1
C.x=1ຫໍສະໝຸດ D.x≠0例2若分式 x -1 的值为零,则x的值等于 x - 1=0 , 解析 由题意得: ∴ x =-1. 1 x -1≠0 .
-1
.
例 3 当 x= 2
解析
时,分式
3 2 x -1 的值不存在.
(2) 当x为何值时,分式有意义? (3) 当x为何值时,分式的值为零? (4) 当x= - 3时,分式的值是多少?
2、教材P3的第3题
合作探究一
分式的定义
下列式子中,哪些是分式?哪些是整式? 他们有何区别?
1 , x x , 3 1 , 3b 2 5 2a 5 , 4 x , mn , mn
合作探究二 分式有意义、无意义,分式的值为0
例1
解析
2 若分式x -1 有意义,则x的取值范围是(
A.x≠1
要使分式
x -1
澧斓中学八年级数学备课组
1.1
分式(1)
——分式的概念
学习目标:
1、能根据分式的概念,辨别出分式,理解当分母 为零时,分式的值不存在。 2、能确定分式中字母的取值范围,使分式有意义, 或使分式的值为零。 3、会用分式表示实际问题中的数量关系,并会求 分式的值。
自学指导:阅读教材P1-3的内容,思考下列问题。
1、什么是分式? 2、使分式有意义、值不存在、值为零的条件分别 是什么?
自学检测:回答下列问题。
1、如果f、g分别表示两个( ),并且g中含有( ), 那么代数式 叫做( )。其中f是分式的( ),g是分式的 ( ),且( ),这样分式才有意义。
2、分式 (
f 有意义的条件是( ),分式 的值不存在的条件是 g ),分式 值为0的条件是( )。
,那么这个梯形的高是
练习
1. 填空:
(3)一块梯形木板的面积为6m2,如果梯形上底是a m,下底是b m
12 a+b
m.
(4)一辆汽车行驶 a千米用b小时,它的平均速度为____千米/时;一列火 车行驶a千米比这辆汽车少用1小时,它的平均车速为____ 千米/时.
a ba
b-1
(5) 某工厂接到加工m个零件的订单,原计划每天加工a个,