高三数学函数解析式
高三数学解析式试题答案及解析

高三数学解析式试题答案及解析1.定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),则当-1≤x≤0时,f(x)=________.【答案】-x(x+1)【解析】当-1≤x≤0时,0≤x+1≤1,由已知f(x)=f(x+1)=-x(x+1).2.定义域为R的函数满足,且当时,,则当时,的最小值为()A.B.C.D.【答案】A【解析】设,则,则,又,∴,∴当时,取到最小值为.【考点】1、函数的解析式;2、二次函数的最值.3.运货卡车以每小时x千米的匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油()升,司机的工资是每小时14元.(1)求这次行车总费用y关于x的表达式;(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.【答案】(Ⅰ);(Ⅱ) km/h时,最低费用的值为.【解析】(Ⅰ)行车总费用包括两部分:一部分是油耗;另一部分是司机工资,首先表示出行车时间为,故司机工资为(元),耗油为(元),故行车总费用为二部分的和;(Ⅱ),由基本不等式可求最小值,注意等号成立的条件(时取等号),如果等号取不到,可考虑利用对号函数的图象,通过单调性求最值.试题解析:(Ⅰ)设所用时间为,.所以,这次行车总费用y关于x的表达式是(或,)(Ⅱ)仅当,即时,上述不等式中等号成立答:当km/h时,这次行车的总费用最低,最低费用的值为26元【考点】1、函数的解析式;2、基本不等式.4.已知若则等于()A.B.C.D.【答案】D.【解析】.【考点】函数的解析式.5.若定义在R上的函数满足,且当时,,函数,则函数在区间内的零点个数为()A.9B.7C.5D.4【答案】C【解析】∵,∴,当时,,,∴,∴,通过画图找两个图像的交点个数,即零点个数.【考点】1.求函数解析式;2.分段函数图像.6.若,则的表达式为()A.B.C.D.【答案】C【解析】设,则,所以,所以,选D.【考点】求函数的解析式.7.已知函数,则满足方程的所有的的值为;【答案】0或3【解析】试题分析若,则或,解得a=3或a="0."【考点】1.分段函数;2.对数方程和指数方程.8.对于函数,如果存在锐角使得的图象绕坐标原点逆时针旋转角,所得曲线仍是一函数,则称函数具备角的旋转性,下列函数具有角的旋转性的是A.B.C.D.【答案】C【解析】若函数f (x )逆时针旋转角后所得曲线仍是一函数,则函数f (x )的图象与任一斜率为1的直线y=x+b 均不能有两个以上的交点 A 中函数与直线y=x 有两个交点,不满足要求; B 中函数y=lnx 与直线y=x-1有两个交点,不满足要求; C 中函数与直线y=x+b 均有且只有一个交点,满足要求;D 中函数y=x 2与直线y=x 有两个交点,不满足要求;故选C. 【考点】旋转变换点评:本题考查的知识点是函数的定义,其中根据函数的定义分析出函数f (x )的图象与任一斜率为1的直线y=x+b 均不能有两个以上的交点,是解答本题的关键.9. 已知函数在点处的切线方程为 (1)求函数的解析式;(2)若对于区间[-2,2]上任意两个自变量的值都有求实数c 的最小值.【答案】(1) f(x)=x 3-3x. (2) c 的最小值为4. 【解析】(1)f′(x)=3ax 2+2bx -3. 根据题意,得即解得所以f(x)=x 3-3x.(2)令f′(x)=0,即3x 2-3=0,得x =±1.(-2,-,f(1)=-2,所以当x ∈[-2,2]时,f(x)max =2,f(x)min =-2. ( 需列表格或者说明单调性,否则扣2分)则对于区间[-2,2]上任意两个自变量的值x 1,x 2,都有|f(x 1)-f(x 2)|≤|f(x)max -f(x)min |=4, 所以c≥4.即c 的最小值为4.【考点】本题主要考查导数的几何意义,应用导数研究函数的单调性、最值,待定系数法。
高三数学一轮教案函数的解析式

芯衣州星海市涌泉学校§函数的解析式【复习目的】掌握求函数的解析式的三种常用方法:配凑法、待定系数法、换元法;能将一些简单实际问题中的函数关系用解析式表示出来。
【重点难点】复合函数的解析式【课前预习】具有性质()()()fxy fx fy=+的函数是〔〕A.2x B.2log xC.2x D.2x函数()(0,1)x xf xaa a a-=+>≠,且(1)3f=,那么(0)(1)(2)f f f++的值是。
设1()(0,1)1f x x xx=≠≠-,那么[[()]}f f f x的函数式为〔〕A.11x-B.31(1)x-C.x-D.x假设()23f x x=+,(2)()g x f x+=,那么()g x的表达式为〔〕A.21x+B.21x-C.23x-D.27x+5.假设一次函数()y f x=在区间[-1,2]上的最小值为1,最大值为3,那么()y f x=的解析式为。
【典型例题】例1动点P从边长为1的正方形ABCD的顶点A出发,顺次经过B、C、D,再回到A.设x表示P点的行程,y表示PA 的长,求y关于x的函数解析式,并写出这个函数的定义域和值域。
例2设二次函数f〔x〕满足f〔x-2〕=f〔-x-2〕,且图象在y轴上的截距为1,被x轴截得的线段长为2 2,求f〔x〕的解析式。
例3〔1〕(21)xf x e-=,那么()f x=;〔2〕2(c o s 1)s i n f x x -=,那么()f x =;〔3〕2211x x x f x x +++⎛⎫= ⎪⎝⎭,那么()f x =。
【稳固练习】1.函数2()f x x a x b =++满足(1)0f =,(2)0f =,那么(1)f -的值是〔〕 A .5B .-5C .6D .-62.设函数y=f 〔x 〕图象如下列图,那么函数f 〔x 〕的解析式为〔〕AC .2|1|x -D .22||1x x -+3.假设21111f x x ⎛⎫+=- ⎪⎝⎭,那么()f x =;4.假设函数y=f 〔x 〕满足f 〔x+1〕=4f 〔x 〕,那么f 〔x 〕的解析式为〔〕A .4xB .4〔x+1〕C .log4xD .4x【本课小结】【课后作业】2(1)21f x x +=+,求(1)f x -的表达式。
高中数学基础之函数及其表示

1.一种优先意识 函数定义域是研究函数的基础依据,对函数的研究,必须坚持定义域优先的 原则. 2.两个关注点 (1)分段函数是一个函数. (2)分段函数的定义域、值域是各段定义域、值域的并集.
核心考点突破
考点一 函数的概念
【例1】 (1)下列对应是从集合A到B的函数是( A ) A.A=N,B=N,f:x→y=(x-1)2 B.A=N,B=R,f:x→y=± x C.A=N,B=Q,f:x→y=x-1 1 D.A={衡中高三·一班的同学},B=[0,150],f:每个同学与其高考数学的分 数相对应
为相等函数.
3.函数的表示法 表示函数的常用方法有 解析法 、图象法和 列表法 .
4.分段函数 (1)若函数在其定义域的不同子集上,因 对应关系 不同而分别用几个不同的
式子来表示,这种函数称为分段函数. (2)分段函数的定义域等于各段函数的定义域的 并集 ,其值域等于各段函数
的值域的 并集 ,分段函数虽由几个部分组成,但它表示的是一个函数.
角度3:待定系数法求函数解析式 【例2-3】 已知f(x)是一次函数,且满足3f(x+1)- 2f(x-1)=2x+17,则f(x)=__2_x_+__7__.
[思路引导] 设f(x)=ax+b(a≠0)→代入已知条件→解出a、b→得f(x).
[解析] 设f(x)=ax+b(a≠0),则3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a -2b=ax+5a+b,
角度2:分段函数与不等式问题
【例3-2】 (1)已知函数f(x)= 1)≤1的解集是_(_-__∞__,__-__1_+___2_]_.
-x+1,x<0, x-1,x≥0,
则不等式x+(x+1)f(x+
(2)设函数f(x)= _a_≤___2___.
高三数学一次函数与二次函数试题答案及解析

高三数学一次函数与二次函数试题答案及解析1.已知函数.(1)当时,求函数的极值;(2)若函数在区间上是减函数,求实数a的取值范围;(3)当时,函数图象上的点都在所表示的平面区域内,求实数a的取值范围.【答案】(1)极大值;(2);(3).【解析】本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的极值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,将代入中,对求导,令,,判断函数的单调性,所以当时,函数取得极值;第二问,将题目转化为在上恒成立,再转化为在上恒成立,再转化为,利用配方法求函数的最小值,解出a的取值范围;第三问,将题目转化为当时,不等式恒成立,即,讨论a的值,在每一种情况下判断单调性,求函数最值,验证.试题解析:(1)当时,,,由解得,由解得,故当时,的单调递增;当时,单调递减,∴当时,函数取得极大值.(2),∵函数在区间上单调递减,∴在区间上恒成立,即在上恒成立,只需2a不大于在上的最小值即可. 6分而,则当时,,∴,即,故实数a的取值范围是. 8分(3)因图象上的点在所表示的平面区域内,即当时,不等式恒成立,即恒成立,设(),只需即可.由,(ⅰ)当时,,当时,,函数在上单调递减,故成立.(ⅱ)当时,由,令,得或,①若,即时,在区间上,,函数在上单调递增,函数在上无最大值,不满足条件;②若,即时,函数在上单调递减,在区间上单调递增,同样在上无最大值,不满足条件.(ⅲ)当时,由,因,故,则函数在上单调递减,故成立.综上所述,实数a的取值范围是. 12分【考点】导数的运算、利用导数判断函数的单调性、利用导数求函数的极值.2.若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a等于________.【答案】1【解析】函数f(x)=x2-ax-a的图像为开口向上的抛物线,∴函数的最大值在区间的端点取得,∵f(0)=-a,f(2)=4-3a,∴或解得a=1.3.已知a、b为非零向量,,若,当且仅当时,取得最小值,则向量a、b的夹角为___________.【答案】【解析】设向量的夹角为,则,构造函数,因为当且仅当时,取得最小值,所以当时,函数有最小值,即时,函数有最小值,又,所以解得.【考点】1.向量;2.二次函数.4.已知二次函数f(x)=ax2+bx+c (a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤.(1)求f(1)的值;(2)证明:a>0,c>0;(3)当x∈[-1,1]时,函数g(x)=f(x)-mx (x∈R)是单调函数,求证:m≤0或m≥1.【答案】(1)f(1)=1. (2)见解析(3)见解析【解析】(1)解∵对x∈R,f(x)-x≥0恒成立,当x=1时,f(1)≥1,又∵1∈(0,2),由已知得f(1)≤=1,∴1≤f(1)≤1.∴f(1)=1.(2)证明∵f(1)=1,∴a+b+c=1.又∵a-b+c=0,∴b=.∴a+c=.∵f(x)-x≥0对x∈R恒成立,∴ax2-x+c≥0对x∈R恒成立.∴,∴∴c>0,故a>0,c>0.(3)证明∵a+c=,ac≥,由a>0,c>0及a+c≥2,得ac≤,∴ac=,当且仅当a=c=时,取“=”.∴f(x)=x2+x+.∴g(x)=f(x)-mx=x2+x+=[x2+(2-4m)x+1].∵g(x)在[-1,1]上是单调函数,∴2m-1≤-1或2m-1≥1.∴m≤0或m≥1.5.已知函数对任意的满足,且当时,.若有4个零点,则实数的取值范围是.【答案】【解析】由题意得函数为偶函数,因此当有4个零点时,在上有且仅有两个零点,所以即【考点】二次函数的图象与性质,零点问题6.已知是虚数单位,以下同)是关于的实系数一元二次方程的一个根,则实数,.【答案】【解析】由题意是方程的另一根,因此,,.【考点】实系数二次方程的复数根.7.若x1,x2是函数f(x)=x2+mx-2(m∈R)的两个零点,且x1<x2,则x2-x1的最小值是________.【答案】2【解析】Δ=m2+8>0(m∈R),x2-x1==≥28.已知函数f(x)=(1)若x<a时,f(x)<1恒成立,求a的取值范围;(2)若a≥-4时,函数f(x)在实数集R上有最小值,求实数a的取值范围.【答案】(1)a≤log2(2)a>时,函数f(x)有最小值【解析】(1)因为x<a时,f(x)=4x-4×2x-a,所以令t=2x,则有0<t<2a.当x<a时f(x)<1恒成立,转化为t2-4×<1,即>t-在t∈(0,2a)上恒成立.令p(t)=t-,t∈(0,2a),则p′(t)=1+>0,所以p(t)=t-在(0,2a)上单调递增,所以≥2a-,所以2a≤,解得a≤log2.(2)当x≥a时,f(x)=x2-ax+1,即f(x)=+1-,当≤a时,即a≥0时,f(x)=f(a)=1;min当>a时,即-4≤a<0,f(x)=f=1-.min当x<a时,f(x)=4x-4×2x-a,令t=2x,t∈(0,2a),则h(t)=t2-t=-,=h=-;当<2a,即a> 时,h(t)min当≥2a,即a≤时,h(t)在开区间t∈(0,2a)上单调递减,h(t)∈(4a-4,0),无最小值.综合x≥a与x<a,所以当a> 时,1>-,函数f(x)=-;min当0≤a≤时,4a-4<0<1,函数f(x)无最小值;当-4≤a<0时,4a-4<-3≤1-,函数f(x)无最小值.综上所述,当a>时,函数f(x)有最小值.9.设函数f(x)的定义域为D,若存在非零实数n使得对于任意x∈M(M⊆D),有x+n∈D,且f(x +n)≥f(x),则称f(x)为M上的n高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的k高调函数,那么实数k的取值范围是________.【答案】[2,+∞)【解析】即(x+k)2≥x2在[-1,+∞)上恒成立,即2kx+k2≥0在x∈[-1,+∞)上恒成立,故实数k满足2k>0且-2k+k2≥0,解得k≥2.10.已知函数的值域是,则实数的取值范围是 ( )A.;B.;C.;D..【答案】C【解析】二次函数的图象是开口向下的抛物线,最大值为4,且在时取得,而当或时,,(也可考虑在是单调递增,在上单调递减),故本题中的取值范围是.【考点】二次函数的的值域.11.已知向量,,其中.函数在区间上有最大值为4,设.(1)求实数的值;(2)若不等式在上恒成立,求实数的取值范围.【答案】(1)1;(2) .【解析】(1)通过向量的数量积给出,利用数量积定义求出,发现它是二次函数,利用二次函数的单调性可求出;(2)由此,不等式在上恒成立,观察这个不等式,可以用换元法令,变形为在时恒成立,从而,因此我们只要求出的最小值即可.下面我们要看是什么函数,可以看作为关于的二次函数,因此问题易解.试题解析:(1)由题得又开口向上,对称轴为,在区间单调递增,最大值为4,所以,(2)由(1)的他,令,则以可化为,即恒成立,且,当,即时最小值为0,【考点】(1)二次函数的单调性与最值;(2)换元法与二次函数的最小值.12.如图,长为20m的铁丝网,一边靠墙,围成三个大小相等、紧紧相连的长方形,那么长方形长、宽、各为多少时,三个长方形的面积和最大?【答案】小长方形的长和宽分别是,2.5时,三个长方形的面积最大为25.【解析】通过假设小长方形的一边再根据周长为20m,即可表示出小长方形的另一边.因为这三个长方形是大小相等长方形,所以可以表示出三个长方形的面积和并求出面积的最大值.本小题主要是以二次函数的最值为知识点形成一个简单的应用题.试题解析:设长方形长为x m,则宽为 m,所以,总面积= =.所以,当时,总面积最大,为25,此时,长方形长为 2.5 m,宽为 m.【考点】1.二次函数的应用.2.二次最的求法.13.已知点,点在曲线:上.(1)若点在第一象限内,且,求点的坐标;(2)求的最小值.【答案】(1);(2).【解析】 (1) 本小题可以通过坐标法来处理,首先根据点在第一象限内设其(),然后根据两点间距离公式,再结合点在曲线:上,联立可解得,即点的坐标为;(2) 本小题根据(1)中所得其中代入可得(),显然根据二次函数可知当时,.试题解析:设(),(1)由已知条件得 2分将代入上式,并变形得,,解得(舍去)或 4分当时,只有满足条件,所以点的坐标为 6分(2)其中 7分() 10分当时, 12分(不指出,扣1分)【考点】1.坐标法;2.二次函数求最值14.已知数列满足且是函数的两个零点,则等于()A.24B.32C.48D.64【解析】由题意,则,两式相除,所以成等比数列,成等比数列,而,则,所以,又,所以.故选D【考点】1.二次函数根与系数的关系;2.等比数列的性质.15.已知定义在R上的偶函数f(x)满足:∀x∈R恒有f(x+2)=f(x)-f(1).且当x∈[2,3]时,(x+1)在(0,+∞)上至少有三个零点,则实数a的取值范围为f(x)=-2(x-3)2.若函数y=f(x)-loga___________.【答案】.【解析】由题意得当时,即,又函数为偶函数,则有,所以,则有,可知函数的周期为2,并且当时,,可得函数在上的图像如图所示,要使在上至少有三个零点,则,且,所以,即,则.【考点】二次函数和对数函数的图像与性质.16.设不等式的解集为M.(1)如果,求实数的取值范围;(2)如果,求实数的取值范围.【答案】(1)或;(2).【解析】本题考查含参一元二次不等式的解法及二次函数图像的性质等基础知识,考查转化思想、分类讨论思想等数学思想方法.第一问,由于抛物线开口向上,要使不等式的解集不为,只需;第二问,一元二次不等式含参数,对应的一元二次方程是否有解取决于,所以本问讨论的三种情况,在每一种情况下,求出方程的根,写出不等式的解集,利用子集关系列出不等式,求的取值范围.试题解析:(1),,∴或. 4分(2)①当,即时,,满足题意; 6分②当时,或,时,,不合题意;时,,满足题意; 8分③当,即或时,令,要使,只需, 10分得,综上,. 12分【考点】1.二次函数的判别式;2.含参一元二次不等式的解法.17.已知函数的定义域是R,则实数的取值范围是( )A.(0,2)B.(-2,2)C.[-2,2]D.【解析】由已知得,恒成立,所以,解得.【考点】二次函数的图像与性质18.椭圆的左右焦点分别为、,点是椭圆上任意一点,则的取值范围是()A.B.C.D.【答案】D【解析】由椭圆定义知,,且椭圆的长轴长为,焦距为,所以,令,则,令,由二次函数的性质可知,函数在处取得最大值,即,函数在或处取得最小值,由于,故,即的取值范围是,故选D.【考点】1.椭圆的定义;2.二次函数的最值19.已知二次函数,满足,且,若在区间上,不等式恒成立,则实数m的取值范围为 .【答案】【解析】由可知,那么,所以由,化简整理得:,所以有,,所以二次函数的解析式为:.由已知得在区间上,不等式恒成立,即恒成立,只要即可.又,对称轴是,开口向上,所以函数在区间是单调递减的,所以函数在区间上的最小值是:,所以.【考点】1.求二次函数的解析式;2.二次函数的图像与性质;3.二次函数在闭区间上的最值;4.函数与不等式的恒成立问题20.已知函数,若且对任意实数均有成立.(1)求表达式;(2)当是单调函数,求实数的取值范围.【答案】(1);(2).【解析】本题考查导数的运算以及二次函数的判别式、单调性等基础知识,考查运算能力和分析问题解决问题的能力,考查数形结合思想.第一问,对求导得到解析式,因为,所以得到,又因为恒成立,所以,两式联立解出和,从而确定解析式;第二问,先利用第一问的结论,得到的解析式,再根据二次函数的单调性,确定对称轴与区间端点的大小关系解出的取值.试题解析:(1)∵,∴.∵,∴,∴,∴.∵恒成立,∴∴∴,从而,∴.(6分)(2) .∵在上是单调函数,∴或,解得,或.∴的取值范围为.(12分)【考点】1.导数的运算;2.二次函数的性质.21.设,二次函数的图象为下列之一,则的值为()A.B.C.1D.【答案】D【解析】因为,故对称轴不可能为轴,由给出的图可知对称轴在轴右侧,故,所以二次函数的图象为第三个图,图象过原点,故又,所以,选D.【考点】二次函数图象和性质.22.函数.若的定义域为,求实数的取值范围.【答案】.【解析】由的定义域为可知恒成立,这时要分和两种情况讨论,当时,比较简单,易得结果,当时,函数为二次函数,要使恒成立,由二次函数的图象应有,,如此便可求出的取值范围.试题解析:(1)当时,,的定义域为,符合题意;(2)当时,,的定义域不为,所以;(3)当时,的定义域为知抛物线全部在轴上方(或在上方相切),此时应有,解得;综合(1),(2),(3)有的取值范围是.【考点】二次函数、函数的定义域.23.二次函数f(x)满足f (x+1)-f (x)=2x且f (0)=1.⑴求f (x)的解析式;⑵在区间[-1,1]上,y=f (x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.【答案】(1);(2).【解析】(1)根据二次函数满足条件,及,可求,,从而可求函数的解析式;(2)在区间上,的图象恒在的图象上方,等价于在上恒成立,等价于在上恒成立,求出左边函数的最小值,即可求得实数的取值范围.试题解析:(1)由,令,得;令,得.设,故解得故的解析式为.(2)因为的图像恒在的图像上方,所以在上,恒成立.即:在区间恒成立.所以令 ,故在上的最小值为,∴ .【考点】二次函数的性质.24.已知函数是二次函数,不等式的解集是,且在区间上的最大值为12.(1)求的解析式;(2)设函数在上的最小值为,求的表达式.【答案】(1);(2)①当,即时,;②当时,;③当,即时,.【解析】(1)由题意先设函数的解析式,再由条件解其中的未知数,可得二次函数解析式;(2)由(1)知函数的解析式,可得函数的对称轴为,再讨论对称轴是在区间上,还是在区间外,分别得的表达式.试题解析:(1)是二次函数,且的解集是可设 2分在区间上的最大值是由已知,得 5分. 6分(2)由(1)知,开口向上,对称轴为, 8分①当,即时,在上是单调递减,所以; 10分②当时,在上是单调递减,所以; 12分③当,即时,在对称轴处取得最小值,所以. 14分【考点】1、二次函数的解析式的求法;2、二次函数的性质.25.设为实数,则___________【答案】4【解析】本题先得到x的范围,然后利用配方法将关于x的二次函数配方,进而求出最大值。
2.1函数的解析式及定义域与值域

科 目数学 年级 高三 备课人 高三数学组 第 课时 2.1函数的解析式及定义域与值域考纲定位 理解函数的概念;掌握简单函数的定义域的求法;掌握求解析式的常用方法.疑难提示 1、要注意区间的正确表示,特别是分清开区间与闭区间的区别;2、简单函数的定义域和值域的求法;3、对符号()y f x =的理解及解析式的求法.【考点整合】1、函数的概念设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,其中x 的取值范围A 叫函数的 , 叫函数的值域,值域是 的子集.2、函数的三要素: 为函数的三要素.两函数相同,当且仅当3、函数的表示法有 , 和 .4、映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的元素y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个映射.5、函数定义域的求法:6、基本初等函数的值域:(一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数)【真题演练】1、(2011 浙江)设函数20()0x x f x x x -≤⎧=⎨>⎩若()4f a =,则实数a =( )A.-4或-2B.-4或2C.-2或4D.-2或22、(2012 江西)下列函数中,与函数31y x=定义域相同的函数是( ) A.1sin y x = B.ln x y x = C.x y xe = D.sin x y x= 3、(2012 江西)设函数211()lg 1x x f x x x ⎧+≤=⎨>⎩若((10))f f =( ) A.lg101 B.2 C.1 D.04、(2012 安徽)下列函数中,不满足(2)2()f x f x =的是( )A.()||f x x =B.()||f x x x =-C.()1f x x =+D.()f x x =-5、(2012 江苏)函数6()12log f x x =-的定义域为6、(2010 江苏)已知函数210()10x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的取值范围是【经典例题】一、函数的定义域:例1、(1)函数(1)y x x x =-+的定义域为 ; (2)函数02lg(2)(1)12x y x x x -=+-+-的定义域为 ;(3)已知函数()y f x =的定义域是[0,4],则2(1)(3)y f x f x x =++-的定义域是变式训练:1、若函数(1)y f x =+的定义域是[-2,3),则(21)y f x =-的定义域是2、若函数1()x f x e x m=-+的定义域是R ,则实数m 的取值范围是 二、函数的值域例2、分别求下列函数的值域(1)1y x =+ (2)22y x x =-+ (3)22([0,3])y x x x =-+∈ (4)213x y x +=- (5) (6)21y x x =+-变式训练:求下列函数的值域(1)246([1,5))y x x x =-+∈ (2)(0)cx d y a ax b+=≠+其中 (3)21y x x =-- (4)22225(12)1x x y x x x ++=≤≤++三、函数的解析式例3、(1)已知二次函数()f x 的最小值为4,且(2)(0)6f f ==,求()f x 的解析式(2)已知2(1)f x x x +=+,求()f x 的解析式;(3)已知2()()32f x f x x +-=+,求()f x 的解析式(4)已知函数2y x x =+与函数()y g x =的图象关于点(-2,3)对称,求()g x 的解析式(5)设()f x 是R 上的函数,且满足(0)1f =,并且对任意实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的解析式变式训练:(1)已知2211()f x x x x +=+,求()f x ;(2)已知12()()3f x f x x+=,求()f x ;【作业】《胜券在握》P4页第1、2题;【上本作业】《胜券在握》P4页第3、4、5题.。
高考数学重难点第9讲-函数的定义域、解析式与值域8大题型(新高考用)(解析版)(全国通用)(老师专用

重难点第9讲 函数定义域、解析式与值域8大题型——每天30分钟7天掌握函数定义域、解析式与值域8大题型【命题趋势】函数的定义域、解析式与值域问题是高考数学的必考内容。
函数问题定义域优先,在解答函数问题时切记要先考虑定义域;函数解析式在高考中较少单独考查,多在解答题中出现;函数的值域在整个高考范畴应用的非常广泛,例如恒成立问题、有解问题、数形结合问题;基本不等式及“耐克函数”、“瘦腰函数”模型;数列的最大项、最小项;向量与复数的四则运算及模的最值;向量与复数的几何意义的最值;解析几何的函数性研究问题等;都需要转化为求最值问题。
在复习过程中,在熟练掌握基本的解题方法的同时,要多加训练综合性题目。
第1天 认真研究满分技巧及思考热点题型【满分技巧】一、求函数的定义域的依据函数的定义域是指使函数有意义的自变量的取值范围 1、分式的分母不能为零.2、偶次方根的被开方数的被开方数必须大于等于零,(2,)n k k N *=∈其中中0,x ≥(21,)n k k N *=+∈其中中.3、零次幂的底数不能为零,即0x 中0x ≠.4、如果函数是一些简单函数通过四则运算复合而成的,那么它的定义域是各个简单简单函数定义域的交集。
【注意】定义域用集合或区间表示,若用区间表示熟记,不能用“或”连接,而应用并集符号“∪”连接。
二、抽象函数及定义域求法1、已知)(x f 的定义域为A ,求))((x g f 的定义域,其实质是)(x g 的取值范围为A ,求x 的取值范围;2、已知))((x g f 的定义域为B ,求)(x f 的定义域,其实质是已知))((x g f 中的x 的取值范围为B ,求)(x g 的范围(值域),此范围就是)(x f 的定义域.3、已知))((x g f 的定义域,求))((x h f 的定义域,要先按(2)求出)(x f 的定义域.三、函数解析式的四种求法1、待定系数法:若已知函数的类型(如一次函数、二次函数等),可用待定系数法.(1)确定所有函数问题含待定系数的一般解析式; (2)根据恒等条件,列出一组含有待定系数的方程; (3)解方程或消去待定系数,从而使问题得到解决。
高三数学复习(理):第4讲 二次函数与幂函数

第4讲 二次函数与幂函数[学生用书P23]1.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质 解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞) (-∞,+∞)值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞⎝⎛⎦⎥⎤-∞,4ac -b 24a 单调性在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递减; 在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递增 在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递增; 在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递减 对称性 函数的图象关于x =-b2a 对称常用结论一元二次不等式恒成立的条件(1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0且Δ<0”;(2)“ax2+bx+c<0(a≠0)恒成立”的充要条件是“a<0且Δ<0”.2.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y=x 12,y=x-1.(2)五种幂函数的图象(3)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数y=2x 12是幂函数.()(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.()(3)当n<0时,幂函数y=x n是定义域上的减函数.()(4)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是4ac-b24a.()(5)二次函数y=ax2+bx+c,x∈R不可能是偶函数.()(6)在y=ax2+bx+c(a≠0)中,a决定了图象的开口方向和在同一直角坐标系中的开口大小.()答案:(1)×(2)√(3)×(4)×(5)×(6)√二、易错纠偏常见误区|K(1)二次函数图象特征把握不准; (2)二次函数单调性规律掌握不到位;(3)忽视对二次函数的二次项系数的讨论出错; (4)对幂函数的概念理解不到位.1.如图,若a <0,b >0,则函数y =ax 2+bx 的大致图象是________.(填序号)解析:由函数的解析式可知,图象过点(0,0),故④不正确.又a <0,b >0,所以二次函数图象的对称轴为x =-b2a >0,故③正确.答案:③2.若函数y =mx 2+x +2在[3,+∞)上是减函数,则m 的取值范围是________.解析:因为函数y =mx 2+x +2在[3,+∞)上是减函数, 所以⎩⎪⎨⎪⎧m <0,-12m ≤3,即m ≤-16. 答案:⎝ ⎛⎦⎥⎤-∞,-163.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是________. 解析:因为函数f (x )=ax 2+x +5的图象在x 轴上方,所以⎩⎪⎨⎪⎧a >0,Δ=12-20a <0,解得a >120.答案:⎝ ⎛⎭⎪⎫120,+∞4.当x ∈(0,1)时,函数y =x m 的图象在直线y =x 的上方,则m 的取值范围是________.答案:(-∞,1)[学生用书P24]幂函数的图象及性质(自主练透)1.幂函数y =f (x )的图象经过点(3,33),则f (x )是( ) A .偶函数,且在(0,+∞)上是增函数 B .偶函数,且在(0,+∞)上是减函数 C .奇函数,且在(0,+∞)上是增函数 D .非奇非偶函数,且在(0,+∞)上是减函数解析:选C.设幂函数f (x )=x α,代入点(3,33),得33=3α,解得α=13,所以f (x )=x 13,可知函数为奇函数,在(0,+∞)上单调递增.2.若幂函数y =x -1,y =x m 与y =x n 在第一象限内的图象如图所示,则m 与n 的取值情况为( )A .-1<m <0<n <1B .-1<n <0<mC .-1<m <0<nD .-1<n <0<m <1解析:选D.幂函数y =x α,当α>0时,y =x α在(0,+∞)上为增函数,且0<α<1时,图象上凸,所以0<m <1;当α<0时,y =x α在(0,+∞)上为减函数,不妨令x =2,根据图象可得2-1<2n ,所以-1<n <0,综上所述,选D.3.若a =⎝ ⎛⎭⎪⎫1223,b =⎝ ⎛⎭⎪⎫1523,c =⎝ ⎛⎭⎪⎫1213,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <c <aD .b <a <c解析:选D.因为y =x 23在第一象限内是增函数,所以a =⎝ ⎛⎭⎪⎫1223>b =⎝ ⎛⎭⎪⎫1523,因为y =⎝ ⎛⎭⎪⎫12x是减函数,所以a =⎝ ⎛⎭⎪⎫1223<c =⎝ ⎛⎭⎪⎫1213,所以b <a <c .4.若(a +1)12<(3-2a )12,则实数a 的取值范围是________.解析:易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数, 所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.答案:⎣⎢⎡⎭⎪⎫-1,23(1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.二次函数的解析式(师生共研)(一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【解】 方法一:(利用一般式) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f (x )=-4x 2+4x +7. 方法二:(利用顶点式) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12.所以m =12.又根据题意函数有最大值8,所以n =8,所以f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.方法三:(利用零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数有最大值8, 即4a (-2a -1)-a 24a =8.解得a =-4,所以所求函数的解析式为f (x )=-4x 2+4x +7.求二次函数解析式的方法根据已知条件确定二次函数的解析式,一般用待定系数法,但所给条件不同选取的求解方法也不同,选择规律如下:1.已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R .都有f (1+x )=f (1-x )成立,则f (x )的解析式为____________.解析:由f (0)=3,得c =3, 又f (1+x )=f (1-x ),所以函数f (x )的图象关于直线x =1对称, 所以b2=1,所以b =2, 所以f (x )=x 2-2x +3. 答案:f (x )=x 2-2x +32.已知二次函数y =f (x )的顶点坐标为⎝ ⎛⎭⎪⎫-32,49,且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式是________________.解析:设f (x )=a ⎝ ⎛⎭⎪⎫x +322+49(a ≠0),方程a ⎝ ⎛⎭⎪⎫x +322+49=0的两个根分别为x1,x2,则|x1-x2|=2-49a=7,所以a=-4,所以f(x)=-4x2-12x+40.答案:f(x)=-4x2-12x+40二次函数的图象与性质(多维探究)角度一通过图象识别二次函数如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的结论是()A.②④B.①④C.②③D.①③【解析】因为二次函数的图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,①正确;对称轴为x=-1,即-b2a=-1,2a-b=0,②错误;结合图象,当x =-1时,y>0,即a-b+c>0,③错误;由对称轴为x=-1知,b=2a,又函数图象开口向下,所以a<0,所以5a<2a,即5a<b,④正确.故选B.【答案】 B确定二次函数图象应关注的三个要点一是看二次项系数的符号,它确定二次函数图象的开口方向.二是看对称轴和最值,它确定二次函数图象的具体位置.三是看函数图象上的一些特殊点,如函数图象与y轴的交点、与x轴的交点,函数图象的最高点或最低点等.从这三个方面入手,能准确地判断出二次函数的图象.反之,也可以从图象中得到如上信息.角度二 二次函数的单调性函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是单调递减的,则实数a 的取值范围是________.【解析】 当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足条件. 当a ≠0时,f (x )的对称轴为x =3-a 2a ,由f (x )在[-1,+∞)上单调递减知⎩⎨⎧a <0,3-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 【答案】 [-3,0]【迁移探究】 (变条件)若函数f (x )=ax 2+(a -3)x +1的单调递减区间是[-1,+∞),求a 为何值?解:因为函数f (x )=ax 2+(a -3)x +1的单调递减区间为[-1,+∞),所以⎩⎪⎨⎪⎧a <0,a -3-2a=-1,解得a =-3.对于二次函数的单调性,关键是确定其图象的开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.角度三 二次函数的最值问题设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值. 【解】 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1.当t +1<1,即t <0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t >1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值f (t )=t 2-2t +2.综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.角度四 一元二次不等式恒成立问题(1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是____________.(2)已知函数f (x )=x 2+2x +1,f (x )>x +k 在区间[-3,-1]上恒成立,则k 的取值范围为____________.【解析】 (1)作出二次函数f (x )的草图,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0.(2)由题意得x 2+x +1>k 在区间[-3,-1]上恒成立.设g (x )=x 2+x +1,x ∈[-3,-1],则g (x )在[-3,-1]上递减.所以g (x )min =g (-1)=1.所以k <1.故k 的取值范围为(-∞,1).【答案】 (1)⎝ ⎛⎭⎪⎫-22,0 (2)(-∞,1)由不等式恒成立求参数取值范围一般有两个解题思路:一是分离参数,二是不分离参数.两种思路都是将问题归结为求函数的最值,若不分离参数,则一般需要对参数进行分类讨论求解;若分离参数,则a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .1.已知abc >0,则二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D.A 项,因为a <0,-b 2a <0,所以b <0.又因为abc >0,所以c >0,而f (0)=c <0,故A 错.B 项,因为a <0,-b 2a >0,所以b >0.又因为abc >0,所以c <0,而f (0)=c >0,故B 错.C 项,因为a >0,-b 2a <0,所以b >0.又因为abc >0,所以c >0,而f (0)=c <0,故C 错.D 项,因为a >0,-b 2a >0,所以b <0,因为abc >0,所以c <0,而f (0)=c <0,故选D.2.函数f (x )=ax 2-2x +3在区间[1,3]上为增函数的充要条件是( )A .a =0B .a <0C .0<a ≤13D .a ≥1解析:选D.当a =0时,f (x )为减函数,不符合题意;当a ≠0时,函数f (x )=ax 2-2x +3图象的对称轴为x =1a ,要使f (x )在区间[1,3]上为增函数,则⎩⎪⎨⎪⎧a <0,1a≥3或⎩⎪⎨⎪⎧a >0,1a≤1,解得a ≥1.故选D. 3.已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为________.解析:2ax 2+2x -3<0在[-1,1]上恒成立.当x =0时,-3<0,成立;当x ≠0时,a <32⎝ ⎛⎭⎪⎫1x -132-16, 因为1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,所以a <12.综上,实数a 的取值范围是⎝ ⎛⎭⎪⎫-∞,12. 答案:⎝ ⎛⎭⎪⎫-∞,12[学生用书P26]思想方法系列4 分类讨论思想在二次函数问题中的应用已知函数f (x )=ax 2-2x (0≤x ≤1),求函数f (x )的最小值.【解】 (1)当a =0时,f (x )=-2x 在[0,1]上单调递减,所以f (x )min =f (1)=-2;(2)当a >0时,f (x )=ax 2-2x 的图象开口向上且对称轴为x =1a .①当0<1a ≤1,即a ≥1时, f (x )=ax 2-2x 的对称轴在(0,1]内,所以f (x )在⎣⎢⎡⎦⎥⎤0,1a 上单调递减,在⎝ ⎛⎦⎥⎤1a ,1上单调递增. 所以f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a =-1a ; ②当1a >1,即0<a <1时,f (x )=ax 2-2x 的对称轴在[0,1]的右侧,所以f (x )在[0,1]上单调递减.所以f (x )min =f (1)=a -2;(3)当a <0时,f (x )=ax 2-2x 的图象开口向下且对称轴x =1a <0,在y 轴的左侧,所以f (x )=ax 2-2x 在[0,1]上单调递减,所以f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1且a ≠0,-2,a =0,-1a ,a ≥1.二次函数是单峰函数(在定义域上只有一个最值点的函数),x =-b 2a 为其最值点的横坐标,在其两侧二次函数具有相反的单调性,当已知二次函数在某区间上的最值求参数时,要根据对称轴与已知区间的位置关系进行分类讨论确定各种情况的最值,建立方程求解参数.已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值.解:f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.[学生用书P281(单独成册)][A 级 基础练]1.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则a 的值为( )A .-1B .0C .1 D.-2解析:选D.函数f (x )=-x 2+4x +a 的对称轴为直线x =2,开口向下,f (x )=-x 2+4x +a 在[0,1]上单调递增,则当x =0时,f (x )的最小值为f (0)=a =-2.2.设函数f (x )=x 23,若f (a )>f (b ),则( )A .a 2>b 2B .a 2<b 2C .a <bD .a >b解析:选A.函数f (x )=x 23=(x 2)13,令t =x 2,易知y =t 13,在第一象限为单调递增函数.又f (a )>f (b ),所以a 2>b 2.故选A.3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一直角坐标系中的图象大致是( )解析:选C.若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b 2a <0,而二次函数的对称轴在y 轴的右侧,故可排除B.故选C.4.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c ,若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0解析:选A.由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-b 2a =2,所以4a +b =0,又f (0)>f (1),f (4)>f (1),所以f (x )先减后增,于是a >0,故选A.5.若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎢⎡⎦⎥⎤-254,-4,则m 的取值范围是( )A .[0,4]B .⎣⎢⎡⎦⎥⎤32,4 C.⎣⎢⎡⎭⎪⎫32,+∞ D.⎣⎢⎡⎦⎥⎤32,3 解析:选D.二次函数图象的对称轴为x =32,且f ⎝ ⎛⎭⎪⎫32=-254,f (3)=f (0)=-4,结合函数图象(如图所示)可得m ∈⎣⎢⎡⎦⎥⎤32,3.6.已知函数f (x )=(m 2-m -1)x m 2-2m -3是幂函数,且在x ∈(0,+∞)上递减,则实数m=________.解析:根据幂函数的定义和性质,得m2-m-1=1.解得m=2或m=-1,当m=2时,f(x)=x-3在(0,+∞)上是减函数,符合题意;当m=-1时,f(x)=x0=1在(0,+∞)上不是减函数,所以m=2.答案:27.已知二次函数的图象与x轴只有一个交点,对称轴为x=3,与y轴交于点(0,3),则它的解析式为________.解析:由题意知,可设二次函数的解析式为y=a(x-3)2,又图象与y轴交于点(0,3),所以3=9a,即a=13.所以y=13(x-3)2=13x2-2x+3.答案:y=13x2-2x+38.已知二次函数f(x)满足f(2+x)=f(2-x),且f(x)在[0,2]上是增函数,若f(a)≥f(0),则实数a的取值范围是________.解析:由f(2+x)=f(2-x)可知,函数f(x)图象的对称轴为x=2+x+2-x2=2,又函数f(x)在[0,2]上单调递增,所以由f(a)≥f(0)可得0≤a≤4.答案:[0,4]9.已知函数f(x)=x2+(2a-1)x-3.(1)当a=2,x∈[-2,3]时,求函数f(x)的值域;(2)若函数f(x)在[-1,3]上的最大值为1,求实数a的值.解:(1)当a=2时,f(x)=x2+3x-3,x∈[-2,3],对称轴x=-32∈[-2,3],所以f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214, f (x )max =f (3)=15,所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤-214,15. (2)对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,所以6a +3=1,即a =-13满足题意;②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,所以-2a -1=1,即a =-1满足题意.综上可知,a =-13或a =-1.10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.解:(1)设f (x )=ax 2+bx +1(a ≠0),由f (x +1)-f (x )=2x ,得2ax +a +b =2x .所以2a =2且a +b =0,解得a =1,b =-1,因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方, 所以在[-1,1]上,x 2-x +1>2x +m 恒成立;即x 2-3x +1>m 在区间[-1,1]上恒成立.所以令g (x )=x 2-3x +1=⎝ ⎛⎭⎪⎫x -322-54, 因为g (x )在[-1,1]上的最小值为g (1)=-1,所以m <-1.故实数m 的取值范围为(-∞,-1).[B 级 综合练]11.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关解析:选B.f (x )=⎝ ⎛⎭⎪⎫x +a 22-a 24+b ,①当0≤-a 2≤1时,f (x )min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b ,1+a +b },所以M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a 2<0时,f (x )在[0,1]上单调递增,所以M -m =f (1)-f (0)=1+a 与a 有关,与b 无关;③当-a 2>1时,f (x )在[0,1]上单调递减,所以M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关.综上所述,M -m 与a 有关,但与b 无关.故选B.12.已知函数f (x )=2ax 2-ax +1(a <0),若x 1<x 2,x 1+x 2=0,则f (x 1)与f (x 2)的大小关系是( )A .f (x 1)=f (x 2)B .f (x 1)>f (x 2)C .f (x 1)<f (x 2)D .与x 的值无关解析:选C.由题知二次函数f (x )的图象开口向下,图象的对称轴为x =14,因为x 1+x 2=0,所以直线x =x 1,x =x 2关于直线x =0对称,由x 1<x 2,结合二次函数的图象可知f (x 1)<f (x 2).13.定义:如果在函数y =f (x )定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,则实数m 的取值范围是________.解析:因为函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,设x 0为均值点,所以f (1)-f (-1)1-(-1)=m =f (x 0),即关于x 0的方程-x 20+mx 0+1=m 在(-1,1)内有实数根,解方程得x 0=1或x 0=m -1.所以必有-1<m -1<1,即0<m <2,所以实数m 的取值范围是(0,2).答案:(0,2)14.已知幂函数f (x )=(m -1)2xm 2-4m +3(m ∈R )在(0,+∞)上单调递增.(1)求m 的值及f (x )的解析式;(2)若函数g (x )=-3f 2(x )+2ax +1-a 在[0,2]上的最大值为3,求实数a的值.解:(1)幂函数f (x )=(m -1)2xm 2-4m +3(m ∈R )在(0,+∞)上单调递增,故⎩⎪⎨⎪⎧(m -1)2=1,m 2-4m +3>0,解得m =0,故f (x )=x 3. (2)由f (x )=x 3,得g (x )=-3f (x )2+2ax +1-a =-x 2+2ax +1-a , 函数图象为开口方向向下的抛物线,对称轴为x =a .因为在[0,2]上的最大值为3,所以①当a ≥2时,g (x )在[0,2]上单调递增,故g (x )max =g (2)=3a -3=3,解得a =2.②当a ≤0时,g (x )在[0,2]上单调递减,故g (x )max =g (0)=1-a =3,解得a =-2.③当0<a <2时,g (x )在[0,a ]上单调递增,在[a ,2]上单调递减,故g (x )max =g (a )=a 2+1-a =3,解得a =-1(舍去)或a =2(舍去).综上所述,a =±2.[C 级 提升练]15.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值; (2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0,且-b 2a =-1,解得a =1,b =2,所以f (x )=(x +1)2.所以F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.所以F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意知f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2.所以-2≤b ≤0. 故b 的取值范围是[-2,0].。
高三文科数学一轮复习第二节函数的值域与解析式

第二节 函数的值域与解析式1.函数的值域在函数y =f (x )中,与自变量x 的值相对应的y 的值叫函数值,函数值的集合叫函数的值域.求函数的值域与最值没有通性通法,只能根据函数解析式的结构特征来选择对应的方法求解,常见的有:(1)形如y =ax +b cx +d(c ≠0)的函数,可用分离常数法,将函数化为y =a c +m cx +d(其中m 为常数)形式. (2)形如y =a x +b a x +c 或y =sin x -1sin x +2的函数可用反解法. (3)二次函数y =ax 2+bx +c (a ≠0)及二次型函数y =a [f (x )]2+b [f (x )]+c (a ≠0)可用配方法及换元法.(4)形如y =ax +b ±cx +d (a ,b ,c ,d 为常数,ac ≠0)的函数,可用换元法. 设cx +d =t (t ≥0),转化为二次函数求值域.(5)形如y =x +k x (k >0,x >0)的函数可用均值不等式法或函数单调性求解,注意使用均值不等式时要满足条件“一正二定三相等”.(6)对于分段函数或含有绝对值符号的函数(如y =|x -1|+|x +4|)可用分段求值域(最值)或数形结合法.[温馨提示] (1)熟记基本初等函数的值域①y =kx +b (k ≠0)的值域是R .②y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞;当a <0时,值域为⎝⎛⎦⎥⎤-∞,4ac -b 24a .③y =k x (k ≠0)的值域是{y |y ∈R 且y ≠0}.④y =a x (a >0且a ≠1)的值域是(0,+∞).⑤y =log a x (a >0且a ≠1)的值域是R .⑥y =sin x ,y =cos x 的值域是[-1,1].⑦y =tan x 的值域是R .(2)利用配方法、判别式法、基本不等式求值域时,一定注意等号是否成立,必要时注明“=”成立的条件.2.函数解析式的求法(1)换元法:若已知f []g (x )的表达式,求f (x )的解析式,通常是令g (x )=t ,从中解出x =φ(t ),再将g (x )、x 代入已知解析式求得f (t )的解析式,即得函数f (x )的解析式,这种方法叫做换元法,需注意新设变量“t ”的范围.(2)待定系数法:若已知函数类型,可设出所求函数的解析式,然后利用已知条件列方程(组),再求系数.(3)消去法:若所给解析式中含有f (x )、f ⎝ ⎛⎭⎪⎫1x 或f (x )、f (-x )等形式,可构造另一个方程,通过解方程组得到f (x ).(4)配凑法或赋值法:依据题目特征,能够由一般到特殊或由特殊到一般寻求普遍规律,求出解析式.[小题速练]1.(2018·河南平顶山模拟)已知函数f (x )=2x +1(1≤x ≤3),则( )A .f (x -1)=2x +2(0≤x ≤2)B .f (x -1)=2x -1(2≤x ≤4)C .f (x -1)=2x -2(0≤x ≤2)D .f (x -1)=-2x +1(2≤x ≤4)[解析] 因为f (x )=2x +1,所以f (x -1)=2x -1.因为函数f (x )的定义域为[1,3],所以1≤x -1≤3,即2≤x ≤4,故f (x -1)=2x -1(2≤x ≤4).选B.[答案] B2.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( )A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x[解析] 用待定系数法,设g (x )=ax 2+bx +c (a ≠0),∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧ a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧ a =3,b =-2,c =0,∴g (x )=3x 2-2x ,选B.[答案] B3.函数f (x )=33x -3的值域为( ) A .(-∞,-1)B .(-1,0)∪(0,+∞)C .(-1,+∞)D .(-∞,-1)∪(0,+∞) [解析] 由3x -3≠0,得x ≠1,所以3x -3>-3且3x -3≠0.当-3<3x -3<0时,33x -3<-1;当3x -3>0时,33x -3>0.故f (x )的值域为(-∞,-1)∪(0,+∞).[答案] D4.已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )=________. [解析] 令2x +1=t ,则x =2t -1,∴f (t )=lg 2t -1. ∴f (x )=lg 2x -1,x ∈(1,+∞). [答案] lg 2x -1,x ∈(1,+∞) 5.函数y =x 2+2x 在x ∈[0,3]时的值域为________.[解析] y =x 2+2x =(x +1)2-1,y =(x +1)2-1在[0,3]上为增函数,∴0≤y ≤15,即函数y =x 2+2x 在x ∈[0,3]的值域为[0,15].[答案] [0,15]考点一 求函数的值域——基础考点求下列函数的值域:(1)y =x -3x +1; (2)y =x -1-2x ;(3)y =x 2+x +1x +1; (4)y =log 3x +log x 3-1.[思路引导] (1)分离常数法.(2)换元法,令1-2x =t (t ≥0)转化为二次函数的值域或利用函数单调性求最值.(3)去分母,转化为关于x 的二次方程,利用判别式“Δ”求y 的取值范围.(4)均值不等式.[解] (1)y =x -3x +1=x +1-4x +1=1-4x +1. 因为4x +1≠0,所以1-4x +1≠1, 即函数的值域是{y |y ∈R ,y ≠1}.(2)解法一:令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎩⎨⎧y ⎪⎪⎪⎭⎬⎫y ≤12. 解法二:函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12,所以y ≤f ⎝ ⎛⎭⎪⎫12=12,即函数的值域是⎩⎨⎧ y ⎪⎪⎪⎭⎬⎫y ≤12. (3)x ≠-1且由已知得x 2+(1-y )x +1-y =0(*)方程有解,∴Δ=(1-y )2-4(1-y )≥0,即y 2+2y -3≥0解得y ≥1或y ≤-3由x =-1不满足(*)∴函数的值域为(-∞,-3]∪[1,+∞)(4)函数定义域为{x |x ∈R ,x >0,且x ≠1}.当x >1时,log 3x >0,于是y =log 3x +1log 3x -1≥2 log 3x ·1log 3x -1=1;当0<x <1时,log 3x <0,于是y =log 3x +1log 3x -1=-⎣⎢⎡⎦⎥⎤(-log 3x )+⎝ ⎛⎭⎪⎫1-log 3x -1≤-2-1=-3.故函数的值域是(-∞,-3]∪[1,+∞).[拓展探究] (1)若本例中(1)变为y =x -3x +1,x ∈[1,+∞)时,其值域如何求?(2)若本例中(3)变为y =x 2+x +1x +1(x >-1)其值域如何求? (3)若本例中(3)变为y =x 2+4x +1x 2+1,则其值域是________. [解析] (1)y =x -3x +1=1-4x +1, ∵函数y =1-4x +1在[1,+∞)上是增函数, ∴y ≥1-41+1=-1,故该函数的值域为[-1,+∞). (2)y =x 2+x +1x +1=(x +1)+1x +1-1,当x >-1时,(x +1)+1x +1≥2,y ≥1,当且仅当x +1=1x +1,即x =0时取等号. (3)由原函数整理得(1-y )x 2+4x +1-y =0.当1-y =0,即y =1时,x =0;当1-y ≠0,即y ≠1时,Δ=16-4(1-y )2≥0,即(1-y )2≤4, 解得-1≤y ≤3,所以-1≤y ≤3且y ≠1.综上,所求函数的值域为[-1,3].[答案] (1)[-1,+∞) (2)[1,+∞) (3)[-1,3](1)求函数值域,一定要注意到函数的定义域;(2)利用换元法时,要及时确定新变量的取值范围;(3)本例中(3)及拓展探究(3)均用了判别式“Δ”法,此方法适用y =ax 2+bx +c px 2+qx +r(ap ≠0,x ∈R )类型(即f (x )是分式函数且分子或分母至少有一个二次式,且没有公因式.解此类问题一定要检验所求最值,在定义域内是否有对应的x 值,还要注意对二次项系数是否为零的讨论),但若给定x 一个范围,则此方法不再适用,可考虑转化为其他方法求解,即拓展探究(2).[跟踪演练]1.函数y =5x -14x +2,x ∈[-3,-1]的值域为__________. [解析] 由y =5x -14x +2可得y =54-74(2x +1).∵-3≤x ≤-1,∴720≤-74(2x +1)≤74,∴85≤y ≤3,即y ∈⎣⎢⎡⎦⎥⎤85,3. [答案] y ∈⎣⎢⎡⎦⎥⎤85,3 2.函数y =2x +1-2x 的值域为__________.[解析] (代数换元法)令t =1-2x ,则x =1-t 22.∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54(t ≥0). ∴当t =12,即x =38时,y 取最大值,y max =54,且y 无最小值,∴函数的值域为⎝⎛⎦⎥⎤-∞,54. [答案] ⎝ ⎛⎦⎥⎤-∞,54 3.函数y =2-sin x 2+sin x的值域为________.[解析] 解法一:y =2-sin x 2+sin x =-1+42+sin x,因为-1≤sin x ≤1,所以1≤2+sin x ≤3,所以43≤42+sin x ≤4,所以13≤-1+42+sin x≤3,故函数的值域为⎣⎢⎡⎦⎥⎤13,3. 解法二:由已知得sin x =2-2y 1+y ,∵sin ∈[-1,1],∴-1≤2-2y 1+y≤1,即⎝ ⎛⎭⎪⎫2-2y 1+y 2≤1,解得13≤y ≤3. [答案] ⎣⎢⎡⎦⎥⎤13,3 4.函数y =|x +1|+|x -2|的值域为________.[解析] y =|x +1|+|x -2|=⎩⎪⎨⎪⎧ -2x +1,x <-1,3,-1≤x ≤2,2x -1,x >2当x <-1时,y >3;当x >2时,y >3,故函数的值域为[3,+∞).[答案] [3,+∞)考点二 求函数的解析式——冷考点求下列函数的解析式:(1)已知f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2,求f (x ). (2)已知f (1-cos x )=sin 2x ,求f (x )的解析式.(3)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ).(4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1,求f (x ).[思路引导] (1)观察x +1x 与x 2+1x 2的关系.(2)令t =1-cos x ,换元法求f (t ).(3)待定系数法,令f (x )=ax +b (a ≠0).(4)用1x 代替式中x ,解方程组求f (x ).[解] (1)∵f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2, 又x +1x ≥2或x +1x ≤-2.∴f (x )=x 2-2(x ≥2或x ≤-2).(2)∵f (1-cos x )=sin 2x =1-cos 2x ,设1-cos x =t (0≤t ≤2),则cos x =1-t ,∴f (t )=1-(1-t )2=-t 2+2t .故f (x )=-x 2+2x (0≤x ≤2).(3)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. (4)在f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中,用1x 代替x , 得f ⎝ ⎛⎭⎪⎫1x =2f (x )x -1,将f ⎝ ⎛⎭⎪⎫1x =2f (x )x -1代入f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中,得f (x )=23x +13.本例中(1)看出x +1x 与x 2+1x 2之间的关系,若令t =x +1x ,则用t表示x 并不好表示,即换元法不易求f (x ),而用配凑法却易找到关系,同时注意到x +1x 的范围.本例(2)适宜用换元法.求函数解析式的3种方法:(1)配凑法、换元法:已知f [g (x )]的解析式求f (x ),可考虑配凑或换元法.(2)待定系数法:如本例中(3),一般已知所求函数的类型或具体形式可用此法.(3)解方程组法:如本例中(4),只适用于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (x )与f (-x )类型的表达式,代换后通过解方程组求出f (x ),这种方法有局限性.[跟踪演练]1.已知f (x +1)=x +2x ,求f (x ).[解] ∵f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,∴f (x )=x 2-1(x ≥1).2.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,试求f (x )的表达式.[解] 设f (x )=ax 2+bx +c (a ≠0),由f (0)=0知c =0,f (x )=ax 2+bx .又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1,即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,故有⎩⎪⎨⎪⎧ 2a +b =b +1,a +b =1,⇒a =b =12.因此,f (x )=12x 2+12x .3.定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.[解] 当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① -x ∈(-1,1),以-x 代替x 得,2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).考点三 函数的综合问题——热考点(1)(2015·山东卷)已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.(2)设f (x )=⎩⎨⎧(x -a )2,x ≤0,x +1x +a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2][思路引导] (1)利用指数函数的单调性→建立关于a ,b的方程组→解出a ,b(2)分别求出每一段的最小值→比较最小值列式→求出a 的范围[解析] (1)当a >1时,函数f (x )=a x +b 在[-1,0]上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,无解.当0<a <1时,函数f (x )=a x +b 在[-1,0]上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎨⎧a =12,b =-2,所以a +b=-32.(2)由函数f (x )的解析式,得f (0)=a 2;当x ≤0时,f (x )≥0;当x >0时,f (x )≥2+a .∵f (0)是f (x )的最小值,∴a 2≤a +2,且a ≥0.解得0≤a ≤2.[答案] (1)-32 (2)D(1)对定义域、值域的综合问题,要注意定义域对函数值域的限制作用.即在定义域内用相应方法求值域.(2)若解析式中含有参数,要注意参数对函数值域的 影响,即要考虑分类讨论.(3)解题时要注意数形结合思想的应用,即借助图象确定函数的值域.[跟踪演练](2018·广东深圳调研)设函数f (x )=⎩⎪⎨⎪⎧2x +a ,x >2,x +a 2,x ≤2.若f (x )的值域为R ,则常数a 的取值范围是( )A .(-∞,-1]∪[2,+∞)B .[-1,2]C .(-∞,-2]∪[1,+∞)D .[-2,1][解析] 因为f (x )的值域是R ,且两段函数都是递增函数,所以4+a ≤2+a 2,解得a ≤-1或a ≥2,故选A.[答案] A利用几何意义或导数法求函数的值域素养解读:函数的值域或最值及其求法是近几年高考考查的重点内容之一.函数的值域是函数在定义域内对应的函数值的取值范围,其求解关键是确定相应的最值.因此,求解函数的值域时要求出定义域内的所有极值和端点处的函数值,并进行比较,得到函数的最值.在高考中主要考查求解函数的值域问题,从而带动对函数的最值等相关问题的考查,其应用广泛,综合性强,且解法灵活多变.在实际求解中,各种方法往往可以相互渗透,也可以多法并举.下面就几何法及导数法进行一简单介绍,后面要继续学习.(1)函数f (x )=sin x 2-cos x的值域是( )A.⎣⎢⎡⎦⎥⎤-33,33B .[-1,1]C .[-2,2]D .[-3,3](2)求函数f (x )=ln(1+x )-14x 2在[0,2]上的值域.[切入点] (1)根据式子的结构特点联想其几何意义,数形结合求解.(2)对于含有对数式的函数的值域问题,利用导数求解即可.[关键点] (1)转化为斜率型函数值域问题.(2)准确求导,利用导数求最值.[规范解答] (1)可以看成过A (2,0),B (cos x ,-sin x )两点直线的斜率,B 点在单位圆上运动.如图:易求得k 1=33,k 2=-33.∴y ∈⎣⎢⎡⎦⎥⎤-33,33.(2)由题意知,函数f (x )的定义域为(-1,+∞), 又f ′(x )=11+x -12x =(1-x )(x +2)2(1+x ),令f ′(x )=0,可得x =1或x =-2(舍去).当0≤x <1时,f ′(x )>0,f (x )单调递增;当1<x ≤2时,f ′(x )<0,f (x )单调递减.所以f (1)=ln2-14为函数f (x )在[0,2]上的最大值.又f (0)=0,f (2)=ln3-1>0,所以f (0)=0为函数f (x )在[0,2]上的最小值,故函数f (x )=ln(1+x )-14x 2在[0,2]上的值域为⎣⎢⎡⎦⎥⎤0,ln2-14.[答案] (1)A (2)⎣⎢⎡⎦⎥⎤0,ln2-14(1)几何法求值域步骤(2)求导法可以用来处理高次函数(大于等于三次)、分式函数或含有对数式的函数等相对比较复杂的函数的值域或最值问题,其关键是正确求导,利用导数与单调性的关系来求最值或值域.[感悟体验]1.函数f (x )=x 2-2x +2+x 2-4x +8的值域为________. [解析] f (x )=(x -1)2+(0-1)2+(x -2)2+(0+2)2表示x 轴上的动点P (x,0)与两定点A (1,1)和B (2,-2)的距离之和.由图可知,|P A |+|PB |≥|AB |.|AB |=10,故函数f (x )的值域为[10,+∞). [答案] [10,+∞)2.(2017·天津红桥区二模)试求函数f (x )=ln x -12x 2在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值.[解] 由于f ′(x )=1x -x =1-x 2x ,1e ≤x ≤e.令f ′(x )>0,得1e ≤x <1;令f ′(x )<0,得1<x ≤e.故f (x )在⎣⎢⎡⎭⎪⎫1e ,1上单调递增,在(1,e]上单调递减,故f (x )max =f (1)=-12.课时跟踪训练(五)[基础巩固]一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,f (x -3),x >0,则f (5)=( )A .32B .16 C.12D.132[解析] f (5)=f (5-3)=f (2)=f (2-3)=f (-1)=2-1=12,故选C. [答案] C2.(2018·烟台模拟)函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( )A .(-∞,0)∪⎝ ⎛⎦⎥⎤12,2B .(-∞,2] C.⎝ ⎛⎭⎪⎫-∞,12∪[2,+∞) D .(0,+∞)[解析] ∵x ∈(-∞,1)∪[2,5), 则x -1∈(-∞,0)∪[1,4). ∴2x -1∈(-∞,0)∪⎝ ⎛⎦⎥⎤12,2.[答案] A3.(2017·北京东城第一学期联考)若函数f (sin x )=3-cos2x ,则f (cos x )=( )A .3-cos2xB .3-sin2xC .3+cos2xD .3+sin2x[解析] f (sin x )=3-cos2x =2+2sin 2x ,所以f (cos x )=2+2cos 2x =3+cos2x .[答案] C4.下列函数中,值域是(0,+∞)的是( ) A .y =15-+1B .y =⎝ ⎛⎭⎪⎫12x-1 C .y =⎝ ⎛⎭⎪⎫131-xD .y =1-2x[解析] A 项,因为5-x +1>1,所以函数值域为(0,1);B 、D 项的函数值域为[0,+∞);C 项,因为1-x ∈R ,根据指数函数的性质可知函数的值域为(0,+∞),故选C.[答案] C5.已知f ⎝⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( ) A .(x +1)2 B .(x -1)2 C .x 2-x +1D .x 2+x +1[解析] f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =⎝ ⎛⎭⎪⎫x +1x 2-x +1x +1,令x +1x =t ,得f (t )=t 2-t +1,即f (x )=x 2-x +1.[答案] C6.(2018·江西临川一中月考)若函数y =ax 2+2ax +3的值域为[0,+∞),则a 的取值范围是( )A .(3,+∞)B .[3,+∞)C .(-∞,0]∪[3,+∞)D .(-∞,0)∪[3,+∞)[解析] 令f (x )=ax 2+2ax +3,∵函数y =ax 2+2ax +3的值域为[0,+∞),∴f (x )=ax 2+2ax +3的函数值取遍所有的非负实数,∴a 为正实数,∴该函数图象开口向上,∴只需ax 2+2ax +3=0的判别式Δ=(2a )2-12a ≥0,即a 2-3a ≥0,解得a ≥3或a ≤0(舍去).故选B.[答案] B 二、填空题7.函数y =1-x2x +5的值域为________.[解析] y =1-x 2x +5=-12(2x +5)+722x +5=-12+722x +5.∵722x +5≠0,∴y ≠-12, ∴函数y =1-x 2x +5的值域为⎩⎨⎧⎭⎬⎫y |y ≠-12. [答案] ⎩⎨⎧⎭⎬⎫y |y ≠-128.已知f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2,则f (3)=________.[解析] ∵f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x -1x 2+2(x ≠0),∴f (x )=x 2+2,∴f (3)=32+2=11.[答案] 119.若函数y =log 2(ax 2+2x +1)的值域为R ,则a 的取值范围为________.[解析] 设f (x )=ax 2+2x +1,由题意知, f (x )取遍所有的正实数.当a =0时, f (x )=2x +1符合条件;当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ=4-4a ≥0,解得0<a ≤1.所以0≤a ≤1. [答案] [0,1] 三、解答题10.求下列函数的值域: (1)y =1-x 21+x 2;(2)y =-2x 2+x +3; (3)y =x +1x +1; (4)y =x +4-x 2.[解] (1)y =1-x 21+x 2=-1-x 2+21+x 2=-1+21+x 2.由1+x 2≥1,得0<21+x 2≤2,所以-1<-1+21+x 2≤1.故函数的值域为(-1,1]. (2)y =-2x 2+x +3=-2⎝ ⎛⎭⎪⎫x -122+258. 由0≤-2⎝⎛⎭⎪⎫x -122+258≤258,得0≤y ≤524.故函数的值域为⎣⎢⎡⎦⎥⎤0,524. (3)当x >0时,x +1x ≥2,当且仅当x =1时取等号,所以x +1x +1≥3;当x <0时,x +1x =-⎝ ⎛⎭⎪⎫-x +1-x ≤-2,当且仅当x =-1时取等号,所以x +1x +1≤-1. 故函数的值域为(-∞,-1]∪[3,+∞). (4)设x =2cos θ(0≤θ≤π),则y =x +4-x 2 =2cos θ+4-4cos 2θ=2cos θ+2sin θ =22sin ⎝⎛⎭⎪⎫θ+π4由0≤θ ≤π,得π4≤θ+π4≤5π4,所以-22≤sin ⎝ ⎛⎭⎪⎫θ+π4≤1,-2≤y ≤22, 故函数的值域为[-2,22].[能力提升]11.下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x[解析] 选项A ,f (2x )=|2x |=2|x |,2f (x )=2|x |,故f (2x )=2f (x );选项B ,f (2x )=2x -|2x |=2x -2|x |,2f (x )=2x -2|x |,故f (2x )=2f (x );选项C ,f (2x )=2x +1,2f (x )=2x +2,故f (2x )≠2f (x );选项D ,f (2x )=-2x,2f (x )=-2x ,故f (2x )=2f (x ).故选C.[答案] C12.已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1] B.⎝ ⎛⎭⎪⎫-1,12 C.⎣⎢⎡⎭⎪⎫-1,12 D.⎝ ⎛⎭⎪⎫0,12 [解析] 因为当x ≥1时, f (x )=ln x ≥0, f (x )的值域为R ,所以当x <1时,f (x )=(1-2a )x +3a 的值域包含一切负数.当a =12时,(1-2a )x +3a =32不成立;当a >12时,(1-2a )x +3a >1+a ,不成立;当a <12时,(1-2a )x +3a <1+a .由1+a ≥0,得a ≥-1.所以-1≤a <12.故选C.[答案] C13.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于__________.[解析] 由已知得1⊕x =⎩⎪⎨⎪⎧1 -2≤x ≤1,x2 1<x ≤2,当x ∈[-2,2]时,2⊕x =2,∴f (x )=⎩⎪⎨⎪⎧x -2,-2≤x ≤1,x 3-2,1<x ≤2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.[答案] 614.(2013·安徽卷)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________________.[解析] 当-1≤x ≤0时,有0≤x +1≤1,所以f (1+x )=(1+x )[1-(1+x )]=-x (1+x ),又f (x +1)=2f (x ),所以f (x )=12f (1+x )=-x (x +1)2.[答案] -x (x +1)215.已知函数f (x )=(1-a 2)x 2+3(1-a )x +6. (1)若f (x )的定义域为R ,求实数a 的取值范围; (2)若f (x )的值域为[0,+∞),求实数a 的取值范围. [解] (1)①若1-a 2=0,即a =±1,(ⅰ)当a =1时,f (x )=6,定义域为R ,符合要求; (ⅱ)当a =-1时, f (x )=6x +6,定义域不为R .②若1-a 2≠0,g (x )=(1-a 2)x 2+3(1-a )x +6为二次函数, ∵f (x )的定义域为R ,∴g (x )≥0,∀x ∈R 恒成立,∴⎩⎪⎨⎪⎧1-a 2>0,Δ=9(1-a )2-24(1-a 2)≤0 ⇔⎩⎪⎨⎪⎧-1<a <1,(a -1)(11a +5)≤0⇒-511≤a <1. 综合①②得a 的取值范围是⎣⎢⎡⎦⎥⎤-511,1.(2)∵函数f (x )的值域为[0,+∞),∴函数g (x )=(1-a 2)x 2+3(1-a )x +6取一切非负实数,①当1-a 2≠0时有⎩⎪⎨⎪⎧1-a 2>0,Δ=9(1-a )2-24(1-a 2)≥0 ⇔⎩⎪⎨⎪⎧-1<a <1,(a -1)(11a +5)≥0⇒-1<a ≤-511. ②当1-a 2=0时a =±1,当a =1时,f (x )=6不合题意. 当a =-1时,f (x )=6x +6的值域为[0,+∞),符合题目要求.故所求实数a 的取值范围为⎣⎢⎡⎦⎥⎤-1,-511. 16.已知二次函数f (x )=ax 2+bx (a 、b 是常数,且a ≠0)满足条件:f (2)=0,且方程f (x )=x 有两个相等实根.(1)求f (x )的解析式;(2)是否存在实数m 、n (m <n ),使f (x )的定义域和值域分别为[m ,n ]和[2m,2n ]?如存在,求出m 、n 的值;如不存在,说明理由.[解] (1)方程f (x )=x ,即ax 2+bx =x , 亦即ax 2+(b -1)x =0,由方程有两个相等实根,得Δ=(b -1)2-4a ×0=0, ∴b =1.①由f (2)=0,得4a +2b =0,②由①、②得,a =-12,b =1,故f (x )=-12x 2+x . (2)假设存在实数m 、n 满足条件,由(1)知, f (x )=-12x 2+x =-12(x -1)2+12≤12, 则2n ≤12,即n ≤14.∵f (x )=-12(x -1)2+12的对称轴为x =1, ∴当n ≤14时,f (x )在[m ,n ]上为增函数.于是有⎩⎪⎨⎪⎧f (m )=2m ,f (n )=2n ,即⎩⎪⎨⎪⎧-12m 2+m =2m ,-12n 2+n =2n ,∴⎩⎪⎨⎪⎧m =-2或m =0,n =-2或n =0. 又m <n ≤14,∴⎩⎪⎨⎪⎧m =-2,n =0.故存在实数m =-2,n =0,使f (x )的定义域为[m ,n ],值域为[2m,2n ].[延伸拓展]设f (x ),g (x )都是定义在实数集上的函数,定义函数(f ·g )(x ):∀x∈R ,(f ·g )(x )=f [g (x )].若f (x )=⎩⎪⎨⎪⎧ x ,x >0,x 2,x ≤0,g (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,则( )A .(f ·f )(x )=f (x )B .(f ·g )(x )=f (x )C .(g ·f )(x )=g (x )D .(g ·g )(x )=g (x )[解析] 对于A ,(f ·f )(x )=f [f (x )]=⎩⎪⎨⎪⎧f (x ),f (x )>0,f 2(x ),f (x )≤0,当x >0时,f (x )=x >0,(f ·f )(x )=f (x )=x ;当x <0时,f (x )=x 2>0,(f ·f )(x )=f (x )=x 2;当x =0时,(f ·f )(x )=f 2(x )=0=02,因此对任意的x ∈R ,有(f ·f )(x )=f (x ),故A 正确,选A.[答案] A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]出生1分钟的新生儿,心率94次/分,无呼吸,四肢稍屈,无喉反射,口唇青紫全身苍白。Apgar评分为().A.5分B.4分C.3分D.2分E.1分 [单选]密度(ρ)的计算公式正确的是()。(m-质量,V-体积)A、m/VB、mVC、V/mD、1/mV [单选,A1型题]下列各项,属于湿淫证临床表现的是()。A.恶寒发热B.口腻不渴C.咽喉痒痛D.脘腹疼痛E.肠鸣腹泻 [单选]膨胀土的自由膨胀率一般超过()。A.10%B.20%C.30%D.40% [单选]车辆行驶途中突然出现制动失灵时,驾驶员应果断地将车体向有障碍的一侧碰擦,并迅速告知车上乘客向()靠拢,并抓住车内固定物。A、车后部B、车前部C、另一侧或车中间 [单选]脉压增大常见于A.主动脉瓣关闭不全B.缩窄性心包炎C.心包积液D.肺心病E.心肌炎 [单选]以下应用中,必须采用栈结构的是()。A.使一个整数序列逆转B.递归函数的调用和返回C.申请和释放单链表中的节点D.装入和卸载可执行程序 [单选]在构建和谐社会的今天,实现“教育机会均等”已经成为教育改革追求的重要价值取向。2000多年前,孔子就提出了与“教育机会均等”相类似的朴素主张,他的“有教无类”的观点体现了:()A.教育起点机会均等。B.教育过程机会均等。C.教育条件机会均等。D.教育结果机会均等。 [单选,A1型题]世界上第一部《医学伦理学》发表在()A.1913年B.1903年C.1883年D.1813年E.1803年 [单选]惊厥性全身性癫痫持续状态必须从速控制发作,并保持不再复发的时间至少为()。A.6小时B.12小时C.24小时D.48小时E.72小时 [单选]风湿性心脏病二尖瓣狭窄除心尖区听到舒张期隆隆样杂音外,另一具有诊断意义的体征是().A.心尖区粗糙的收缩期吹风样杂音B.肺动脉瓣区第二心音亢进和分裂C.胸骨右缘第2肋间收缩期杂音并向颈部传导D.心尖区舒张期震颤E.胸骨左缘第3~4肋间闻及舒张期吹风样杂音 [多选]进出境邮寄物检疫的范围是()。A.动植物、动植物产品及其他检疫物的国际邮寄物品B.来自疫区的被传染病病体污染的或可能成为传染病传播媒介的国际邮寄物品C.微生物、人体组织、生物制品、血液及其制品等特殊物品的国际邮寄物品D.通过邮政渠道运递并需实施检疫的其他国际邮寄 [多选]涌水段施工采用辅助坑道排水时应符合的要求有()。A.坑道应和正洞平行或接近平行B.坑道应和正洞斜交C.坑道底标高应低于正洞底标高D.坑道应超前正洞10〜20mE.坑道应超前正洞5m左右 [多选]下列关于计算机撮合成交的说法正确的是()。A.计算机撮合成交是根据公开喊价的原理设计的B.一般将买卖申报单以价格优先、时间优先的原则进行排序C.当买人价大于、等于卖出价时自动撮合成交D.集合竞价采用最大成交量原则 [单选,A1型题]长期全胃肠外营养(TPN)病人,出现高渗性非酮性昏迷的主要原因是()A.微量元素缺乏B.深静脉插管感染致败血症C.渗透性利尿,水、电解质失衡D.病人胰岛素方面不足E.内毒素中毒 [多选]编写规划环境影响篇章或者说明,至少包括的内容有()。A.前言B.环境现状分析C.监测与跟踪评价D.环境影响的减缓措施E.环境影响分析与评价 [单选]《建筑设计防火规范》规定,老年人建筑及托儿所、幼儿园的儿童用房和儿童游乐厅等儿童活动场所宜设置在()。A.公共建筑内B.独立的建筑内C.民用建筑内 [单选,A2型题,A1/A2型题]下述因素均可引起小细胞支气管癌,除了()A.铬与镍蒸气B.吸烟C.砷D.石棉E.硅沉着病(原称矽肺) [判断题]浮选精矿灰分高时,应减少捕收剂用量;尾矿灰分高时,想提高尾煤泥发热量,应减少捕收剂用量。A.正确B.错误 [单选,A2型题,A1/A2型题]遵守医学伦理道德,尊重患者的知情(),为患者保守医疗秘密和健康隐私,维护患者合法权益。A.选择权B.同意权C.隐私权D.同意权和隐私权 [单选]关于抗磷脂综合征,哪项叙述不准确()。A.抗磷脂综合征诊断的确立必须同时具备临床表现和持续的抗磷脂抗体阳性B.SLE患者和类风湿关节炎患者均可出现抗磷脂抗体阳性C.应根据抗磷脂抗体的滴度对患者的病情进行评估,并进行相应处理D.网状青斑为抗磷脂综合征的非特征性临床表 [单选]下列路段中,不宜在雨期进行路基施工的是()。A.碎砾石路段B.路堑弃方路段C.膨胀土路段D.丘陵区砂类土路段 [填空题]脱硫吸着剂应为()。 [填空题]私人课程大多采用()的上课形式。 [单选,A4型题,A3/A4型题]该病人胆囊造影良好,肝穿刺活检正常。你认为该患者最可能的诊断是()A.Roter综合征B.Gilbert综合征C.Dubin-Johnson综合征D.Crigler-Najjar综合征E.lucey-Driscoll综合征 [单选,A1型题]持续性枕后位的特点是()A.发生原因之一是胎头仰伸B.产妇过早感觉肛门坠胀而使用腹压C.不易发生宫颈水肿D.肛查感觉盆腔前部空虚E.阴道检查矢状缝在骨盆斜径上,前囟在骨盆后方 [多选]高速公路路基土的干湿类型状态应处于()。A.超干燥B.干燥C.中湿D.潮湿E.过湿 [单选]根据火场残留物被烧的轻重程度,一般将()初步确定为起火点。A、局部出现灰化区或炭化区的部位B、局部烧得重的部位C、现场破坏最严重的部痕迹的部位 [单选]健康城市的基本特征是()。A.和谐性、整体性B.持续性、高效性C.区域性D.参与性、独特性E.以上各条都是,但都不全面 [多选]桥梁拆除施工应根据拆除工程施工现场作业环境,制定相应的消防安全措施,施工现场应设置()等设施和器材。A.消防车通道B.消火栓C.报警器D.应急救援车E.灭火器材 [问答题,简答题]增加瓦斯嘴的操作? [判断题]从日本进口非动物源性的化妆品原料时,出口国官方不需出具证书,可凭生产厂商提供“非动物源性产品声明”报检。()A.正确B.错误 [单选]设L是以A(-1,0)、B(-3,2)、C(3,0)为顶点的三角形边界,沿ABCA方向,则曲线积分(3x-y)dx+(x-2y)dy等于()A.-8B.8C.0D.20 [多选]某施工单位根据《建筑法》和《建设工程安全生产管理条例》投保了建筑职工意外伤害保险。在保险责任有效期内,被保险人在建筑施工中遭受意外致残。由被保险人作为申请人填写保险金给付申请书,被保险人被确定残疾及其程度后,凭一系列的证明文件向保险人申请给付保险金。这些 [单选]目前我国能源消费结构按消费量划分依次为()A.石油、生物质能、煤炭、天然气、太阳能B.煤炭、石油、水电、天然气、核能C.太阳能、石油、煤炭、核能、水电D.石油、煤炭、风能、核能、生物质能 [问答题,简答题]什么叫屏蔽效应、钻穿效应? [问答题,简答题]蒸汽喷射器的工作原理是什么? [单选]美国心理学家斯坦伯格认为,智力结构由()组成。A.成分B.因素C.符号D.信息 [单选]使用“货运票据封套”的(),应左右对齐折叠。A、装载清单B、货物运单和货票C、证明文件D、杂费收据 [问答题,简答题]提升机电气设备火灾的防范措施有哪些?