四川省宜宾市第四中学校2021-2022高二数学下学期期中试题 理

合集下载

2021-2022年高二下学期期中考试数学试题word版 无答案

2021-2022年高二下学期期中考试数学试题word版  无答案

2021-2022年高二下学期期中考试数学试题word版无答案一、填空题(每题3圆,共36元)1、若复数满足,则等于2、“”是“复数2=-++∈为纯虚数”的条件.(4)(1),(,)z a a i a b R3、在底面边长为2的正三棱锥V-ABC中,E是BC的中点,若VAE的面积为,则侧棱VA 与底面所成角的正切值为4、如图为一几何体的展开图,其中ABCD是边长为6的正方体,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q及P,D,C,R共线,沿图中虚线将它们折叠,使P,Q,R,S四点重合,则这样的几何体的体积为5、已知是实系数一元二次方程的两虚根,,且,则的取值范围为(用区间表示)6、以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点的圆锥,则该圆锥与圆柱等底等高,若圆锥的轴截面是一个正三角形,则圆柱的侧面积与圆锥的侧面积之比为7、把一个半径为的金属熔成一个圆锥,使圆锥的侧面积为底面积的3倍,则此圆锥的高为8、右图是利用斜二测画法得到的水平放置的直观图,其中轴,轴,有个学生一开始不知道它是直观图,计算的面积为3,则原三角形的面积是9、在复平面上,已知直线上的点所对应的复数满足,则直线的倾斜角为 (结果用反三角函数值表示)10、正三棱锥的侧棱长为,,过点B 作侧棱AC 、AD 分别交于E 、F 的截面,则此截面周长的最小值是11、若方程在复数集中的两根为,则下列结论中正确的是(1)互为共轭虚数 (2)当时,中必有实数(3)22()4αβαβαβ-=+- (4)12、从正方体的8个顶点中选择4个顶点,对于由这4个顶点构成的四面体以下判断中,所有正确的结论是 (写出所有正确的记录编号)(1)能构成每个面都是等边三角形的四面体;(2)能构成每个面都是直角三角形的四面体;(3)能构成三个面为全等的等腰直角三角形,一个面为等边三角形的四面体;(4)不能构成三个面为不都全等的直角三角形,一个面为等边三角形的四面体.二、选择题(每题3分,共12分)13、设是平面,是三条不同的直线,则下列命题中正确的是( )A .若,,,m n l m l n αα⊂⊂⊥⊥,则B .若,则C .若,则D .若,则14、已知,满足12232---++=Z,z i z i则点Z的轨迹为()A.双曲线的一支 B.双曲线 C.一条射线 D.两条射线15、是半径为1的球的球心,点在球面上,两两垂直,分别是大圆弧和的中点,则在该球面上的球面距离是()A. B. C. D.16、如图,在底面半径和高均为1的圆锥中,AB、CD是底面圆的两条相互垂直的直径,E是母线PB的中点,已知过CD与E的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P的距离为()A.1 B. C. D.三、解答题(共52分,请写出必要的步骤)17、(本题满足8分)已知为复数,为纯虚数,,且,求18、(本题满足10分)设在直三棱柱中,,,依次为的中点.(1)求异面直线、所成角的大小(用反三角函数值表示);(2)求点C到平面的距离.19、(本题满足10分)野营活动中,学生在平地上用三根斜杆搭建一个正三棱锥的三脚支架(如图3)进行野炊训练,已知,两点间距离为.(1)求斜杆与地面所成角的大小(用反三角函数值表示)(2)将炊事锅看作一个点,用吊绳将炊事锅吊起烧水(锅的大小忽略不计),若使炊事锅到地面及各条斜杆的距离都不小于,试问吊绳长的取值范围.20、(本题满足12分)如图:是棱长为2的正方体,P为面对角线上的动点(不包括端点),交于点,于.(1)当,将长表示为的函数,并求此函数的值域;(2)当最小时,求平面与底面所成角的大小.21、(本题满足12分)已知椭圆的焦点,过点作垂直于y 轴的直线被椭圆所截得的线段长为,过作直线与椭圆交于两点.(1) 求椭圆的标准方程;(2) 是否存在实数使,若村子,求的值和直线的方程;若不存在,说明理由.松江二中xx 高二下学期期中考试试卷高二数学(第2卷)一、填空题(本大题共5小题,每小题5分,共25分)1、已知,则条件“”是条件“”的 条件2、从空间一点发出4条射线,请两两所成的角均相等,则这些角的大小是3、在复数集C 上可以定义一个称为“序”的关系,记作“”,定义如下:对于恩义两个复数1112221122,(,,,,z a b i z a b i a b a b R i =+=+∈为虚数单位),“”当且仅当“”或“且”,下面命题:(1)若,,则;(2)若,则对于任意,;(3)对于复数,若则(4)若,,则,其中真命题的是(填序号)4、在如图所示的三棱柱中,点,的中点以及的中点所确定的平面把三棱柱切割成体积不相同的两部分,问小部分的体积和大部分的体积比为5、三棱柱的底是边长为1的正三角形,高,在AB上取以点P,设与底面构成的锐角二面角为,与底面构成的锐角二面角为,则的最小值是二、选择题(本大题2小题,每小题5分,共10分)6、所有棱长均为2的四棱柱的内切球的半径为()A. B. C. D.7、若空间三条直线两两成异面直线,则与都相交的直线有()A.0条 B.1条 C.多余1条的有限条 D.无穷多条三、解答题8、如图与都是边长为2的正三角形,平面平面,平面.(1)求与面所成角的大小;(2)求点A到平面的距离;(3)求平面与平面所成锐角二面角的正弦值.37308 91BC 醼29187 7203 爃J=n27932 6D1C 洜38201 9539 锹M32674 7FA2 羢32228 7DE4 緤22658 5882 墂30973 78FD 磽1。

四川省宜宾市叙州区第二中学校2021-2022高二数学下学期期中试题 文

四川省宜宾市叙州区第二中学校2021-2022高二数学下学期期中试题 文

四川省宜宾市叙州区第二中学校2021-2022高二数学下学期期中试题文注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第I 卷 选择题(60分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知复数2i1iz =+(i 为虚数单位),则||z = A .3B .2C .3D .22.已知命题:,25xP x R ∀∈>,则p ⌝为A .,25x x R ∀∉>B .,25x x R ∀∈≤C .00,25x x R ∃∈≤D .00,25x x R ∃∈>3.设是函数cos ()x xf x e=的导函数,则(0)f '的值为 A .1B .0C .1-D .1e4. 在等比数列{}n a 中,已知36a =,35778a a a ++=,则5a = A .12 B .18 C .24 D .365.设m 、n 是两条不同的直线,α、β是两个不同的平面,下列命题中正确的是 A .若//,//m n αβ,且//αβ,则//m n B .若,m αβα⊥⊥,则//m β C .若,m n αβ⊥⊥,αβ⊥,则m n ⊥D .若//,m n αβ⊥,且αβ⊥,则//m n6.两位同学约定下午5:30-6:00在图书馆见面,且他们在:30-6:00之间到达的时刻是等可能的,先到的同学须等待,15分钟后还未见面便离开,则两位同学能够见面的概率A .1136B .14C .12D .347.某程序框图如图所示,该程序运行后输出的k 的值是A .4B .5C .6D .78.设抛物线22y px =的焦点与椭圆221204x y +=的右焦点重合,则该抛物线的准线方程为A .1x =-B .2x =-C .3x =-D .4x =- 9.已知函数()2f x x ln x =-,则函数的大致图象是A .B .C .D .10.设双曲线2222:1x y C a b-=(0,0a b >>)的左右顶点分别为12,A A ,左右焦点分别为12,F F ,以12,F F 为直径的圆与双曲线左支的一个交点为P ,若以12,A A 为直径的圆与2PF 相切,则双曲线C 的离心率为A .2B .3C .2D .511.已知函数()32f x x ax bx c =+++,那么下列结论中错误的是A .若0x 是()f x 的极小值点,则()f x 在区间()0,x -∞上单调递减B .函数()y f x =的图像可以是中心对称图形C .0x R ∃∈,使()00f x =D .若0x 是()f x 的极值点,则()00f x '=12.设函数()()()ln f x x x ax a R =-∈在区间()0,2上有两个极值点,则的取值范围是A .1,02⎛⎫- ⎪⎝⎭B .ln210,4+⎛⎫ ⎪⎝⎭C .1,02⎛⎫⎪⎝⎭D .ln211,42+⎛⎫⎪⎝⎭ 第II 卷 非选择题(90分)二、填空题:本题共4小题,每小题5分,共20分。

2021-2022年高二上学期期中考试数学试题 含答案(VIII)

2021-2022年高二上学期期中考试数学试题 含答案(VIII)

2021年高二上学期期中考试数学试题 含答案(VIII)一.填空题(每小题4分,共56分) 1.已知向量,,若,则 .2.若直线经过点,的方向向量为,则直线的点方向式方程是 . 3.已知方程表示椭圆,则的取值范围为 .4.若直线过点且点到直线的距离最大,则的方程为 .5.直线过点与以为端点的线段有公共点,则直线倾斜角的取值范围是 . 6.已知直角坐标平面内的两个向量()()1,2,1,3a b m m ==-+,使得平面内的任意一个向量都可以唯一分解成,则的取值范围为 . 7.已知△ABC 是等腰直角三角形,,则= .8.设满足约束条件⎪⎩⎪⎨⎧≤+-≥-≥310,y x y x y x ,则的取值范围为___________.9.平面上三条直线210,10,0x y x x ky -+=-=+=,如果这三条直线将平面划分为六部分,则实数的取值集合为 .10.过点作圆的切线,切点为,如果,那么的取值范围是 .11.已知椭圆内有两点为椭圆上一点,则的最大值为 .12.是边长为2的等边三角形,已知向量、满足,,则下列结论中正确的是 (写出所有正确结论的序号)①为单位向量;②为单位向量;③;④;⑤.13.已知函数与的图像相交于、两点。

若动点满足,则的轨迹方程为 . 14.记椭圆围成的区域(含边界)为,当点分别在上时,的最大值分别是,则 . 二.选择题(每小题5分,共20分)15.对任意向量,下列关系式中不恒成立的是 ( ) (A ) (B ) (C ) (D )16.直线和直线063)2(:2=++-a y x a l ,则“”是“”的 ( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 17.已知点是圆外的一点,则直线与圆的位置关系 ( )(A )相离 (B )相切 (C )相交且不过圆心 (D )相交且过圆心 18. 已知是平面上一定点, 是平面上不共线的三个点,动点满足()+∞∈⎪⎫⎛++=,0,λλ,则动点的轨迹一定通过的(A )重心 (B )垂心 (C ) 外心 (D ) 内心 ( ) 三.解答题(12分+14分+14分+16分+18分,共74分)19.已知的顶点,边上的中线所在的直线方程是,边上的高所在的直线方程是 (1)求边所在的直线方程; (2)求边所在的直线方程.20.已知直线过点且被两条平行直线和截得的线段长为,求直线的方程.21.若、是两个不共线的非零向量,(1) 若与起点相同,则实数为何值时,、、三个向量的终点在一直线上? (2) 若,且与夹角为,则实数为何值时,的值最小?22.已知点()()120,2,4,6,A B OM t OA t AB =+;(1) 若点在第二或第三象限,且,求取值范围;(2) 若R t t ∈==θθθ,sin ,cos 421,求在方向上投影的取值范围; (3) 若,求当,且的面积为12时,和的值.23.已知椭圆2222:1(0)x y C a b a b +=>>的左焦点为 短轴的两个端点分别为,且为等边三角形 . (1) 求椭圆的方程;(2) 如图,点M 在椭圆C 上且位于第一象限内,它关于坐标原点O 的对称点为N ; 过点M 作 轴的垂线,垂足为H ,直线NH 与椭圆C 交于另一点J ,若,试求以线段NJ 为直径的圆的方程;(3) 已知是过点的两条互相垂直的直线,直线与圆相交于两点,直线与椭圆交于另一点;求面积取最大值时,直线的方程.金山中学xx 第一学期高二年级数学学科期中考试卷 (考试时间:120分钟 满分:150分 俞丹萍 沈瑾)一.填空题(每小题4分,共56分) 1.已知向量,,若,则 .32.若直线经过点,的方向向量为,则直线的点方向式方程是 . 3.已知方程表示椭圆,则的取值范围为 .4.若直线过点且点到直线的距离最大,则的方程为 .5.直线过点与以为端点的线段AB 有公共点,则直线倾斜角的取值范围是 . 6.已知直角坐标平面内的两个向量()()1,2,1,3a b m m ==-+,使得平面内的任意一个向量都可以唯一分解成,则的取值范围为 . 7.已知△ABC 是等腰直角三角形,,则= .8.设满足约束条件⎪⎩⎪⎨⎧≤+-≥-≥310,y x y x y x ,则的取值范围为___________.9.平面上三条直线210,10,0x y x x ky -+=-=+=,如果这三条直线将平面划分为六部分,则实数的取值集合为 .10.过点作圆的切线,切点为,如果,那么的取值范围是 . 11.已知椭圆内有两点为椭圆上一点,则的最大值为 .12.是边长为2的等边三角形,已知向量、满足,,则下列结论中正确的是 (写出所有正确结论的序号)①为单位向量;②为单位向量;③;④;⑤. ①④⑤13.已知函数与的图像相交于、两点。

2023年高考数学复习-----以两焦点为直径的圆与渐近线相交问题典型例题讲解

2023年高考数学复习-----以两焦点为直径的圆与渐近线相交问题典型例题讲解

2023年高考数学复习-----以两焦点为直径的圆与渐近线相交问题典型例题讲解【典型例题】例1、(2022春·四川宜宾·高二四川省宜宾市第四中学校阶段练习)已知F 是双曲线2222:1(0,0)x y C a b a b −=>>的右焦点,O 为坐标原点,过F 的直线与C 的两条渐近线的交点分别为,M N ,若0OM MF ⋅=,||MN b =,则C 的离心率为________. 【答案】2 【解析】因为0OM MF ⋅=,所以OM MF ⊥,即⊥OM MF 所以MF 为点(),0F c 到渐近线0bx ay −=的距离,bcMF b c===, 所以MF MN b ==,可得点M 为NF 的中点, 又因为⊥OM MF ,所以ON OF c ==,所以222OM c b a =−=,设双曲线的左焦点为1F ,1FON θ∠=,(),N x y 则()tan tan tan bFON FON aθπ=−∠=−∠=, 因为222c a b =+,所以cos a c θ=,sin b cθ=所以cos a x ON c a c θ=−=−⋅=−,sin by ON c b cθ==⋅=, 所以(),N a b −,因为M 为NF 中点,所以,22a M c b −⎛⎫⎪⎝⎭, 222222c a b OM a −⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,将222b c a =−代入整理可得:()22224c a c a a −+−= 即222240c ac a −−=,所以220e e −−=,可得()()210e e −+=, 解得:2e =或1e =−(舍), 故答案为:2例2、(2022·山西运城·统考模拟预测)已知双曲线E :()222210,0x y a b a b −=>>的左焦点为1F ,过点1F 的直线与两条渐近线的交点分别为M ,N 两点(点1F 位于点M 与点N 之间),且13MN F N =,又过点1F 作1F P OM ⊥于P (点О为坐标原点),且ON OP =,则双曲线E 的离心率e 为__________.【解析】双曲线E :()222210,0x y a b a b−=>>的渐近线方程为b y x a =±,如图所示,设11,b M x x a ⎛⎫− ⎪⎝⎭,22,b N x x a ⎛⎫⎪⎝⎭,()1,0F c −,2121,b b MN x x x x a a ⎛⎫=−+ ⎪⎝⎭,122,b F N x c x a ⎛⎫=+ ⎪⎝⎭,由13MN F N =,得212212333x x x c b b b x x x a a a −=+⎧⎪⎨+=⎪⎩,解得123234x c x c ⎧=−⎪⎪⎨⎪=−⎪⎩. 又点1F 到直线0bx ay +=的距离1F P b =,1OF c =,∴OP a ==,则ON OP a ==,又33,44bc N c a ⎛⎫−− ⎪⎝⎭,∴234c ON a ==. 所以234c a a =,即2234c a =,∴c e a ==例3、(2022春·甘肃张掖·高三高台县第一中学校考阶段练习)过双曲线()222210,0x y a b a b −=>>的左焦点F 且垂直于x 轴的直线与双曲线交于A ,B 两点,过A ,B 分别作双曲线的同一条渐近线的垂线,垂足分别为P ,Q .若2AP BQ a +=,则双曲线的离心率为___________.【解析】如图所示,左焦点F 到渐近线0bx ay +=的距离2AP BQEF a +==,而EF b ==,∴=a b ,∴双曲线的离心率为c e a =例4、(2022·高二课时练习)过双曲线2222:1(0,0)x y C a b a b−=>>的右焦点F 引一条渐近线的垂线,垂足为点A 、在第二象限交另一条渐近线于点B ,且||||(1)AB AF λλ=≥,则双曲线的离心率的取值范围是___________.【答案】2⎤⎦【解析】因为垂线与另一条渐近线交于第二象限,所以a b b a −>−,所以22b a>1,所以e >在直角AOF 中,,,OA a AF b OF c ===,所以2,A A ab a y x c c ==,即2,a ab A c c ⎛⎫ ⎪⎝⎭,联立()a y x c b b y xa ⎧=−−⎪⎪⎨⎪=−⎪⎩,得22222,⎛⎫− ⎪−−⎝⎭a c abc B a b a b ,因为AB AF λ=,所以22222a a c a c c a b c λ⎛⎫−=− ⎪−⎝⎭,故2222a b a λ=−222e =−,因为1λ…,所以2212e −…,解得 2.e …综上,可得.e ⎤∈⎦故答案为:2⎤⎦例5、(2022·全国·高三专题练习)双曲线()2222:10,0x y C a b a b −=>>的左、右焦点分别为1F 、2F ,1F 过的直线与双曲线C 的两条渐近线分别交于P 、Q 两点(P 在第二象限,Q 在第一象限)1122,0=⋅=F P PQ FQ F Q ,则双曲线C 的离心率为______. 【答案】4【解析】由题意,双曲线2222:1(0,0)x y C a b a b−=>>,可得12(,0),(,0)F c F c −,因为120FQ F Q ⋅=,可得12FQ F Q ⊥,及1290FQF ∠=, 所以点Q 在以12F F 为直径的圆上,即点Q 在圆222x y c +=上, 又因为点Q 在渐近线by x a=, 联立方程组222b y xa x y c⎧=⎪⎨⎪+=⎩,解得,x a y b ==,即点(,)Q a b ,设点11(,)P x y ,因为12F P PQ =,可得1111(,)2(,)x c y a x b y +=−−,即11112222x c a x y b y +=−⎧⎨=−⎩,解得()11122,33=−=x a c y b ,即22,33−⎛⎫⎪⎝⎭a c b P , 又由点P 在渐近线b y x a =−上,可得2233b b a ca −=−⨯,化简可得4c a =,所以4ce a==. 故答案为:4.例6、(2022春·湖南长沙·高二湖南师大附中校考期中)已知双曲线C :22221(0,0)x y a b a b−=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.【答案】2. 【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB的斜率为0tan 60ba==离心率为2c e a ==. 例7、(2022春·黑龙江大庆·高二大庆实验中学校考期末)已知F 是双曲线22221x y a b −=的左焦点,圆2222:O x y a b +=+与双曲线在第一象限的交点P ,若PF 的中点在双曲线的渐近线上,则此双曲线的离心率是___________.【解析】设双曲线右焦点为F ',因为PF 的中点M 在双曲线的渐近线by x a=−上,由22222x y a b c +=+=可知,90FPF '∠=,因为O 为FF '中点,所以//OM PF ',所以OM PF ⊥,即OM 垂直平分线段PF ,所以(),0F c −到渐近线by x a=−的距离为FM b ==,可得2PF b =,所以2PF a '==,由双曲线定义可知,2PF PF a '−=,即222b a a −=,所以2b a =,所以e =例8、(2022·四川·统考模拟预测)设双曲线22221(0,0)x y a b a b−=>>的左,右焦点分别为12,F F ,左,右顶点分别为A ,B ,以AB 为直径的圆与双曲线的渐近线在第一象限的交点为P ,若2PAF △为等腰三角形,则双曲线的离心率为_________.【答案】2【解析】以AB 为直径的圆的方程为222x y a +=,双曲线过第一象限的渐近线方程为by x a=,由222b y x a x y a⎧=⎪⎨⎪+=⎩,解得2P a x c =,由2PAF △为等腰三角形,所以点P 在线段2AF 的中垂线上,即2P c ax −=, 由22a c a c −=得2220c ac a −−=,即220e e −−=,解得2e =或1e =−(舍去); 故答案为:2例9、(2022秋·天津·高三专题练习)已知F 1(﹣c ,0),F 2(c ,0)分别为双曲线2222x y a b −=1(a >0,b >0)的左、右焦点,以坐标原点O 为圆心,c 为半径的圆与双曲线在第二象限交于点P ,若tan ∠PF 1F2_____.【解析】由题意可得:P ,F 1,F 2在圆x 2+y 2=c 2上,所以PF 1⊥PF 2,设|PF 1|=t ,因为tan ∠PF 1F2=所以|PF 2|=,由勾股定理可得t 2+2t 2=4c 2,所以4c 2=3t 2,所以2c =,而2a =|PF 2|﹣|PF 1|t −=1)t ,所以双曲线的离心率e 22c a ===例10、(2022·全国·模拟预测)已知双曲线()222210,0x y a b a b −=>>的左、右焦点分别为1F ,2F ,两条渐近线分别为1l ,2l .过点2F 且与1l 垂直的直线分别交1l ,2l 于P ,Q 两点,O 为坐标原点,若满足22OF OQ OP +=,则该双曲线的离心率为______. 【答案】2【解析】如图所示,不妨设渐近线1l 的斜率大于0, 由22OF OQ OP +=得,P 是线段2F Q 的中点, 又因为2OP F Q ⊥,所以21QOP F OP FOQ ∠=∠=∠, 又12FOQ F OP QOP π∠+∠+∠=,所以23F OP π∠=,故直线1l b a =2e =. 故答案为:2e =.。

2021-2022学年四川省泸县第五中学高二下学期期中考试数学(理)试题(解析版)

2021-2022学年四川省泸县第五中学高二下学期期中考试数学(理)试题(解析版)

2021-2022学年四川省泸县第五中学高二下学期期中考试数学(理)试题一、单选题1.若复数z 满足(12)5z i +=,其中i 为虚数单位,则复数z 的虚部是( ) A .2 B .2i C .2- D .2i -【答案】C【分析】根据复数的除法运算求出z ,再根据复数的概念可得结果. 【详解】因为(12)5z i +=,所以55(12)12(12)(12)i z i i i -==++-5(12)125i i -==-, 所以复数z 的虚部为2-. 故选:C2.命题“2,10x R x x ∀∈++≥”的否定是 A .2,210x R x x ∀∈++< B .2,210x R x x ∀∉++< C .2,210x R x x ∃∉++< D .2,210x R x x ∃∈++<【答案】D【详解】试题分析:由命题的否定可知选D 【解析】命题的否定3.某市气象部门根据2021年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10℃的月份有5个D .从2021年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势 【答案】D【分析】利用折线图可以判断选项ABC 正确,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,所以选项D 错误.【详解】解:由2021年各月的每天最高气温平均值和最低气温平均值(单位:C)︒数据,绘制出的折线图,知:在A 中,各月最高气温平均值与最低气温平均值为正相关,故A 正确;在B 中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B 正确; 在C 中,全年中各月最低气温平均值不高于10C ︒的月份有1月,2月,3月,11月,12月,共5个,故C 正确;在D 中,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D 错误. 故选:D .4.函数3()f x x x =+在点1x =处的切线方程为( ) A .420x y -+= B .420x y --= C .420x y ++= D .420x y +-=【答案】B【分析】首先求出函数()f x 在点1x =处的导数,也就是切线的斜率,再利用点斜式求出切线方程..【详解】∵()231f x x ='+,∴切线斜率()14k f ='=, 又∵()12f =,∴切点为()1,2, ∴切线方程为()241y x -=-, 即420x y --=. 故选B .【点睛】本题考查导数的几何意义,属于基础题.5.已知双曲线22221(0,0)x y a b a b -=>>A .y =B .y x =C .12y x =±D .2y x =±【答案】B【详解】双曲线22221(0,0)x y a b a b -=>>即c a =.又c a ==2212b a =,b a =.则其渐近线方程为y x =,故选B. 6.已知a 、R b ∈,则使得a b >成立的一个充分不必要条件为( ) A .22a b > B .a b π>+ C .a b π>- D .a b x x >【答案】B【分析】利用充分条件、必要条件的定义,结合特殊值法、不等式的基本性质判断可得出合适的选项.【详解】对于A 选项,取2a =-,1b =,则22a b >,但a b >不成立,A 不合乎要求; 对于B 选项,a b b π>+>,则a b a b π>+⇒>,但a b a b π>⇒>+/,如取2a =,1b =,B 满足要求;对于C 选项,取2a =,3b =,则a b π>-成立,但a b >不成立,C 不合乎要求; 对于D 选项,若01x <<,由a b x x >可得a b <,D 不合乎要求. 故选:B.7.函数()321132f x x x =+的单调递增区间是( )A .()(),1,0,∞∞--+B .()(),10,∞∞--⋃+C .()1,0-D .()(),0,1,-∞+∞【答案】A【分析】利用导数的性质进行求解即可.【详解】由()()32211(1)0032f x x x f x x x x x x '=+⇒=+=+>⇒>,或1x <-,故选:A8.如图给出的是计算111124620++++的值的一个程序框图,判断其中框内应填入的条件是( )A .10i >B .10i <C .20iD .20i ≤【答案】D【分析】根据循环程序的功能进行判断即可.【详解】因为该循环结构是先判断后执行,所要计算的式子中最后一项的分母是20, 所以最后一次循环时22i =,这时需要退出循环,因此判断语句为20i ≤, 故选:D9.已知积分()101kx dx k +=⎰,则实数k =( )A .2B .-2C .1D .-1【答案】A【分析】先求出被积函数的一个原函数,利用微积分基本定理即可得出答案. 【详解】因为()101kx dx k +=⎰,所以21102kx x k ⎛⎫+= ⎪⎝⎭, 所以12k +1=k , 所以k =2. 故选:A10.已知函数2()ln 1f x x a x =-+在(1,2)内不是单调函数,则实数a 的取值范围是( )A .(2,8)B .[2,8]C .(,2][8,)-∞⋃+∞D .[2,8)【答案】A【分析】求导得()22x a f x x -'=,等价于()22g x x a =-在区间()1,2的函数值有正有负,解不等式组()()120280g a g a ⎧=-<⎪⎨=->⎪⎩即得解.【详解】解:()222a x af x x x x='-=-,令()22g x x a =-,由于函数()2ln 1f x x a x =-+在()1,2内不是单调函数,则()22g x x a =-在区间()1,2的函数值有正有负,而二次函数()22g x x a =-开口向上,对称轴为y 轴,所以()22g x x a =-在区间()1,2上递增,所以()()120280g a g a ⎧=-<⎪⎨=->⎪⎩,解得28a <<.所以实数a 的取值范围是()2,8. 故选:A .11.已知直线()10ax y a R -+=∈是圆22:124C x y 的一条对称轴,过点()2,A a --向圆C 作切线,切点为B ,则AB =( )A B C D .【答案】C【分析】根据圆的对称性,结合圆的切线性质、两点间距离公式、勾股定理进行求解即可.【详解】由圆22:124C x y ,可知该圆的圆心坐标为()1,2C ,半径为2,因为直线10ax y -+=是圆22:124C x y 的一条对称轴,所以圆心()1,2在直线10ax y -+=上, 所以有2101a a -+=⇒=,因为过点()2,1A --向圆C 作切线,切点为B ,所以AC ==所以AB ==故选:C12.定义域为R 的可导函数y=f(x)的导函数为'()y f x =,且满足()()0f x f x '+<,则下列关系正确的是A .2(1)(0)(1)f f f e e<<- B .2(0)(1)(1)f f f e e-<< C .2(0)(1)(1)f f f e e -<< D .2(0)(1)(1)f f f e e -<< 【答案】C【分析】根据题意构造函数并求导()()()',0x g x e f x g x =<,可得到函数的单调性,通过赋值得到结果.【详解】构造函数()()()()()'',0x x x g x e f x g x e f x e f x ==+<,故函数()g x 是单调递减的函数,故得到()()()()()()1101101g g g f f ef e->>⇔->> 化简得到2(0)(1)(1)f f f e e -<< 故答案为C.【点睛】这个题目考查了导数在研究函数的单调性中的应用,对于比较大小的题目,可以直接代入函数表达方式中,直接比较大小,如果函数表达式比较复杂或者没有函数表达式,则可以研究函数的单调性或者零点进而得到结果. 二、填空题13.已知1:210l x my ++=与2:31l y x =-,若两直线平行,则m 的值为_______ 【答案】23-【详解】两直线平行则斜率相等,所以23m-=,解得23m =-14.下表是某厂1~4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是0.7y x a =-+,则a 等于___【答案】214【分析】首先求出x ,y 的平均数,根据样本中心点满足线性回归方程,把样本中心点代入,得到关于a 的一元一次方程,解方程即可. 【详解】:14x =(1+2+3+4)=2.5,14y =(4.5+4+3+2.5)=3.5,将(2.5,3.5)代入线性回归直线方程是ˆy=-0.7x +a ,可得3.5=﹣1.75+a , 故a =214. 故答案为214【点睛】本题考查回归分析,考查样本中心点满足回归直线的方程,考查求一组数据的平均数,是基础题15.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如,在十位档拨上一颗上珠和两颗下珠,个位档拨上四颗下珠,则表示数字74.若在个、十、百、千位档中随机选择一档拨一颗下.珠,再从四个档中随机选择两个不同档位各拨一颗上.珠,则所表示的数字小于400的概率为__________【答案】180.125 【分析】先求出在个、十、百、千位档中随机选择一档拨上一颗下珠,再随机选择两个不同挡位各拨一颗上珠,共1244C C n ==24种,再分两种情况讨论利用古典概型的概率公式得解.【详解】解:由题意,在个、十、百、千位档中随机选择一档拨上一颗下珠,再随机选择两个不同挡位各拨一颗上珠,共1244C C n ==24种,①当在个、十位档中随机选择一档拨上一颗下珠,再随机从个、十位两个不同挡位各拨一颗上珠时,得到的数字小于400,有1222C C =2个;②当在百位档中随机选择一档拨上一颗下珠,再随机从个、十位两个不同挡位各拨一颗上珠时,得到的数字小于400,有22C =1个.所以所拨数字小于400的概率为P 211248+==. 故答案为:18.16.已知函数2ln ()2,()e x x af xg x x x=+=-,若()()f x g x ≤在(0,)+∞恒成立,实数a 的取值范围为____.【答案】(],1-∞【分析】构造不等式构造新函数,利用导数的性质进行求解即可. 【详解】由()()f x g x ≤2ln 2e x x ax x⇒+≤-,因为,()0x ∈+∞, 所以由2222ln 2e ln 2e ln(e )e x x x x x ax x x a x x a x x+≤-⇒+≤-⇒≤-, 令2e x x t =,当,()0x ∈+∞时,令222()e ()e 2e 0x x x g x x g x x '=⇒=+>, 所以函数()g x 是增函数,所以有()(0)00g x g t >=⇒>, 所以ln t t a ≤-在(0,)t ∈+∞上恒成立,ln ln t t a a t t ≤-⇒≤-,令()ln h t t t =-,即11()1t h t t t-'=-=,当1t >时,()0,()h t h t '>单调递增,当01t <<时,()0,()h t h t '<单调递减,所以min ()(1)1h t h ==, 所以要想ln t t a ≤-在(0,)t ∈+∞上恒成立,只需1a ≤, 故答案为:(],1-∞【点睛】关键点睛:构造函数利用导数的性质是解题的关键. 三、解答题17.在平面直角坐标系中,以原点为极点,以x 轴非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 4sin 4ρρθρθ=-+,直线1l 的极坐标方程为(cos sin )3ρθθ-=.(1)写出曲线C 和直线1l 的直角坐标方程;(2)设直线2l 过点(1,0)P -与曲线C 交于不同两点A ,B ,AB 的中点为M ,1l 与2l 的交点为N ,求||||PM PN .【答案】(1)曲线C :22(1)(2)9x y -++= ;直线1l 的直角坐标方程30x y --=;(2)8.【分析】(1)直接利用cos x ρθ=,sin y ρθ=,222x y ρ=+即可化曲线C 与直线1l 的极坐标方程为直角坐标方程;(2)直线2l 的参数方程1cos (sin x t t y t αα=-+⎧⎨=⎩为参数),将其代入曲线C 的普通方程,利用根与系数的关系可得M 的参数为122(cos sin )2t t αα+=-,设N 点的参数为3t ,把1cos sin x t y t αα=-+⎧⎨=⎩代入30x y --=求得34cos sin t αα=-.则||||PM PN 可求.【详解】解:(1)曲线2:2cos 4sin 4C ρρθρθ=-+的直角坐标方程为:22244x y x y +=-+,即22(1)(2)9x y -++=,1:(cos sin )3l ρθθ-=,即1:cos sin 3l ρθρθ-=,所以直角坐标方程为:30x y --=;(2)直线2l 的参数方程1cos (sin x t t y t αα=-+⎧⎨=⎩为参数),将其代入曲线C 的普通方程并整理得24(cos sin )10t t αα---=, 设A ,B 两点的参数分别为1t ,2t ,则124(cos sin )t t αα+=-.M 为AB 的中点,故点M 的参数为122(cos sin )2t t αα+=-, 设N 点的参数为3t ,把1cos sin x t y t αα=-+⎧⎨=⎩代入30x y --=,整理得34cos sin t αα=-.∴1234||||2cos sin 82cos sin t t PM PN t αααα+==-=-. 【点睛】本题主要考查极坐标方程与直角坐标方程的互化,熟记公式即可;本题也考查了参数的方法求弦长的问题,熟记参数方程即可求解,属于常考题型.18.近年来,在新高考改革中,打破文理分科的“33+”模式初露端倪,其中语、数、外三门课为必考科目,剩下三门为选考科目.选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级,并以此打分得到最后得分.假定某省规定:选考科目按考生原始分数从高到低排列,按照占总体15%、35%、35%、13%和2%划定A 、B 、C 、D 、E 五个等级,并分别赋分为90分、80分、70分、60分和50分,为了让学生们体验“赋分制”计算成绩的方法,该省某高中高一(1)班(共40人)举行了一次摸底考试(选考科目全考,单科全班排名),已知这次摸底考试中的历史成绩(满分100分)频率分布直方图,地理成绩(满分100分)茎叶图如图所示,小明同学在这次考试中历史82分,地理70多分.(1)采用赋分制后,求小明历史成绩的最后得分;(2)若小明的地理成绩最后得分为80分,求小明的原始成绩的可能值;(3)若小明必选历史,其它两科从地理、政治、物理、化学、生物五科中任选,求小明考试选考科目包括地理的概率.【答案】(1)90分;(2)76,77,78;(3)25.【分析】(1)小明原式分所在分值区间,结合频率直方图计算出该分值区间的人数占比,结合已知赋分规则,即可确定小明历史成绩的最后得分.(2)由赋分规则计算出赋分为90分、80分的人数,结合茎叶图及小明原始分大概分值,即可知小明的原始成绩的可能值.(3)记地理、政治、物理、化学、生物依次为A 、a 、b 、c 、d ,列举出五科中任选两科的所有可能组合,应用古典概型求概率的方法即可求概率.【详解】(1)∵此次考试历史成绩落在(]80,90,(]90,100内的频率依次为0.1,0.05,频率之和为0.15,且小明的历史成绩为82分,大于80分,处于前15%, ∴小明历史成绩的最后得分为90分.(2)40名学生中,地理赋分为90分有4015%6⨯=人,这六人的原始成绩分别为96,93,93,92,91,89;赋分为80分有4035%14⨯=人,其中包含原始成绩为80多分的共10人,70多分的有4人,分别为76,76,77,78;∵小明的地理成绩最后得分为80分,且原始成绩为70多分, ∴小明的原始成绩的可能值为76,77,78.(3)记地理、政治、物理、化学、生物依次为A 、a 、b 、c 、d ,∴小明从这五科中任选两科的所有可能选法有(),A a ,(),A b ,(),A c ,(),A d ,(),a b ,(),a c ,(),a d ,(),b c ,(),b d ,(),c d 共10种,而其中包括地理的有(),A a ,(),A b ,(),A c ,(),A d 共4种,∴小明选考科目包括地理的概率为:42105P ==. 19.已知函数3()f x ax bx c =++在2x =处取得极值16c -. (1)求a 、b 的值;(2)若()f x 有极大值28,求()f x 在[3,3]-上的最大值. 【答案】(1)1,12a b ==-;(2)-4.【详解】(1)因3()f x ax bx c =++ 故2()3f x ax b ='+ 由于()f x 在点2x = 处取得极值 故有(2)0{(2)16f f c ==-'即120{8216a b a b c c +=++=- ,化简得120{48a b a b +=+=-解得1{12a b ==- (2)由(1)知 3()12f x x x c =-+,2()312f x x ='-令()0f x '= ,得122,2x x =-=当(,2)x ∈-∞-时,()0f x '>故()f x 在(,2)-∞-上为增函数;当(2,2)x ∈- 时,()0f x '< 故()f x 在(2,2)- 上为减函数 当(2,)x ∈+∞ 时()0f x '> ,故()f x 在(2,)+∞ 上为增函数. 由此可知()f x 在12x =- 处取得极大值,()f x 在22x = 处取得极小值(2)16f c =-由题设条件知1628c += 得12c =此时(3)921,(3)93f c f c -=+==-+=,(2)164f c =-=-因此()f x 上[3,3]-的最小值为(2)4f =-【考点定位】本题主要考查函数的导数与极值,最值之间的关系,属于导数的应用.(1)先对函数()f x 进行求导,根据(2)0f '==0,(2)16f c =-,求出a ,b 的值.(1)根据函数()f x =x 3-3ax 2+2bx 在x=1处有极小值-1先求出函数中的参数a ,b 的值,再令导数等于0,求出极值点,判断极值点左右两侧导数的正负,当左正右负时有极大值,当左负右正时有极小值.再代入原函数求出极大值和极小值.(2)列表比较函数的极值与端点函数值的大小,端点函数值与极大值中最大的为函数的最大值,端点函数值与极小值中最小的为函数的最小值.20.流行性感冒(简称流感)是流感病毒引起的急性呼吸道感染,是一种传染性强、传播速度快的疾病.其主要通过空气中的飞沫、人与人之间的接触或与被污染物品的接触传播.流感每年在世界各地均有传播,在我国北方通常呈冬春季流行,南方有冬春季和夏季两个流行高峰.儿童相对免疫力低,在幼儿园、学校等人员密集的地方更容易被传染.某幼儿园将去年春期该园患流感小朋友按照年龄与人数统计,得到如下数据:(1)求y 关于x 的线性回归方程;(2)计算变量x 、y 的相关系数r (计算结果精确到0.01),并回答是否可以认为该幼儿园去年春期患流感人数与年龄负相关很强?(若[]0.75,1r ∈,则x 、y 相关性很强;若[)0.3,0.75r ∈,则x 、y 相关性一般;若[]0,0.25r ∈,则x 、y 相关性较弱.) 57.47≈.参考公式:()()()1122211ˆˆˆn niii ii i nniii i x x y y x y nxybay bx x x xnx ====---===---∑∑∑∑,, 相关系数()()niix x y y r --=∑.【答案】(1) 3.229.8y x =-+;(2)相关系数为0.97-,可以认为该幼儿园去年春期患流感人数与年龄负相关很强.【解析】(1)结合已知数据和参考公式求出a 、ˆb这两个系数,即可得回归方程; (2)根据相关系数的公式求出r 的值,再结合r 的正负性与r 的大小进行判断即可. 【详解】(1)由题意得,2345645x ++++==,2222171410175y ++++==,()()()()()()()()()51522222212515001327ˆ 3.221012iii ii x x y y b x x ==---⨯+-⨯+⨯+⨯-+⨯-===--+-+++-∑∑,ˆ17 3.2429.8a y bx=-=+⨯=, 故y 关于x 的线性回归方程为 3.229.8y x =-+;(2)()()0.97niix x y y r --==≈-∑,0r ∴<,说明x 、y 负相关,又[]0.75,1r ∈,说明x 、y 相关性很强.因此,可以认为该幼儿园去年春期患流感人数与年龄负相关很强.【点睛】本题考查线性回归方程的求法、相关系数的计算与性质,考查学生对数据的分析能力和运算能力,属于基础题.21.已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2,且过点F 的直线l 被抛物线C 所截得的弦长MN 为8. (1)求直线l 的方程;(2)当直线l 的斜率大于零时,求过点,M N 且与抛物线C 的准线相切的圆的方程. 【答案】(1)1y x =-或1y x =-+;(2)22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 【解析】(1)由题意得2,p =(1,0)F ,24y x =,当直线l 的斜率不存在时,不合题意;当直线l 的斜率存在时,设方程为(1)(0)y k x k =-≠,与抛物线方程联立,利用韦达定理和抛物线的定义求出弦长,结合已知弦长可求得结果;(2)设所求圆的圆心坐标为00(,)x y ,根据几何方法求出圆的半径,根据直线与圆相切列式解得圆心坐标和半径,可得圆的方程. 【详解】(1)由题意得2,p =(1,0)F ,24y x =当直线l 的斜率不存在时,其方程为1x =,此时248MN p ==≠,不满足,舍去; 当直线l 的斜率存在时,设方程为(1)(0)y k x k =-≠由2(1)4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++= 设1122(,),(,)M x y N x y ,则216160k ∆=+>,且212224k x x k ++=由抛物线定义得122222122444||||||(1)(1)22x k k MN MF NF x x x k k ++=+=+++=++=+= 即22448k k+=,解得1k =± 因此l 的方程为1y x =-或1y x =-+.(2)由(1)取1,k =直线l 的方程为1y x =-,所以线段MN 的中点坐标为(3,2), 所以MN 的垂直平分线方程为2(3)y x -=--,即5y x =-+设所求圆的圆心坐标为00(,)x y ,该圆的圆心到直线l 的距离为d,则d ===因为该圆与准线1x =-相切,所以()()0022000511162y x y x x =-+⎧⎪⎨-++=+⎪⎩, 解得0032x y =⎧⎨=⎩或00116x y =⎧⎨=-⎩, 当圆心为(3,2)时,半径为4,当圆心为(11,6)-时,半径为12, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.【点睛】关键点点睛:第(1)问,利用韦达定理和抛物线的定义求出抛物线的弦长是关键;第(2)问,根据几何方法求出圆的半径,利用直线与圆相切列式是解题关键. 22.设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >.【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【详解】(1)函数的定义域为()0,∞+, 又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>,当10x a<<时,()0f x '<;当1x a >时,()0f x '>;所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点,所以()y f x =的图象在x 轴的上方,由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭,故33ln 0a +>即1a e>.【点睛】方法点睛:不等式的恒成立问题,往往可转化为函数的最值的符号来讨论,也可以参变分离后转化不含参数的函数的最值问题,转化中注意等价转化.。

2021-2022学年高二下学期期中考试数学试题含答案

2021-2022学年高二下学期期中考试数学试题含答案

数学试题一、选择题(本大题共12小题,每小题5分,共计60分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)1.已知i 为虚数单位,复数21iz =-,则复数z 的模为 A B .1 C .2 D .122.一辆汽车做直线运动,位移s 与时间t 的关系为21s at =+,若汽车在t =2时的瞬时速度为12,则a = A .12B .13C .2D .33.已知复数z 满足:21z -=,则1i z -+的最大值为 A .2 B 1C 1D .34.3只猫把4只老鼠捉光,不同的捉法种数有 A .34B .43C .34C D .34A5.函数()sin cos 1f x x x =⋅+在点(0,(0)f )处的切线方程为 A .10x y +-=B .10x y -+=C .220x y -+=D .220x y +-= 6.若函数32()f x x ax bx =++在2x =-和4x =处取得极值,则常数a ﹣b 的值为A .21B .﹣21C .27D .﹣277.100件产品中有6件次品,现从中不放回的任取3件产品,在前两次抽到正品的条件下第三次抽到次品的概率为A .349B .198C .197D .3508.设随机变量Y 满足Y~B(4,12),则函数2()44Y f x x x =-+无零点的概率是 A .1116B .516C .3132D .12 9.从不同品牌的4部手机和不同品牌的5台电脑中任意选取3部,其中手机和电脑都有的不同选法共有 A .140种B .84种C .35种D .70种10.设函数()f x 在定义域内可导,()y f x =的图象如图所示,则导函数()y f x '=的图象可能是A B C D 第10题11.设5540145(1)(1)(1)x a x a x a x a =+++++++,则024a a a ++=A .﹣32B .0C .16D .﹣1612.对于定义在(1,+∞)上的可导函数()f x ,当x ∈(1,+∞)时,(1)()()0x f x f x '-->恒成立,已知(2)a f =,1(3)2b f =,1)c f =,则a ,b ,c 的大小关系为A .a <b <cB .b <c <aC .c <b <aD .c <a <b二、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上) 13.61)3x的展开式中常数项是. 14.若随机变量X~N(μ,2σ),且P(X >6)=P(X <﹣2)=0.3,则P(2<X ≤6)=.15.有5本不同的书,全部借给3人,每人至少1本,共有种不同的借法.16.函数1, 0()ln , 0x x f x x x +≤⎧⎪=⎨>⎪⎩,若函数()()g x f x tx =-恰有两个不同的零点,则实数t 的取值范围是.三、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知复数22(43)()i z m m m m =-++-,其中i 为虚数单位. (1)若复数z 是纯虚数,求实数m 的值;(2)复数z 在复平面内对应的点在第一象限,求实数m 的取值范围.18.(本小题满分12分)已知函数()ln=-(a∈R).f x x ax(1)当a=2时,求函数()f x的极值;(2)讨论函数()f x的单调性;(3)若对x∀∈(0,+∞),()0f x<恒成立,求a的取值范围.19.(本小题满分10分)在湖北新冠疫情严重期间,我市响应国家号召,召集医务志愿者组成医疗队驰援湖北.某医院有2名女医生,3名男医生,3名女护士,1名男护士报名参加,医院计划从医生和护士中各选2名参加医疗队.(1)求选出的4名志愿全是女性的选派方法数;(2)记X为选出的4名选手中男性的人数,求X的概率分布和数学期望.20.(本小题满分12分)物联网兴起、发展、完善极大的方便了市民生活需求.某市统计局随机地调查了该市某社区的100名市民网上购菜状况,其数据如下:(1)把每周网上买菜次数超过3次的用户称为“网上买菜热爱者”,能否在犯错误概率不超过0.005的前提下,认为是否为“网上买菜热爱者”与性别有关?(2)把每周使用移动支付6次及6次以上的用户称为“网上买菜达人”,视频率为概率,在我市所有“网上买菜达人”中,随机抽取4名用户求既有男“网上买菜达人”又有女”网上买菜达人”的概率.附公式及表如下:22()=()()()()n ad bc a b c d a c b d χ-++++21.(本小题满分12分)已知数列{}n a 的首项为1,记01122123(, )(1)(1)(1n n n n n F x n a C x a C x x a C x -=-+-+-21111)(1)n n n n nn n n n x a C x x a C x ---+++-+.(1)若数列{}n a 是公比为3的等比数列,求(1, 2020)F -的值; (2)若数列{}n a 是公差为2的等差数列,求证:(, 2020)F x 是关于x 的一次多项式.22.(本小题满分14分)已知函数2()2x a f x e x ax =--,其中a >0.(1)当a =1时,求不等式2()4f x e >-在(0,+∞)上的解; (2)设()()g x f x '=,()y g x =关于直线x =lna 对称的函数为()y h x =,求证:当x <lna 时,()()g x h x <;(3)若函数()y f x =恰好在1x x =和2x x =两处取得极值,求证:12ln 2x x a +<.参考答案1.A2.D3.B4.B5.B 6.A7.A8.A9.D10.D11.C12.D13.5314.0.2 15.150 16.(1e,1){0} 17.解:(1)∵复数z 是纯虚数,∴224300m m m m ⎧-+=⎪⎨-≠⎪⎩,解得130, 1m m m =⎧⎨≠≠⎩或,故m =3, (2)∵复数z 在复平面内对应的点在第一象限∴224300m m m m ⎧-+>⎪⎨->⎪⎩,解得1301m m m m <>⎧⎨<>⎩或或,故m >3或m <0,∴实数m 的取值范围为(-∞,0)(3,+∞).18.解:(1)。

四川省江油中学2022-2023学年高二下学期第一阶段考试数学(理)试卷(PDF版)

四川省江油中学2022-2023学年高二下学期第一阶段考试数学(理)试卷(PDF版)

江油中学2021级高二下期第一阶段考试数学(理)试题一、单选题(每小题5分,共60分)1.4i1i-的虚部为()A .2-B .2C .2iD .2i-2.命题“0x ∀>,20x >”的否定是()A .0x ∃>,20x ≤B .0x ∀≤,20x >C .0x ∃≤,20x ≤D .0x ∀≤,20x ≤3.若z 满足(1+i )z =−4+2i ,则z =()A .10BC .20D .4.已知函数f (x )=13x 3﹣f '(2)x 2+x ﹣3,则f '(2)=()A .﹣1B .1C .﹣5D .55.下列导数运算正确的是()A .()sin cos x x'=-B .()33xx'=C .()21log ln 2x x '=⋅D .211x x'⎛⎫= ⎪⎝⎭6.“a<0”是“关于x 的不等式210ax ax +-<对任意实数x 恒成立”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.函数()2ln f x x =-2x 的单调递增区间为()A .(1∞--,)B .(1,+∞)C .(-1,1)D .(0,1)8.已知一个圆柱形空杯,其底面直径为8cm ,高为20cm ,现向杯中注入溶液,已知注入溶液的体积V (单位:ml )关于时间t (单位:s )的函数为()()32π2π0V t t t t =+≥,不考虑注液过程中溶液的流失,则当4st =时杯中溶液上升高度的瞬时变化率为()A .2cm /sB .4cm /sC .6cm /sD .8cm /s9.已知函数f (x )的定义域为[﹣1,5],其部分自变量与函数值的对应情况如表:x ﹣10245f (x )312.513f (x )的导函数f '(x )的图象如图所示.给出下列四个结论:①f (x )在区间[﹣1,0]上单调递增;②f (x )有2个极大值点;③f (x )的值域为[1,3];④如果x ∈[t ,5]时,f (x )的最小值是1,那么t 的最大值为4.其中,所有正确结论的序号是()A .③B .①④C .②③D .③④10.已知命题:p 函数()()40f x x x x=+≠的最小值为4;命题:q 在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,则“A B >”是“a b >”的充要条件.则下列命题为真命题的是()A .()p q⌝∧B .()p q ∨⌝C .p q∧D .()()p q ⌝∧⌝11.若动点P 在直线1y x =+上,动点Q 在曲线22x y =-上,则|PQ |的最小值为()A .14B .4C .2D .1812.已知函数()e 23ln x f x t x x x x ⎛⎫=++- ⎪⎝⎭有两个极值点,则t 的取值范围为()A .()3e ,+∞B .{}31,e 2⎛⎫-∞- ⎪⎝⎭ C .(){}31,e e,e 2⎛⎫-∞--- ⎪⎝⎭ D .()1,e e,2⎛⎫-∞--- ⎪⎝⎭ 二、填空题(每小题5分,共20分)13.已知函数()cos2f x x =,则曲线()y f x =在点ππ,44f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程为__________.14.若z C ∈且22i 1z +-=,则22i z --的最大值为_______.15.已知函数()()212ln R 2f x x ax x a =--∈.若函数()f x 在区间[)1,+∞上单调递增,则实数a 的取值范围为__________..16.已知函数()33f x x x =-,()e 22xx g x a =-+,对于任意[]12,0,2x x ∈,都有()()12f x g x ≤成立,则实数a的取值范围是________.三、解答题(17题10分,其余每题12分,共70分)17.复数(1)(1)()z m m m i m R =-+-∈.(Ⅰ)实数m 为何值时,复数z 为纯虚数;(Ⅱ)若m =2,计算复数1z z i-+.18.设集合{}23280A x x x =+-<,集合{}21B x m x m =-<<+.(1)已知p :3B ∈,若p 为真命题,求实数m 的取值范围;(2)若“x A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.19.已知函数f(x)=e x (x −2)(1)求()f x ',()0f ',()1f '-﹔(2)求曲线()y f x =在点(0,-2)处的切线方程;(3)求函数f(x)的极值.20.已知p :方程x 2+y 2﹣4x +a 2=0表示圆:q :方程1322=+ax y (a >0)表示焦点在y 轴上的椭圆.(1)若p 为真命题,求实数a 的取值范围;(2)若命题p Ⅴq 为真,p Λq 为假,求实数a 的取值范围.21.已知函数()323f x x mx nx =++在=1x -时有极值0.(1)求,m n 的值.(2)求g(x)=f(x)−x 3−3lnx 的单调区间.22.已知函数21()ln 2f x x ax x =-+.(1)讨论函数()f x 的单调性;(2)若()f x 有两个极值点1x ,2x ,且()()123ln 24f x f x -≥-,求a 的取值范围.江油中学2021级高二下期3月数学(理)试题参考答案1.B 2.A 3.B 4.B5.C 6.D 7.D 8.B 9.D10.A11.B12.【答案】D 【详解】函数()e 23ln x f x t x xx x ⎛⎫=++- ⎪的定义域为()0,∞+,13.202y x +-=14.515.1a ≤-.16.e ,2⎛⎤-∞ ⎥⎝⎦【详解】依题意得,对于任意[]12,0,2x x ∈,都有()()12f x g x ≤成立可等价为对于任意[]12,0,2x x ∈,都有()()max 12f x g x ≤成立,()33=- f x x x ,()()231f x x '∴=-,[]0,2x ∈,当01x <<时,()0f x '<,()f x 单调递减;当12x <<时,()0f x ¢>,()f x 单调递增;又()()00,22f f == ,()()max 22f x f ∴==,∴对于任意[]0,2x ∈,都有()2g x ≥成立,即对于任意[]0,2x ∈,都有2x e a x ≤成立,等价为mine 2x a x ⎛⎫≤ ⎪⎝⎭成立,令()e xh x x =,[]0,2x ∈,()()2e 1x x h x x -'∴=,当01x <<时,()0h x '<,()h x 单调递减;当12x <<时,()0h x '>,()h x 单调递增;()()min 1e h x h ∴==,2e a ∴≤,e 2a ∴≤,a ∴的取值范围是e ,2⎛⎤-∞ ⎥⎝⎦.17.【答案】(1)0m =(2)1122i -试题解析:(1)欲使z 为纯虚数,则须()10m m -=且10m -≠,所以得0m =18.【答案】(1)()2,5(2)[]5,3-【详解】(1)由题意得3B ∈,故231m m -<<+,解得:25m <<,故实数m 的取值范围是()2,5;19.【答案】(1))1()(-='x e x f x ,ef f 2)1(,1)0(-=-'-=',(2)02=++y x (3)极小值-e 20.【答案】(1)﹣2<m <2.(2)(﹣2,0]∪[2,3).21.【答案】(1),13m n ==;(2)函数g(x)=f(x)−x 3−3lnx 的单调减区间为(0,34),单调增区间为(34,+∞).【详解】(1)由题可得2()36f x x mx n '=++,22.【答案】(1)答案见详解(2)32,2⎡⎫+∞⎪⎢⎪⎣⎭【详解】(1)因为函数21()ln 2f x x ax x =-+,则211()x ax f x x a x x -+'=-+=,0x >,令()21g x x ax =-+,则24a ∆=-,。

高中试卷-专题10 直线和圆的方程(单元测试卷)(含答案)

高中试卷-专题10 直线和圆的方程(单元测试卷)(含答案)

专题10 《直线和圆的方程》单元测试卷一、单选题1.(2019·全国高二月考(文))直线:的倾斜角为( )A .B .C .D .【答案】D 【解析】直线的斜率,设直线的倾斜角为,则,所以.故选:D.2.(2019·浙江省高二期中)圆心为,且过原点的圆的方程是( )A .B .C .D .【答案】A 【解析】根据题意.故选:.3.(2020·南京市江宁高级中学高一月考)如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-2【答案】C 【解析】(2a +5)(2-a )+(a -2)(a +3)=0,所以a =2或a =-2.4.(2019·山东省高一期中)圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定【答案】Cx y +-0=30°45°60°135°0x y +=1k =-0x y +=1(080)a a °£<°tan 1a =-135a =°()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=r ==()()22228x y -+-=A 22(1)5x y +-=120mx y m -+-=直线即即直线过点,把点代入圆的方程有,所以点在圆的内部,过点的直线一定和圆相交.故选:C.5.(2019·山东省高一期中)从点向圆引切线,则切线长的最小值( )A .B .5CD .【答案】A【解析】设切线长为,则,故选:A.6.(2020·南京市江宁高级中学高一月考)已知直线在两坐标轴上的截距相等,则实数A .1B .C .或1D .2或1【答案】D 【解析】由题意,当,即时,直线化为,此时直线在两坐标轴上的截距都为0,满足题意;当,即时,直线化为,由直线在两坐标轴上的截距相等,可得,解得;综上所述,实数或.故选:D .7.(2019·山东省高一期中)若点为圆的弦的中点,则弦所在直线的方程为( )A .B .C .D .120mx y m -+-=()12y m x -=-()21,()21,405+<()21,()21,(,3)P m 22(2)(2)1x y +++=4+d 2222(2)51(2)24d m m =++-=++min d \=20ax y a +-+=(a =)1-2-2a 0-+=a 2=ax y 2a 0+-+=2x y 0+=2a 0-+¹a 2¹ax y 2a 0+-+=122x ya a a+=--2a2a a-=-a 1=a 2=a 1=(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=【解析】化为标准方程为.∵为圆的弦的中点,∴圆心与点确定的直线斜率为,∴弦所在直线的斜率为1,∴弦所在直线的方程为,即.故选:B.8.(2020·武威第六中学高三二模(文))过点且倾斜角为的直线被圆所截得的弦长为( )AB .1CD .【答案】C 【解析】根据题意,设过点且倾斜角为的直线为 ,其方程为,即,变形可得,圆 的圆心为,半径 ,设直线与圆交于点,圆心到直线的距离,则,故选C.9.(2020·南京市江宁高级中学高一月考)已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B.2240x y x +-=()22-24x y +=()1,1P ()22-24x y +=AB P 01121k -==--AB AB 11y x -=-0x y -=()1,030o ()2221x y -+=()1,030o l ()tan 301y x =-o)1y x =-10x -=()2221x y -+=()2,01r =l AB 12d 2AB ==20kx y -+=()3,2M -()2,5N 32k £32k ³C .D .或【答案】C 【解析】因为直线恒过定点,又因为,,所以直线的斜率k 的范围为.故选:C .10.(2020·四川省宜宾市第四中学校高二月考(理))已知圆,圆,、分别是圆、上动点,是轴上动点,则的最大值是( )A .BC .D【答案】D 【解析】如下图所示:4332k -££43k £-32k ³20kx y -+=()0,2A 43AM k =-32AN k =4332k -££()()221:231C x y -+-=()()222:349C x y -+-=M N 1C 2C P x PN PM -4+4+圆的圆心,半径为,圆的圆心,半径为,,由圆的几何性质可得,,,当且仅当、、三点共线时,取到最大值.故选:D.二、多选题11.(2019·辽宁省高二月考)在同一直角坐标系中,直线与圆的位置不可能是( )A .B .C .D .【答案】ABD 【解析】直线经过圆的圆心,且斜率为.故选项满足题意.故选:.12.(2020·山东省高三期末)已知点是直线上一定点,点、是圆上1C ()12,3C 11r =2C ()23,4C 23r =12C C ==2223PN PC r PC £+=+1111PM PC r PC ³-=-2112444PN PM PC PC C C -£-+£+=1C P 2C PN PM -4+2y ax a =+222()x a y a ++=2y ax a =+222()x a y a ++=(),0a -a ,,A B D ABD A :0l x y +=P Q 221x y +=的动点,若的最大值为,则点的坐标可以是( )A .B .C .D .【答案】AC 【解析】如下图所示:原点到直线的距离为,则直线与圆相切,由图可知,当、均为圆的切线时,取得最大值,连接、,由于的最大值为,且,,则四边形为正方形,所以由两点间的距离公式得整理得,解得,因此,点的坐标为或.故选:AC.13.(2020·广东省高二期末)瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .PAQ Ð90o A (()1))1,1-l 1d ==l 221x y +=AP AQ 221x y +=PAQ ÐOP OQ PAQ Ð90o 90APO AQO Ð=Ð=o 1OP OQ ==APOQ OA =OA ==220t -=0t =A ()ABC D ()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-【答案】AD 【解析】设的垂直平分线为,的外心为欧拉线方程为与直线的交点为,,①由,,重心为,代入欧拉线方程,得,②由 ①②可得或 .故选:AD 三、填空题14.(2019·浙江省高二期中)直线过定点______;若与直线平行,则______.【答案】 【解析】(1),故.即定点为(2) 若与直线平行,则,故或.当时与直线重合不满足.故.故答案为:(1) ; (2)15.(2018·江苏省高二月考)已知以为圆心的圆与圆相内切,则圆C 的方程是________.【答案】(x -4)2+(y +3)2=36.(,),C x y AB y x =-ABC D 20x y -+=y x =-(1,1)M-22||||(1)(1)10MC MA x y \==\++-=()4,0A -()0,4B ABC D 44(,33x y -+20x y -+=20x y --=2,0x y ==0,2x y ==-()1:20l m x y m +--=()m R Î1l 2:310l x my --=m =()1,23-()1:20(1)20l m x y m m x x y +--=Þ-+-=101202x x x y y -==ììÞíí-==îî()1,21l 2:310l x my --=()()()()()2310130m m m m +---=Þ-+=1m =3m =-1m =1l 2l 3m =-()1,23-()4,3C -22:1O x y +=【解析】,设所求圆的半径为,由两圆内切的充分必要条件可得:,据此可得:,圆C 的方程是(x -4)2+(y +3)2=36.16.(2020·河南省高三二模(文))圆关于直线的对称圆的标准方程为__________.【答案】【解析】,圆心为,半径为,设圆心关于直线的对称点为,对称圆的标准方程为.故答案为:.17.(2020·四川省高三二模(文))已知、为正实数,直线截圆所得的弦长为,则的最大值为__________.【答案】【解析】因为直线截圆所得的弦长为,且圆的半径为2.故圆心到直线的距离.,因为、为正实数,故,所以.当且仅当时取等号.5=()0r r >15r -=6r =22230x y y ++-=10x y +-=22(2)(1)4x y -+-=Q 2222230(41)x y y x y ++-=Þ+=+\(0,1)-210x y +-=(,)x y \1(1)1,2,1.110,22y x xy x y +ì´-=-ï=ìïÞíí=-îï+-=ïî\22(2)(1)4x y -+-=22(2)(1)4x y -+-=a b 10x y ++=()()224x a y b -+-=ab 1410x y ++=(224x (),a b d ==a b 1a b +=2124a b ab +æö£=ç÷èø12a b ==故答案为:四、解答题18.(2020·吴江汾湖高级中学高一月考)求圆上与直线的距离最小的点的坐标.【答案】【解析】过圆心且与直线垂直的直线方程为,联立圆方程得交点坐标为,,又因为与直线的距离最小,所以.19.(2019·全国高二月考(文))已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.【答案】(1)或;(2)【解析】(1)①当直线的斜率不存在时,方程符合题意;14224x y +=43120x y +-=86,55P æöç÷èø43120x y +-=340x y -=224340x y x y ì+=í-=î86,55æöç÷èø86,55æö--ç÷èø43120x y +-=86,55P æöç÷èøl (2,1)P -O l 2l O l l 20x -=34100x y --=250.x y --=l 2x =②当直线的斜率存在时,设斜率为,则方程为,即,解得,则直线的方程为故直线的方程为或(2)当原点到直线的距离最大时,直线因为,所以直线的斜率所以其方程为,即20.(2020·吴江汾湖高级中学高一月考)在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.【答案】(1)(2)【解析】(1)边上的高为,故的斜率为, 所以的方程为,即,因为的方程为解得所以.l k ()12y k x +=-210.kx y k ---=234k =l 34100.x y --=l 20x -=34100.x y --=O l .l OP ^011022OP k +==--l 2,k =()122y x +=-250.x y --=ABC D (1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC ()66C ,2180x y +-=AC 74460x y +-=AC 47AC ()4217y x -=+47180x y -+=CM 211540x y -+=21154047180x y x y -+=ìí-+=î,,66x y =ìí=î()66C ,(2)设,为中点,则的坐标为, 解得, 所以, 又因为,所以的方程为即的方程为.21.(2019·浙江省高二期中)如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.【答案】(1)见解析,(2【解析】(1)设,则以 为直径的圆的方程: ,与圆,两式相减得:,()00,B x y M AB M 0012,22x y -+æöç÷èø0000122115402274460x y x y -+ì-+=ïíï+-=î0028x y =ìí=î()2,8B ()6,6C BC ()866626y x --=--BC 2180x y +-=22:(2)1C x y -+=P :4l x =P C ,A BAB Q ,PA PB y ,M N QMN V 5,02Q æöç÷èø(4,)P t CP ()22232t x y æö-+-=ç÷èø22:(2)1C x y -+=:2(2)1AB l x ty -+=所以直线恒过定点.(2)设直线与的斜率分别为,与圆,即.所以,,22.(2020·江西省新余一中高一月考)已知点,,直线:,设圆的半径为,圆心在直线上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.【答案】(1)或.(2)【解析】(1)由得:,所以圆C:..当切线的斜率存在时,设切线方程为,由,解得:当切线的斜率不存在时,即也满足所以切线方程为:或.5,02Qæöç÷èøAP BP12,k k(4)y t k x-=-C1=223410k tk t-+-=2121241,33-+=×=t tk k k k14My t k=-24Ny t k=-12||44=-==³MN k k()min1522MNQSD==(4,4)A(0,3)B l1y x=-C1C lC37y x=-A CC M2MB MO=O C a4x=3440x y-+=a££a££137y xy x=-ìí=-î()3,2C22(3)(2)1x y-+-=4(4)y k x-=-1d==34k=4x=4x=3440x y-+=(2)由圆心在直线l :上,设设点,由化简得:,所以点M在以为圆心,2为半径的圆上. 又点M 在圆C 上,所以圆C 与圆D 有交点,则即,解得:23.(2019·山东省高一期中)已知点,点在圆上运动.(1)求过点且被圆截得的弦长为的直线方程;(2)求的最值.【答案】(1)或;(2)最大值为88,最小值为72.【解析】(1)依题意,直线的斜率存在,因为过点且被圆截得的弦长为,,设直线方程为,即,解得或所以直线方程为或.(2)设点坐标为则.因为,所以,即的最大值为88,最小值为72.C 1y x =-(,1)C a a -(,)M x y ||2||MB MO ==22(1)4x y ++=(0,1)D -1||3CD ££13££a ££a ££(2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++7100x y ++=20x y +-=C E 2(4)y k x +=-420kx y k ---==17k =-1k =-7100x y ++=20x y +-=P (),x y 224x y +=222222222||||||(2)(2)(2)(6)(4)(2)PA PB PC x y x y x y ++=++++++-+-++()223468804x y y y=+-+=-22y -≤≤7280488y £-£222||||||PA PB PC ++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省宜宾市第四中学校2021-2022高二数学下学期期中试题 理注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第I 卷 选择题(60分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知复数3i1iz +=-,则z = A .1B .2C .5D .52.已知命题p :∀x∈R,2x >0,那么命题¬p 为 A .∃x∈R,2x <0B .∀x∈R,2x <0C .∃x∈R,2x≤0D .∀x∈R,2x≤03.下列求导运算正确的是.A .23111x x x '⎛⎫+=- ⎪⎝⎭ B .(2)2ln 2x x '= C .2(sin )2cos x x x x '= D .1(ln 2)2x x'=4.随机变量2~(2,3)X N ,且(1)0.20P X <=,则(23)P X <<=A .0.20B .0.30C .0.70D .0.805.若l m n 、、是互不相同的空间直线,αβ、是不重合的平面,则下列命题中真命题是A .若//l m αβαβ⊂⊂,,,则//l mB .若l αβα⊥⊂,, 则l β⊥C .若l β⊥,//l α,则αβ⊥D .若l n ⊥,m n ⊥,则//l m6.5个节目,若甲、乙、丙三个节目按给定顺序出现不同的排法有A .120种B .80种C .48种D .20种7.执行如图所示的程序框图,输出的值是 A .4 B .5C .6D .78.设双曲线22221(0,0)x y a b a b-=>>的离心率为3,且它的一个焦点在抛物线212y x =的准线上,则此双曲线的方程为A .22156x y -=B .22175x y -=C .22136x y -=D .22143x y -=9.函数()[]()2cos 2,21x xf x x x =∈-+的大致图象是 A .B .C .D .10.在区间[],ππ-内随机取两个数分别记为,a b ,则函数()2222f x x ax b π=+-+有零点的概率 A .18π-B .14π-C .34D .4π 11.已知函数()()2321ln 3422f x x x ax x a a a a R =--+--+∈存在两个极值点.则实数a 的取值范围是A .()0∞,+B .10,e ⎛⎫ ⎪⎝⎭C .1,e ⎛⎫+∞ ⎪⎝⎭D .1,e e ⎛⎫ ⎪⎝⎭12.设函数()f x 是定义在(0,)+∞上的可导函数,其导函数为()f x ',且有()2()xf x f x '>,则不等式24(2019)(2019)(2)0f x x f ---<的解集为A .(0,2021)B .(2019,2021)C .(2019,)+∞D .(,2021)-∞第II 卷 非选择题(90分)二、填空题:本题共4小题,每小题5分,共20分。

13.833()2x x -的展开式中的常数项是__________. 14.函数()()2212f x x =-+的极值点是_____________________15.二面角l αβ--的大小是60︒,线段AB α⊂,B l ∈,AB 与l 所成的角45︒,则AB 与平面β所成的角的正弦值是__________.16.若函数(1)()ln 1a x f x x x -=++在定义域上是增函数,则实数a 的取值范围为__________. 三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)已知函数31()443f x x x =-+. (Ⅰ)求()f x 在[]0,3上的最值;(II )对任意[]12,0,x x m ∈,1216()()3f x f x -≤恒有成立,求实数m 的取位范围.18.(12分)为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km /h 的有40人,不超过100km /h 的有15人;在45名女性驾驶员中,平均车速超过100km /h 的有20人,不超过100km /h 的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km /h 的人与性别有关.平均车速超过100km /h 人数平均车速不超过100km /h 人数 合计男性驾驶员人数 女性驾驶员人数 合计(II )以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km /h 的车辆数为X ,若每次抽取的结果是相互独立的,求X 的分布列和数学期望. 参考公式与数据:()20P K k ≥ 0.150 0.1000.050 0.025 0.010 0.005 0.0010k 2.072 2.7063.841 5.024 6.635 7.879 10.828()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++. 19.(12分)在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,D E F ,,分别是11A B 、1CC 、BC 的中点,11AE A B ⊥,12AA AB AC ===.(Ⅰ)证明:AB AC ⊥;(Ⅱ)求平面DEF 与平面ABC 所成锐二面角的余弦值.20.(12分)已知抛物线2:2(0)C y px p =>的焦点为F ,A 为抛物线C 上异于原点的任意一点,过点A 的直线l 交抛物线C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF ∆为正三角形. (Ⅰ)求抛物线C 的方程;(Ⅱ)若直线1//l l ,且1l 和抛物线C 有且只有一个公共点E ,试问直线AE (A 为抛物线C 上异于原点的任意一点)是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.21.(12分)已知函数()2ln f x a x x =+,其中a R ∈.(Ⅰ)讨论()f x 的单调性; (Ⅱ)当1a =时,证明:()21f x x x ≤+-;(Ⅲ)求证:对任意正整数n ,都有2111111222n e ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(其中e≈2.7183为自然对数的底数)(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22.[选修4-4:坐标系与参数方程](10分)已知曲线C 的参数方程是cos x a y ϕϕ=⎧⎪⎨=⎪⎩ (ϕ是参数,0a > ),直线l 的参数方程是31x ty t =+⎧⎨=--⎩(t 是参数),曲线C 与直线l 有一个公共点在x 轴上,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系(I )求曲线C 的极坐标方程;(II )若点1(,)A ρθ,22(,)3B πρθ+,34(,)3C πρθ+在曲线C 上,求222111OA OB OC ++的值.23.[选修4-5:不等式选讲](10分) 已知函数()1f x x a x =-+-.(I )若不等式()3f x ≤的解集为{}03x x ≤≤,求实数a 的值; (II )当2a = 时,若()1422nn f x +≥--对一切实数x 恒成立,求实数n 的取值范围.2021年春四川省宜宾市第四中学高二期中考试理科数学参考答案1.C 2.C 3.B4.B5.C6.D7.B8.C9.A10.B11.B 12.B13.631614.1x =-或1或015.616.2a ≤17.(1)因为31()443f x x x =-+,所以2()4f x x =-',令()0f x '=,解得2x =-或2x =, 因为()f x 在[0]3,上,所以()f x 在[0]2,上单调递减;在](23,上单调递增, 又因为(0)4f =,4(2)3f =-,(3)1f =, 所以,当0x =时,()f x 的最大值为4;当2x =时,()f x 的最小值为43-. (2)因为416433⎛⎫--= ⎪⎝⎭,结合()f x 的图象: 令()04f x =,解得023x =, 所以m 的取值范围是(0,23]. 18.(Ⅰ)平均车速超过100/km h人数 平均车速不超过100/km h 人数 合计男性驾驶员人数 40 15 55 女性驾驶员人数 20 25 45 合计6040100因为()22100402515208.4297.87960405545x ⨯⨯-⨯=≈>⨯⨯⨯,所以有99.5%的把握认为平均车速超过100/km h 与性别有关;(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100/km h 的车辆的概率为4021005=.X 可取值是0,1,2,3,23,5X B ⎛⎫~ ⎪⎝⎭,有: ()03032327055125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()12132354155125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, ()21232336255125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()333238353125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, X 的分布列为 X123P27125 54125 36125 8125()2754368601231251251251255E X =⨯+⨯+⨯+⨯=. 19.(Ⅰ)因为11AE A B ⊥,11//A B AB ,所以AB AE ⊥,又侧棱1AA ⊥底面ABC ,所以1AB AA ⊥,1AE AA A =,所以AB ⊥平面11A ACC ,而AC ⊆平面11A ACC , 所以AB AC ⊥.(Ⅱ)由已知及(Ⅰ)可知1AA AB ⊥,1AA AC ⊥,AB AC ⊥,以A 为原点,1AB AC AA ,,分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz -,则(0,0,0)A ,(0,2,1)E ,(1,1,0)F ,1(0,0,2)A ,(2,0,0)B ,(1,0,2)D , 所以()1,2,1DE =--,()0,1,2DF =-,设面DEF 的法向量为(,,z)n x y =,则由0,0n DE n DF ⎧⋅=⎨⋅=⎩得20,20y z x y z -=⎧⎨-+-=⎩即2,3,y z x z =⎧⎨=⎩令1z =得(3,2,1)n =.又由题可知面ABC 的法向量(0,0,1)=m .所以|||cos ,|||||m n m n m n ⋅〈〉===故平面DEF 与平面ABC. 20.(Ⅰ)由题意知,02p F ⎛⎫⎪⎝⎭,设(),0(0)D t t >,则FD 的中点为2,04p t +⎛⎫⎪⎝⎭, 因为FA FD =,由抛物线的定义知:322p pt +=-,解得3t p =+或3t =-(舍去), 由234p t+=,解得2p =,所以抛物线C 的方程为24y x = (II)由(Ⅰ)知()1,0F ,设()000,(0)A x y x >,(),0(0)D D D x x >,因为FA FD =,则011D x x -=+,由0D x >得02D x x =+,故()02,0D x +,故直线AB 的斜率为02AB y k =-,因为直线1l 和直线AB 平行,故可设直线1l 的方程为02y y x b =-+, 代入抛物线方程得200880b y y y y +-=,由题意知20064320b y y ∆=+=,得02b y =-.设(),E E E x y ,则04E y y =-,204E x y =,当204y ≠时,0020044E AE E y y y k x x y -==--, 可得直线AE 的方程为()0002044y y y x x y -=--, 由2004y x =,整理可得()020414y y x y =--,所以直线AE 恒过点()1,0F ,当204y =时,直线AE 的方程为1x =,过点()1,0F ,所以直线AE 恒过定点()1,0F .21.(1)函数()f x 的定义域为()0,∞+,()222a a x f x x x x+'=+=①当0a ≥时,()0f x '>,所以()f x 在()0,∞+上单调递增,②当0a <时,令()0f x '=,解得:x =当0x <<时,()0f x '<, 所以()f x在⎛ ⎝上单调递减;当x >() 0f x '>,所以()f x在⎫+∞⎪⎪⎭上单调递增, 综上,当0a ≥时,函数()f x 在()0,∞+上单调递增;当0a <时,函数()f x在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增;(2)当1a =时,()2ln f x x x =+,要证明()21f x x x ≤+-,即证ln 1x x ≤-,即ln 10x x -+≤,设()ln 1g x x x =-+则()1xg x x-'=,令()0g x '=得,1x =,当()0,1x ∈时,()0g x '>,当()1,x ∈+∞时,()0g x '<所以1x =为极大值点,也为最大值点所以()()10g x g ≤=,即ln 10x x -+≤故当1a =时,()21f x x x ≤+-;(3)由(2)ln 1x x ≤-(当且仅当1x =时等号成立),令()112nx n N *=+∈, 则 22111ln 1112nn n ⎛⎫⎛⎫+≤+-= ⎪ ⎪⎝⎭⎝⎭, 所以22111221111111ln 1ln 1ln 111ln 1222222212nnn n e ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦++++⋅⋅⋅++≤++⋅⋅⋅+==-<= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-,即2111ln 1ln 1ln 1ln 222n e ⎛⎫⎛⎫⎛⎫++++⋅⋅⋅++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以2111111222n e ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭. 22.(Ⅰ)∵直线l 的参数方程是31x ty t =+⎧⎨=--⎩(t 为参数),消去参数t 得x +y =2,令y =0,得x =2.∵曲线C 的参数方程是x acos y ϕϕ=⎧⎪⎨=⎪⎩(ϕ为参数,a >0),消去参数ϕ得22213x ya +=,把点(2,0)代入上述方程得a =2.∴曲线C 普通方程为22143x y +=.(Ⅱ)∵点()1232433A B C ππρθρθρθ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,,,,,在曲线C 上,即A (ρ1cosθ,ρ1sinθ),222233B cos sin ππρθρθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,334433C cos sin ,ππρθρθ⎛⎫⎛⎫⎛⎫++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在曲线C 上, ∴222222222222123111111124124||||||433333cos cos cos sin sin sin OA OB OC ππππθθθθθθρρρ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=++=+++++++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =484812121212112112333342223222cos cos cos cos cos cos ππππθθθθθθ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++-+-+⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭⎝⎭ ⎪ ⎪+++++ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭=232223222333386cos cos cos cos cos cos ππππθθθθθθ⎛⎫⎛⎫⎛⎫⎛⎫+-++--++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+=337868+=. 23.(1)由题意得出关于x 的方程()3f x =的两根分别为0和3,则()()0333f f ⎧=⎪⎨=⎪⎩,即13323a a ⎧+=⎪⎨-+=⎪⎩,解得2a =; (2)当2a =时,由绝对值三角不等式得()21211f x x x x x =-+-≥--+=, 又()1422nn f x +≥--对一切实数x 恒成立,所以11422n n +≥--,令2n t =,化简得2230t t --≤,解得3t ≤,所以2log 3n ≤,实数n 的取值范围为(]2,log 3-∞.。

相关文档
最新文档