信号系统Z变换习题讲解
信号与系统 第八章 Z变换及分析

东北大学秦皇岛分校 计算机工程系通信工程专业
信号与系统
四
几类序列的收敛域
n2
(1)有限长序列:在有限区间内,有非零的有限值 的序列 x(n)
X ( z ) x(n) z
n n1
n
n1 n n2
n1 0, n2 0 收敛域为除了0和
j Im[z]
的整个 z 平面。
0 z
另,思考:
Re[z ]
n1 0, n2 0 n1 0, n2 0
n 0
X s ( s)
0
x(nT ) (t nT )e
n 0 0
st
dt
x(nT ) (t nT )e dt
st
x(nT )e
n 0
n 0
snT
东北大学秦皇岛分校 计算机工程系通信工程专业
信号与系统
X s ( s) x(nT )e snT
0 0 0
4.余弦序列
j0 n
j0n
0
z e 0 z e z ( z cos0 ) 2 z 2 z cos0 1
0
z sin 0 ZT [sin 0 n] 2 z 2 z cos0 1
5.正弦序列
说明: n 0, z 1
东北大学秦皇岛分校 计算机工程系通信工程专业
第三章 时域离散信号和系统的Z变换分析方法

X ( z)
n
x ( n ) z n
n2
第三章 时域离散信号和系统的Z变换分析方法 为分析收敛域的特点,将序列分成两部分,一部分 是n≥0的部分,另一部分是n<0的部分,分析如下:
X ( z)
n
x ( n ) z n x ( n ) z n
第三章 时域离散信号和系统的Z变换分析方法 如果|a|<1,则由于|a|-1>1,收敛域一定包含单位圆,因 此该序列的傅立叶变换存在,即
X (e j ) X ( z ) z e j
X ( z ) x ( n ) z n x ( n ) z n
例 3.2.2
1
n n1 n 0 求x(n)=anu(n)的Z变换及其收敛域。
解
X ( z)
n
a u( n ) z
n
n
a z
n 0
n n
上式Z变换存在,要求|az-1|<1,解这个不等式,得 到: |z|>|a|,它的Z变换为
对因果序列的Z变换,称为单边Z变换,定义如下:
X ( z ) x ( n ) z n
n 0
(3.1.3)
(3.1.1)式Z变换存在的条件是等号右边级数收敛, 要求级数绝对可和,用公式表示如下:
n
x(n) z
n
(3.1.4)
第三章 时域离散信号和系统的Z变换分析方法 要使上式成立,除和序列x(n)有关以外,和z变量 在z平面上取值的域也有关。如果对于某个序列,称能 使上式成立的z变量取值的域为X(z)的收敛域, 则可以 推想, 对于不同的序列, 就有不同的收敛域。 收敛域一般用下式表示:
Z变换详细讲解2

f (t)
j
F
(s)e
st
ds
由于z esT , dz Te sT
Tz
j
ds
f (t) f (nT ) f (n)
F (s) f (n)z n F (z) n
e sT e snT z n
ds 1 dz dz Tz z
j
j
c
10
f (n) 1 F (z)z n1dz 令z re j
n0
zm x(n m)z(nm) zm x(k)zk
n0
k m
zm
x(k ) z k
m1
x(k ) z k
k 0
k 0
zm
X
(z)
m1
x(k ) z k
k 0
15
(3)双边右移序列旳单边Z变换
X (z) x(n)u(n)zn n0
ZT[x(n m)u(n)] x(n m)zn
.画出下列系统函数所表示系统的建立级联和 并联形式的结构图。
H (z) 3z3 5z 2 10z z3 3z2 7z 5
解:
H
(
z
)=
(
z z
(3z 2 1)(
z2
5z 10) 2z 5)
1 1 z 1
3 5z 1 1 2z 1
10z 2 5z2
1
H (z)
1 1 z1
br z r
r 0
N
ak zk
k 0
请注意这里 与解差分有 何不同?
因果!
22
(2)定义二:系统单位样值响应h(n) 旳Z变换
• 鼓励与单位样值响应旳卷积为系统零状
态响应
y(n) x(n)*h(n)
山东大学 DSP数字信号处理PPT 第二章z变换 习题讲解

1 1 z2
X z
4
1
1 4
z
2
1
5 4
z 1
3 8
z
2
解:对X z的分子和分母进行因式分解,得
1 1 z2
X z
4
1
1 4
z
2
1
5 4
z 1
3 8
z
2
1
1 2
z 1
1
1 2
z 1
1
1 4
z 2
1
1 2
z 1
1
3 4
z 1
1 1 z1
2
1
1 2
jz
1
1
1 2
2-13 研究一个输入为x(n)和输出为 y(n)的 时域线性离散移不变系统,已知它满足
y(n 1) 10 y(n) y(n 1) x(n) 3
并已知系统是稳定的。试求其单位抽样 响应。
y(n 1) 10 y(n) y(n 1) x(n) 3
解:对差分方程两边取z变换
z1Y (z) 10 Y (z) zY (z) X (z) 3
在围线c外有单阶极点 z 1/ 4,
且分母阶次高于分子阶次二阶以上
x(n)
Re
s
F
(
z) z 1 /
4
z
1/
4
(
z 2)zn1 z 1/4
z 1 /
4
7 4
1 4
n 1
7
4n
x(n) 8 (n) 7 4n u(n 1)
j Im[z]
C
1/ 4
0
Re[z]
③部分分式法
X (z) z
jz
奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(下册)-z变换(圣才出品)

第10章z变换10.1 复习笔记一、z变换1.z变换的定义一个离散时间信号x[n]的z变换定义为其中z是一个复变量。
简单记为2.z变换与傅里叶变换的关系X(re jω)是序列x[n]乘以实指数r-n后的傅里叶变换,即指数加权r-n可以随n增加而衰减,也可以随n增加而增长,这取决于r大于1还是小于1。
若r=1,或等效为|z|=1,z变换就变为傅里叶变换,即(1)在连续时间情况下,当变换变量的实部为零时,拉普拉斯变换演变为傅里叶变换,即在虚轴jω上的拉普拉斯变换是傅里叶变换。
(2)在z变换中是当变换变量z的模为1,即z=e jω时,z变换演变为傅里叶变换。
即傅里叶变换是在复数z平面中半径为1的圆上的z变换。
在z平面上,单位圆在z变换中所起的作用类似于s平面上的虚轴在拉普拉斯变换中所起的作用。
二、z变换的收敛域1.性质1X(z)的收敛域是在z平面内以原点为中心的圆环。
2.性质2收敛域内不包含任何极点。
3.性质3如果x[n]是有限长序列,那么收敛域是整个z平面,可能除去z=0和/或z=∞。
4.性质4如果x[n]是一个右边序列,并且|z|=r0的圆位于收敛域内,那么|z|>r0的全部有限z 值都一定在这个收敛域内。
5.性质5如果x[n]是一个左边序列,而且|z|=r0的圆位于收敛域内,那么满足0<|z|<r0的全部z值都一定在这个收敛域内。
6.性质6如果z[n]是双边序列,而且|z|=r0的圆位于收敛域内,那么该收敛域在z域中一定是包含|z|=r0这一圆环的环状区域。
7.性质7如果x[n]的z变换X(z)是有理的,那么它的收敛域就被极点所界定,或者延伸至无限远。
8.性质8如果x[n]的z变换X(z)是有理的,并且x[n]是右边序列,那么收敛域就位于z平面内最外层极点的外边,亦即半径等于X(z)极点中最大模值的圆的外边。
而且,若x[n]是因果序列,即x[n]为n<0时等于零的右边序列,那么收敛域也包括z=∞。
《信号与系统》第二版第八章:Z变换

n ∴ x ( n ) = δ ( n ) + 3.5δ ( n − 1) + ⎡8 − 13 × ( 0.5 ) ⎤ u ( n − 2 ) ⎣ ⎦
部分分式展开法:
⎧ 1 ⎫ ⎧ z ⎫ n = Z −1 ⎨ Z −1 ⎨ ⎬ = d u ( n) −1 ⎬ ⎩1 − dz ⎭ ⎩z−d ⎭
= { z n −1 X ( z )( z − zm )} |z = zm
z3 + 2z 2 + 1 , z >1 z ( z − 1)( z − 0.5 )
当 n ≥ 2 时, z n −1 X ( z ) 的极点: z1 = 1, z2 = 0.5
⎧⎡ z 3 + 2 z 2 + 1 n−2 ⎤ ⎫ ⎡ z 3 + 2 z 2 + 1 n−2 ⎤ ⎪ ⎪ x ( n ) = ⎨⎢ z ⎥ +⎢ z ⎥ ⎬ u ( n − 2) z −1 ⎪ ⎦ z =1 ⎣ ⎦ z =0.5 ⎪ ⎩ ⎣ z − 0.5 ⎭
(8-30)
(8-31)
, z ∈ 收敛域 注:1) m > 0 ,右移(延迟) m 步; m < 0 ,左移(导前) m 步。
2)引入 m 步延迟算子,
z −m x ( n ) x (n − m)
Z { z − m x ( n )} = z − m X ( z )
9 因果序列单边 Z 变换右移性质:
9 双边序列:
x ( n ) , n ∈ {−∞, +∞}
(8-19)
−n
X ( z ) = ∑ x ( n) z −n +
n=0
+∞
数字信号处理,第二章 Z变换讲解

二、右边序列
例3:求序列 x(n) u(n)的Z变换及收敛域。
Z[x(n)] u(n)zn zn
n
n0
1 1 1 z z2
1 1 z 1
z z 1
Z[u(n)]的极点为1,零点为0 收敛域为|z|>1
零极相消
例:
Z[u(n) u(n 1)]
Z[u(n)] Z[u(n 1)]
s1in2zz1
1 sin(0 cos0
z 2
)
§2.3 z变换性质1
一、线性:
Z[a1x1(n)+a2x2(n)]=a1Z[x1(n)]+a2Z[x2(n)]
二、时移:
Z[x(n)]=X(z) Z[x(n-m)]=z-m·X(z)
意义:z-1:单位延迟器
z变换性质2
三、时域卷积:
即: x(n)z n M n
一、有限长序列
例1:求序列 x(n) RN (n) 的Z变换及收敛域。
Z[RN (n)]
RN (n)zn
n
N 1
z n
n0
1 zN 1 z1
收敛域为: 0 z ,
例2:求序列 x(n) (n)的Z变换及收敛域。
解:
Z[ (n)] (n)zn z0 1
z z1 z z 1 1
z 1
z 1 z 1
零、极点均为z=1,称为零极点相消。收敛域为整个z平面。
另:
u(n) u(n 1) (n), Z[ (n)] 1
例4:求序列 x(n) anu(n)的Z变换及收敛域。
解: X (z) anu(n)z n a n z n (az 1 )n
例2-4-2:
X
(
z)
奥本海姆《信号与系统》(第2版)(下册)课后习题-Z变换(圣才出品)

第10章Z变换习题10.1 试对下列和式,为保证收敛确定在r=|z|上的限制:解:(a)为了保证收敛,需满足即使和式收敛的z均满足,亦即有又因在和式中含有一个正幂项z,故z≠∞。
综上所述,使和式收敛的z的模需满足为了保证收敛,需,即满足|2z|<1,从而知使和式收敛的z的模需满足为了保证收敛,需,即|z|>1;为了保证收敛,需,即|z|>1综上所述,使和式收敛的z的模需满足r>1。
对于上式右端第二项,要保证其收敛,需,即|z|<2。
对于上式右端第三项,要保证其收敛,需,即|z|<2。
对于上式右端第四项,要保证其收敛,需,即。
对于上式右端第五项,要保证其收敛,需,即。
综上所述,要使和式收敛,z的模需满足。
10.2 设信号x[n]为利用式(10-3)求该信号的z变换,并标出对应的收敛域。
解:为使该级数收敛,需,即,于是可得10.3 设信号x[n]为已知它的z变换x(z)的收敛域是试确定在复数α和整数n0上的限制。
解:令x[n]=x1[n]+x2[n],其中x1[n]=(-1)n u[n],x2=αn u[-n-n0]于是有则X(z)=X1(z)+X2(z),1<|z|<|α|由于已知X(z)的收敛域为1<|z|<2,所以α应满足|α|=2,而n0可为任意整数。
10.4 考虑下面信号:对x(z)确定它的极点和收敛域。
解:因为,要使x(z)收敛,显然应有及,即X(z)的ROC为由于故X(z)的两个极点分别为,它们是互为共轭自两个复数极点。
10.5 对下列信号z变换的每个代数表示式,确定在有限z平面内的零点个数和在无限远点的零点个数。
解:(a)由于X(z)的分母多项式的阶数比分子多项式的阶数高1阶,所以X(z)在有限z平面上零点的个数为1(即X(z)的有限零点个数为1),同样在无穷远处的零点个数也为1。
由于x(z)的分母多项式与分子多项式有相同的阶数,所以X(z)仅有2个有限零点,而在无穷远处无零点。
由于X(z)的分母多项式的阶数比分子多项式的阶数高2阶,所以X(z)有1个有限零点,而在无穷远处有2个零点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号系统Z 变换习题讲解7-1 分别绘出下列各序列的图形。
(1)[](1/2)[]n x n u n = (2)[]2[]n x n u n = (3)[](1/2)[]n x n u n =- (4)[](2)[]n x n u n =- 解:7-2 分别绘出下列各序列的图形。
(1)[][]x n nu n =-- (2)[]2[]n x n u n -= (3)[](1/2)[]n x n u n -=- (4)[](1/2)[]n x n u n =-- 解:01234n(1)01234n(2)(3)01234n[n ]-1-4n(2)(1)(4)7-3 分别绘出下列各序列的图形。
(1)[]sin 5n x n π⎛⎫= ⎪⎝⎭ (2)[]cos 105n x n ππ⎛⎫=- ⎪⎝⎭解:7-5 序列x [n ]如图题7-5所示,把x [n ]表示为δ[n ]的加权与延迟之线性组合。
图 题7-5解: []2[3][]3[1]2[3]x n n n n n δδδδ=-+-+-+-7-7 求下列序列的z 变换X (z ),并注明收敛域,绘出X (z )的零极点图。
(1)(1/2)nu [n ] +δ [n ] (4)(1/2)n {u [n ] - u [n -8]} (5)δ [n ] -15δ [n -2]解:111(1)()[()[][]]()[]221212111222nnnnn n n X z u n n z z n zz z z z z δδ∞∞∞---=-∞==-∞=+=+-=+=>--∑∑∑(2)∞--=-∞=--=--=--==>--∑∑718881711(4)()()([][8])()22111()()22111()22n nn nn n X z u n u n zzzz z zzzδδ∞-=-∞-=--=->∑21(5)()([][2])51105n n X z n n z zz7-8 求双边序列x [n ] =||(1/2)n 的z 变换,标明收敛域及绘出零极点图。
解:∞-∞----=-∞=-∞=∞∞====+=+=+---=<<--∑∑∑∑∑11111()()()()222(12)11()()221(12)12(32)122(12)(2)nnnnn nn n n nnn n X z zzz z zz zzz z z z z7-11 画出X (z ) =1123252z zz-----+的零极点图,在下列三种收敛域下,哪种情况对应左边序列,哪种情况对应右边序列,哪种情况对应双边序列? 并求出各对应序列。
(1)z> 2 (2)z< 0.5 (3)0.5 <z< 2解:----=-+-==--+---==-----∴=--- 11223()2523312522(2)()23()1121122(2)()2()122zX z z zz zz z z z X z z z z z z z zX z z z(1) 当>2z 时,[]x n 为右边序列1[][()2][]2nnx n u n =-(2) 当<0.5z 时,[]x n 为左边序列1[][()2][1]2=-+--nnx n u n(3) 当0.52z <<时,[]x n 为双边序列1[]()[]2[1]2nnx n u n u n =+--7-13 已知X (z ) = 11111(12)2z z --⎛⎫-- ⎪⎝⎭。
(1)确定与X (z )有关的收敛域可能有几种情况,画出各自的收敛域图; (2)求以上各种收敛域所对应的离散时间序列的表达式; (3)以上序列中哪一种序列存在傅氏变换?解:--==---- 2111()(112)(12)(12)(2)zX z zzz z==-+----∴=-+--()14(12)(2)3(12)3(2)4()3(12)3(2)X z zzz z z z z zX z z z(1)收敛域可能有三种情况:><<<2,12,122z z z|z|>2|z|<1/2Re(z)(2)对应的序列分别为:1112[][()4(2)][]32nnz x n u n >=-+21112[][()4(2)][1]32nnz x n u n <=---311122[][()[]4(2)[1]]32n nz x n u n u n <<=-+--(3)序列3[]x n 的收敛域包括单位圆,所以此序列存在傅氏变换。
7-14 已知X (z ) =223(1)(2)(3)z z z z z -+-+,若收敛域分别为1 <z < 2和2 <z < 3两种情况,求对应的逆变换x [n ]。
解:223(23)()(1)(2)(3)(1)(2)(3)zzz z X z z z z z z z --==+-++-+ ()23(1)(2)(3)5196(1)15(2)10(3)59()6(1)15(2)10(3)X z z zz z z z z z z z z X z z z z -=+-+=+-+-+∴=+-+-+519(1)12[](1)[][2(3)][1]61510nnnz x n u n u n <<=------519(2)23[][(1)2][](3)[1]61510nnnz x n u n u n <<=-++---7-21 利用卷积定理求y [n ] = x [n ] * h [n ]。
已知(3)x [n ] = R N [n ] = u [n ] - u [n -N ],h [n ] = a n u [n ],0< a <1 解:(3)[][][][]Nx n R n u n u n N ==--[][]nh n a u n =1()111()||N z zX z z z z zH z z a z a-+∴=->--=>-根据卷积定理得:1()()()11()1[](1)1111[](1)1111()[](1)11N NNNz zz Y z X z H z z z z aY z z zzz z aa za z a z a z a zY z z az z a-+----==>--=---=------=-----由于[]x n 、[]h n 均为因果序列,因此[]y n 亦为因果序列,根据移位性质可求得11111[][()](1)[](1)[]11n n Ny n ZY z au n au n N aa-++-==------7-24 计算下列序列的傅里叶变换。
(1)2n u [-n ] (3)δ [4-2n ] 解:1(1)()2[]212(2)212j n j nn j nn n j nj j n H eu n eee eeωωωωωω∞--=-∞=-∞∞-==-====--∑∑∑2(3)()[42]j j nj n H en e eωωωδ∞--=-∞=-=∑。